High Power Lasers in Manufacturing

by

Professor Chris R. Chatwin
University of Sussex

http://www.sussex.ac.uk/profiles/9815
Brief History and Evolution of Lasers

- 1917 - Albert Einstein developed the concept of stimulated emission, which is the phenomenon used in lasers
- In 1954 the maser was the first device to use stimulated emission (Townes & Schawlow). Microwave amplification by stimulated emission of radiation
Brief History of Lasers

- In 1958 Townes & Schawlow suggested that stimulated emission could be used in the infrared and optical portions of the spectrum.
- The device was originally termed the optical maser.
- This term was dropped in favour of **LASER**. Standing for **Light Amplification by Stimulated Emission of Radiation**.

Charles Townes & Jim Gordon at Columbia University in 1954 with their second working MASER
1st Laser - Ted Maiman 15th May 1960 - working alone and against the wishes of his boss at Hughes Research Laboratories

Electrical Engineer
Maiman’s Ruby Laser - 694.3 nm

New York Times
8th July 1960,
Wrong Ruby Crystal
is shown here.
The journalist didn’t
like the actual stubby
crystal. This crystal
was used later

Synthetic pale pink ruby crystal Al_2O_3
containing about 0.05% by weight of Cr_2O_3
Bell Labs & the Laser

1960 Ali Javan, William Bennet, Donald Herriot - HeNe Laser - 1st CW Laser - 1.15 µm

1961 Boyle & Nelson - Continuously operating Ruby Laser

1962 Kumar Patel (front), Faust, McFarlane, Bennet (left to right) - 5 Noble gas lasers and lasers using oxygen mixtures
Bell Labs & the Laser

1964 C. K. N. Patel - High Power Carbon Dioxide Laser - 10.6μm

1971 Izuo Hayashsi & Morton Panish - first semiconductor laser that operated continuously at room temperature

1964: First Nd:YAG laser 1.06μm (uses neodymium doped yttrium aluminium garnet crystals) by J. F. Geusic and R. G. Smith
Stimulated Emission

Atoms in Ground State

Flash lamp excites Cr

Spontaneous emission

Stimulated emission

Stimulated emission

Laser output pulse
Coherence and Focusing

- Spatially & temporally incoherent: out-of-step & various wavelengths
- Spatially Coherent
- Temporally coherent: single wavelength
- Spatially & temporally coherent: only 1% left
- Laser Light: 100% coherent
A Beam Focusing Lens and an Assist Gas Nozzle is required for all but UV lasers

Gases: Oxygen, Nitrogen, Argon, Helium etc.

http://www.youtube.com/watch?v=uuLAkC6jrP0 laser cutting
Dry Laser Etching Ablates Material by Bond Breaking

Chrome on Quartz Mask

Lambda Physik LPX 201i, 125W mean power, 2.5J/pulse, 100 Hz prf, 10 to 50 ns pulse width
Evolution of Industrial Lasers

- CW CO₂
- Pulsed CO₂
- Solid State
- Excimer
- Diode-pumped
- Fibre

Research
Industrial Application
In a laser with cylindrical symmetry, the transverse mode patterns are described by a combination of a Gaussian beam profile with a Laguerre polynomial.

The modes are denoted TEM_{pl} where p and l are integers labelling the radial and angular mode orders, respectively.
In many lasers, the symmetry of the optical resonator is restricted by polarizing elements such as Brewster's angle windows. In these lasers, transverse modes with rectangular symmetry are formed.

These modes are designated TEM$_{mn}$ with m and n being the horizontal and vertical orders of the pattern.
For a Gaussian beam propagating in free space, the spot size $w(z)$ will be at a minimum value w_0 at one place along the beam axis, known as the beam waist.

For a beam of wavelength λ at a distance z along the beam from the beam waist, the variation of the spot size is given by

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}.$$

where the origin of the z-axis is defined, without loss of generality, to coincide with the beam waist, and where

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

is called the Rayleigh range.

At a distance from the waist equal to the Rayleigh range z_0, the width w of the beam is

$$w(\pm z_0) = w_0 \sqrt{2}.$$

The distance between these two points is called the confocal parameter or depth of focus of the beam:

$$b = 2z_0 = \frac{2\pi w_0^2}{\lambda}.$$
Angular Spread of the Beam

The parameter $w(z)$ approaches a straight line for $z >> z_0$. The angle between this straight line and the central axis of the beam is called the divergence of the beam. It is given by

$$\theta \simeq \frac{\lambda}{\pi w_0} \quad (\theta \text{ in radians.})$$

The total angular spread of the beam far from the waist is then given by $\Theta = 2\theta$

Because of this property, a Gaussian laser beam that is focused to a small spot spreads out rapidly as it propagates away from that spot. To keep a laser beam very well collimated, it must have a large diameter.
Power Output

The power P passing through a circle of radius r in the transverse plane at position z is

\[
P(r, z) = P_0 \left[1 - e^{-2r^2/w^2(z)} \right],
\]

Where:

\[
P_0 = \frac{1}{2\pi I_0 w_0^2},
\]

\[
\omega_0 = \frac{M^2 \lambda}{\pi \Theta},
\]

is the total power transmitted by the beam.
The \(M^2 \) factor, also called beam quality factor or beam propagation factor, is a common measure for the beam quality of a laser beam. According to ISO 11146, it is defined as the beam parameter product divided by \(\lambda/\pi \), the latter being the beam parameter product for a diffraction-limited Gaussian beam with the same wavelength. In other words, the beam divergence is

\[
\theta = M^2 \frac{\lambda}{\pi \omega_0}
\]

where \(\omega_0 \) is the beam radius at the beam waist and \(\lambda \) the wavelength. A laser beam is often said to be "\(M^2 \) times diffraction-limited". A diffraction-limited beam has an \(M^2 \) of 1, and is a Gaussian beam. Smaller values of \(M^2 \) are physically not possible. A Hermite-Gaussian beam, related to a TEMnm resonator mode (→ higher-order modes), has an \(M^2 \) factor of \((2n + 1)\) in \(x \) direction, and \((2m + 1)\) in \(y \) direction.
The beam waist of a laser beam is the location along the propagation direction where the beam radius has a minimum. The waist radius is the beam radius at this location.

The M^2 factor of a laser beam limits the degree to which the beam can be focused for a given beam divergence angle, which is often limited by the numerical aperture of the focusing lens.

Together with the optical power, the beam quality factor determines the brightness (more precisely, the radiance) of a laser beam.
The steady march of high-power single-mode output from ytterbium-doped fiber lasers is continuing.
Fibre Laser Operation

Pump light from a diode-laser stack illuminates the outer core of a dual-core fiber (focusing optics are not shown for simplicity). The cladding confines the pump light in the outer core so it passes through the inner core. One pump photon excites an ytterbium atom in the inner core, which emits light that is confined in the inner core, becoming part of the fiber-laser beam.
A high-power Yb-doped fiber laser is pumped from both ends. Filters transmit the 975-nm pump light into the laser cavity while serving as mirrors that reflect the 1.1-µm laser light. This is a simplified version of the arrangement that generated 1.3 kW CW in experiments at Southampton.
Fibre lasers are available up to 50 kW in power

Optical microscope image of the core of a Ytterbium doped fibrelaser showing the individually inscribed grating periods of a grating for operation at 1064 nm.

Courtesy: Graham D. Marshall et al
High Power Materials Processing Lasers

- Carbon Dioxide - up to 100kW more usually 2 to 7kW - 10.6μm
- Carbon Monoxide - not generally available, up to 5kW - 5 to 6μm
- Nd-YAG - up to 4.5kW - 1.06μm
- UV - Argon Ion 2W, HeCd, Tripled YAG 5W
- Diode Lasers 2 kW
- Fibre Lasers 2kW single mode 50kW multimode >25% efficiency
High Power Micro-machining Lasers

- Copper Vapour Lasers 511& 578 nm, 20-30 ns pulses, 2-20kHz, 50 to 500 kW peak power
- Excimer - pulsed mean power 1kW – UV – 157nm, 193nm, 248nm, 308nm, 351nm, 1000Hz, 1kW
- Nd-YVO₄ – 355nm Neodymium Vanadate 38ns pulses, 10kHz, 6 W mean
- Ti:Sapphire – 850nm, 250kHz, 100 fs pulses, 300kW,
8kW CO$_2$ Laser

1. Laserbeam
2. Tangential blower
3. Gas flow direction
4. Heat exchanger
5. Rear mirror with real time power monitor
6. Fold mirror
7. HF-electrodes
8. Output mirror
9. Output window
3.5kW Diffusion Cooled CO\textsubscript{2} Laser - CW or 5kHz pulsed

1. Laserbeam
2. Beam shaping unit
3. Output mirror
4. Cooling water
5. RF excitation
6. Cooling water
7. Rear mirror
8. RF excited discharge
9. Waveguiding electrodes

Courtesy of Rofin
Flash Lamp Pumped 2.7kW cw or Pulsed (500 Hz) Nd-YAG Laser

1. Laser beam
2. Output mirror
3. Nd:YAG rod
4. Excitation lamps
5. Reflector
6. Rear mirror
7. Focusing unit
8. Fibre - 600 microns
9. In-coupling unit
10. Beam bending mirrors

Courtesy of Rofin
4.4 kW cw Diode Pumped Nd-YAG Laser

1. Nd:YAG rod
2. Laserbeam
3. Output coupler
4. Diode arrays
5. Collimating optic
6. High-reflectance mirror
7. Cooling
8. Electrical supply
9. 300 micron fibre

Courtesy of Rofin
Industrial Application Areas

- Electronics
- Semiconductor
- Aerospace
- Automotive
- Medical Device
- Metrology
- Package Coding
- General Manufacturing
Long Pulse Interaction
Nd: Glass Laser Interactions

Titanium

Zirconia Dioxide
Nd: Glass Laser Interactions

Silicon Nitride

Tantalum
Streak Photographs of Laser Drilling with an Nd:Glass Laser
Computer Numerically Controlled (CNC) Beam delivery Systems

Laserdyne 550 Beam Director
Multiaxis: cutting, drilling, welding for manufacturers in aerospace, automotive and job shop industries

Laserdyne 890 Beam Director
Multiaxis: cutting, drilling, welding for manufacturers in aerospace, automotive and job shop industries
Small Batch Rapid Manufacture using Lasers

AF8P - 8kW Carbon Dioxide Laser can run CW or Pulsed up to 3.3kHz

MFK 1 kW CO$_2$ Laser

AF8P - CO: 1 - 2.5kW Carbon Monoxide Laser can run CW or Pulsed up to 3.3kHz

Weld Penetration in 12 mm SS

Case Hardening of a Camshaft
Rapid Programmable Manufacture Using Lasers
Pulsing CW Lasers

- Pulsed lasers give a sharper, hotter knife
- Narrower focus
- It gives greater process control
- High instantaneous power allows processing of highly reflective metals like aluminium
Laser Cutting

Inert gas (N₂) cut samples of 10 mm stainless, 5 mm stainless, 6 mm aluminium
YAG laser trimming of pressings
Laser cutting of sheet metal is now widely accepted, up to 20 mm thick.

Laser cutting of tubes.

Laser cutting and scribing of ceramics, eg. alumina.

http://www.youtube.com/watch?v=UeGVbtrrHjE&feature=related
Laser Cutting

http://www.youtube.com/watch?v=be4LrGn0IPg cut and bend

- In principle, both CO$_2$ and Nd:YAG lasers are suitable for this application.
- The decision for one or the other beam source is influenced by such factors as the geometry of the cut, the cycle time, the system technology and above all the material.
- Cutting in two dimensions, which is the most common case, is the domain of the CO$_2$ laser, because it yields the best cost-benefit ratio.
- Typical cutting speeds in steel are, for example, in the region of approx. 8 meters per minute for 1 mm, 4.5 meters per minute for 3 mm and 1.5 meters per minute for 8 mm thick material.
- High reflectivity materials such as: Gold, Silver, Copper, Aluminium and Brass are possible with CO$_2$ but better with Nd-YAG.
Cutting Glass with CO\textsubscript{2} Lasers

When cutting quartz glass, the advantages of the laser over traditional cutting processes lie in the absence of wear on the beam, which works contact-free. Furthermore, the laser technique creates a significantly improved quality of cut compared with other processes. It causes no microscopic cracks, and thus permits the narrowest of webs. The typical cutting speed varies between 0.2 and 1.5 meters per minute, depending on the thickness of the material, when CO\textsubscript{2} lasers are used. Other types of laser cannot be used, because glass does not absorb the beam.

http://www.youtube.com/watch?v=Wzz7k-bP7MQ&feature=related
Thermoplastics can be cut by comparatively low-power CO$_2$ lasers in the range of 100 to 300 Watts. Depending on the setup of the application, separation cuts or polishing cuts (visually clean cut edge) can be carried out. One important area in which laser-cut parts of this kind are used is in illuminated advertising, in which plastic sheet is often glued to the material before or after cutting. The cutting speeds depend to a great extent on the desired quality of the edges, but an example would be 2.5 meters per minute for separation cutting in 4 mm material at 200 Watts.

http://www.youtube.com/watch?v=7Jf8kk3Lq74

http://www.youtube.com/watch?v=I_FmlorBGqq&feature=related
Nd-YAG Laser Drilling of Refractory metals

Jet-engine turbine blade - Nimonic alloy

0.5 mm holes at 20 degrees to the surface in a jet engine combustion chamber

http://www.youtube.com/watch?v=83OQTZZ4ML8
Nd-YAG Laser Welding

Car Body Welding

Laser Welded Tailored Blank

Laser Welded Car Door
Laser Welding

Light weight sandwich panel

5 axis CO₂ laser welding of a petrol tank

Arc assisted laser welding
Nd-Yag Laser Welding has the edge over CO$_2$

Airbag detonator hermetically welded

Fuel Injector Elements

Hermetically welded pacemaker
Nd-Yag Laser Welding

Seam welding of relay cans. The low heat input prevents damage to the adjacent glass to metal seals.

Ball bearing cage. A two fibre system heats both sides of the weld simultaneously.

Shadow mask of TV tube welded to its support structure. Alignment is maintained to 5µm.

This diaphragm is only 0.04 mm thick. The component is welded at 15 mm/s without buckling.

Welding silicon iron motor laminations eases handling prior to winding.

Welding of battery terminals.
25W Pump Diode Modules - IPG

https://www.youtube.com/watch?v=ofEqFlqkiS0 fibre laser operation
IPG Conception - IPG

All-Fiber Format Laser Module

- Compact integrated optical design
- In parallel combining by single emitter diodes
- Side pumping
- Robust mechanical construction
YLR-10000: Block Diagram
Welding with Singlemode-Fiber Lasers - IPG

Aluminium

Copper

Stainless steel

Fe-Cu-Joint
Welding of Gear Box Parts

CO$_2$-Laser **Electron beam** **Fiber Laser**

- Low heat input \Rightarrow Low distortion
- Reduced crack risk

http://www.youtube.com/watch?NR=1&v=8B35zeYmeO4&feature=endscreen
Fiber Laser Remote Welding - IPG

Scannerfree Remote Processing

Working Distances
1000-1500 mm

Scanner Remote Processing

Working Distances
~ 500 mm
Remote Welding of Body in White (BIW)

High productive stitch welding for body in white
Process Efficiency

IPG YLR 10000 (10 kW Fiber Laser) vs. 15 kW CO₂-Laser

- X70, t = 12 mm

Specifications

- **IPG YLR 10000 (10 kW Fiber Laser)**
 - $P_L = 10.2 \text{ kW}$
 - $v_w = 2.2 \text{ m/min}$
 - $E = 2.8 \text{ kJ/cm}$
 - **Increase**
 - P_L: +32%
 - v_w: +18%
 - E: +61%

- **15 kW CO₂-Laser**
 - $P_L = 13.5 \text{ kW}$
 - $v_w = 1.8 \text{ m/min}$
 - $E = 4.5 \text{ kJ/cm}$
Excitech Lithographic Micro-machining System 8000

KrF 248 nm wavelength
ArF 193 nm wavelength

Capable of machining PCB track widths 2 microns wide

CNC controlled and linked into CAD/CAM systems

Structuring of most polymer, ceramic and glass materials

Precise etch depth control to 0.1 microns

Lateral resolution <0.5 microns

Volumetric material removal rate up to 1mm³/sec
Example of Fine Processing With Excimer Lasers

- Hair diameter: \(\sim 50 \text{ microns (2 thou)} \)
- Hole diameter: \(\sim 5 \text{ microns (0.2 thou)} \)
- Illustrative of the resolution that can be achieved with a standard excimer laser using the mask-imaging technique and good quality beam delivery optics.
Excimer Laser Micro-Machining - Exitech

- PCB Drilling
- Printer Nozzles
- 720 dpi nozzle holes
- Micro-Fluidic Systems

- Biomedical Devices
- Microstructuring
- Fibre Gratings
- Diamond Smoothing

- DUV Lithography
- A-R Surface
- Tapered micro-via
- Sensors
Excimer Laser Micromachining

http://www.youtube.com/watch?v=fFpov-ZSujA

http://www.youtube.com/watch?v=GgR-mH6X5VU&feature=related

Gear 50 microns diameter
Micro-engineering Application

With a diameter of only 1.9 millimeters the electromagnetic motors can reach an incredible revolution speed of nearly 500,000 rpm.

They are also used for scanners, drive units in heart catheters and high-tech display systems.

The integrated planetary gear system converts low torque at high rotational speed into high torque at correspondingly lower rotational speed.

With a length of 24 mm and a weight of 0.4 grams the helicopter takes off at 40,000 rpm.
Silicon Dicing

\[D_D = 30 \text{ microns} \]

Nd-YAG laser pulsed micron and nano second pulses 532nm or 355nm wavelength, mean power 10 to 200 watts
Water absorption coefficients
Laser Micro jet cutting

This machine can process silicon wafers up to 12" in diameter.

It can place cuts with 1 micron accuracy.

Curved cuts can be made as easily as straight cuts.
In this example a rounded groove at the corner of the solar cell, something that a diamond saw cannot perform. The groove shown is \(\sim 20 \mu m \) deep, 40\(\mu m \) wide and was cut at a speed of 250 mm/s, with no post cutting cleaning required.
Blind and Micro-via drilling

Multi Laser (CO$_2$/Nd: YAG)
Drills both copper and dielectric
High speed - up to 60,000 holes/minute
The pulsed frequency trippled 3Watt YAG (355nm) laser is used for drilling metals
A wavelength tuned pulsed 80 Watt CO$_2$ (9.6 microns) laser is used for removal of dielectric

High speed drilling of blind and microvias in all types of multilayer printed circuit boards (PCB's), and multichip modules (MCM's) for panel sizes up to 24" x 28".
Blind and Micro-via drilling

- **200 μm blind via - 18 μm top copper - 125 μm FR4 - laser cleaned bottom copper**
- **Array of 125 μm blind vias in 25 μm polyimide - pre-patterned top copper**
- **Through holes and annular rings**
- **Circuit board blind vias**
- **25 μm blind vias**
Miniaturised Electronic Products
Femtosecond Laser Beam Characteristics

Ti:sapphire lasers with output centred at 800nm have the ability to machine features as small as 70nm. With multi photon absorption, laser power scales as \((\text{laser power})^N\) where \(N\) is the number of photons simultaneously absorbed. \(N\) ranges from 3 to 10.

Courtesy of Marco Arrigoni - Coherent
Ultra Fast Pulse Interaction

Diagram showing:
- Ultrafast laser pulses
- No recast layer
- No surface debris
- Plasma plume
- No melt zone
- No microcracks
- No shock wave
- No heat transfer to surrounding material
- No damage caused to adjacent structures

©1999 Clark-MXR, Inc.
Femtosecond Laser Machining Ti:sapphire - Exitech

Aluminium

Stainless Steel

Silica

Glass

100 micron diameter hole drilled in stainless steel using a 355 nm nanosecond pulse Nd: vanadate laser

Ti:sapphire laser: $\lambda_0 = 800$ nm, $\Delta \tau = 110$ fs, $E = 1\text{mJ/pulse}$, Rep Rate=3–5kHz, $M2 = 1.2$
Photograph shows a 22,000 hole array of 5μm diameter holes. Material is stainless steel, 100 μm Copper Vapour Laser, 511 & 578 nm, 10kHz, 20 to 30 ns pulses, 50 to 500 kW
<table>
<thead>
<tr>
<th>Diameter – laser exit side (μm)</th>
<th>Taper (μm)</th>
<th>Thickness (μm)</th>
<th>Exit Side Diameter Tolerance (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 – 15</td>
<td>+ (5 – 10)</td>
<td>10 – 100</td>
<td>+/- 1</td>
</tr>
<tr>
<td>15 – 500</td>
<td>+ (5 – 10)</td>
<td>10 – 200</td>
<td>+/- 0.25 to +/- 1.5</td>
</tr>
<tr>
<td>40 – 500</td>
<td>+10 to 0 to -10</td>
<td>200 – 1000</td>
<td>+/- 2 to +/- 4</td>
</tr>
</tbody>
</table>
Nanosecond Pulse Ablation: Micro-Milling

Examples of optimized processes with nanosecond laser sources

Alumina 511nm

Tungsten 511nm

Diamond 511nm

Polyimide 355nm
Precision Holes in CVD Diamond – CVL
(Sample grids for Transmission Electron Microscopes)

Photograph: An array of precision drilled holes of 230μm diameter on a 295μm pitch in 250 μm thick synthetic diamond.

(Photograph courtesy of GEC-Marconi, Materials Technology Ltd.)
The End