Rapid Prototyping, Tooling and Time Compression

by

Professor Chris R. Chatwin

Department of Engineering and Design
University of Sussex
What is Concurrent Engineering?

Increasingly not a single organisation but a supply-chain facilitated by the Internet and e-commerce

R&D

- Definition of product need: Marketing information
- Conceptual design and evaluation, Research, Product Champions

PRODUCT CHAMPIONS

- Design; Material Spec; Design analysis; codes/standards review; physical and analytical models
- Prototype production; testing & evaluation
- Production drawings; Instruction manuals
- Material specification; process and equipment selection; safety review; environmental impact
- Pilot production
- Production
- Inspection and quality assurance
- Packaging; marketing; and sales literature
- Product Supply (JIT)

Design & Prototyping

- Computer Aided: Design (CAD, ECAD); Engineering (CAE)

Design Plant & Processes

- Computer Aided: Manufacture (CAM); Process Planning (CAPP)

Control of Operations

- Computer Integrated Manufacture (CIM)
Computer Integrated Manufacturing System

Resources: People, Materials, Machines, Software, Capital, Energy

- Marketing & Sales
- Support Services
- Shipping
- Finance
- Process Planning
- Purchasing
- Manufacturing & Production Control
- Product Design & Development
- Finance

People, Materials, Machines, Software, Capital, Energy
CAD, CAE & CAM

ANALYSIS:
- Ansys FE
- Fluent CFD
- Matlab: Simulink, System Identification, Signal Processing, Image Processing, Neural Networks, Fuzzy Logic, Control Toolbox, Wavelets

COMPUTER AIDED DESIGN (CAD):
- Pro/Engineer
- CREO
- ECAD
- Solid Works
- AutoCAD

CADfix

IGES/DXF

CAM POST-PROCESSORS:
- APS Licom
- PEPS
- MAGICS

PROTOTYPE, MANUFACTURE & TEST:
- CNC Machining
- Laser Machining
- Wire EDM

RAPID PROTOTYPING

Design Revision Data

Creative Product Design
Figure 16a: CFD optimisation of flow.

Figure 16b: CAD design of castings.

Figure 16c: LOM models.

Figure 16d: Investment casting using LOM and SLS FFFF patterns.

Courtesy of Ricardo CARP project
Technologies Enabling Product Innovation - Summary

- Rapid Prototyping - manufacture by layering processes:
 - Stereolithography
 - Selective Laser Sintering (SLS)
 - Direct Metal Laser Sintering (DMLS)
 - Laminated Object Manufacture (LOM)
 - Solid Ground Curing
 - 3D Printing
What are we trying to achieve?
<table>
<thead>
<tr>
<th>Process</th>
<th>Supply phase</th>
<th>Layer creation technique</th>
<th>Type of phase change</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereolithography</td>
<td>Liquid</td>
<td>Liquid layer curing</td>
<td>Photopolymerization</td>
<td>Photopolymers (acrylates, epoxies, colorable resins, and filled resins)</td>
</tr>
<tr>
<td>Multi Jet/PolyJet modeling</td>
<td>Liquid</td>
<td>Liquid layer curing</td>
<td>Photopolymerization</td>
<td>Photopolymers</td>
</tr>
<tr>
<td>Fused-deposition modeling</td>
<td>Solid</td>
<td>Extrusion of melted polymer</td>
<td>Solidification by cooling</td>
<td>Polymers (such as ABS, polycarbonate, and polysulfone)</td>
</tr>
<tr>
<td>Ballistic-particle manufacturing</td>
<td>Liquid</td>
<td>Droplet deposition</td>
<td>Solidification by cooling</td>
<td>Polymers and wax</td>
</tr>
<tr>
<td>Three-dimensional printing</td>
<td>Powder</td>
<td>Binder-droplet deposition onto powder layer</td>
<td>No phase change</td>
<td>Ceramic, polymer, metal powder, and sand</td>
</tr>
<tr>
<td>Selective laser sintering</td>
<td>Powder</td>
<td>Layer of powder</td>
<td>Sintering or melting</td>
<td>Polymers, metals with binder, metals, ceramics and sand with binder</td>
</tr>
<tr>
<td>Electron-beam melting</td>
<td>Powder</td>
<td>Layer of powder</td>
<td>Melting</td>
<td>Titanium and titanium alloys, cobalt chrome</td>
</tr>
<tr>
<td>Laminated-object manufacturing</td>
<td>Solid</td>
<td>Deposition of sheet material</td>
<td>No phase change</td>
<td>Paper and polymers</td>
</tr>
<tr>
<td>Laser-engineered net shaping</td>
<td>Powder</td>
<td>Injection of powder stream</td>
<td>No phase change</td>
<td>Titanium, stainless steel, aluminum</td>
</tr>
</tbody>
</table>
TABLE 20.2

Mechanical Properties of Selected Materials for Rapid Prototyping

<table>
<thead>
<tr>
<th>Process</th>
<th>Material</th>
<th>Tensile strength (MPa)</th>
<th>Elastic modulus (GPa)</th>
<th>Elongation in 50 mm (%)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereolithography</td>
<td>Accura 60</td>
<td>68</td>
<td>3.10</td>
<td>5</td>
<td>Transparent; good general-purpose material for rapid prototyping</td>
</tr>
<tr>
<td></td>
<td>Somos 9920</td>
<td>9</td>
<td>1.35–1.81</td>
<td>15–26</td>
<td>Transparent amber; good chemical resistance; good fatigue properties; used for producing patterns in rubber molding</td>
</tr>
<tr>
<td></td>
<td>WaterClear Ultra</td>
<td>56</td>
<td>2.9</td>
<td>6–9</td>
<td>Optically clear resin with ABS-like properties</td>
</tr>
<tr>
<td></td>
<td>WaterShed 11122</td>
<td>47.1–53.6</td>
<td>2.65–2.88</td>
<td>11–20</td>
<td>Optically clear with a slight green tinge; mechanical properties similar to those of ABS; used for rapid tooling</td>
</tr>
<tr>
<td>PolyJet</td>
<td>DMX-SL 100</td>
<td>32</td>
<td>2.2–2.6</td>
<td>12–28</td>
<td>Opaque beige; good general-purpose material for rapid prototyping</td>
</tr>
<tr>
<td></td>
<td>FC720</td>
<td>60.3</td>
<td>2.87</td>
<td>20</td>
<td>Transparent amber; good impact strength, good paint adsorption and machinability</td>
</tr>
<tr>
<td></td>
<td>FC830</td>
<td>49.8</td>
<td>2.49</td>
<td>20</td>
<td>White, blue, or black; good humidity resistance; suitable for general-purpose applications</td>
</tr>
<tr>
<td></td>
<td>FC 930</td>
<td>1.4</td>
<td>0.185</td>
<td>218</td>
<td>Semiopaque, gray, or black; highly flexible material used for prototyping of soft polymers or rubber</td>
</tr>
</tbody>
</table>

Copyright ©2014 Pearson Education, All Rights Reserved
TABLE 20.2

Mechanical Properties of Selected Materials for Rapid Prototyping

<table>
<thead>
<tr>
<th>Process</th>
<th>Material</th>
<th>Tensile strength (MPa)</th>
<th>Elastic modulus (GPa)</th>
<th>Elongation in 50 mm (%)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fused-deposition modeling</td>
<td>Polycarbonate</td>
<td>52</td>
<td>2.0</td>
<td>3</td>
<td>White; high-strength polymer suitable for rapid prototyping and general use</td>
</tr>
<tr>
<td></td>
<td>Ultem 9085</td>
<td>71.64</td>
<td>2.2</td>
<td>5.9</td>
<td>Opaque tan, high-strength FDM material, good flame, smoke and toxicity rating</td>
</tr>
<tr>
<td></td>
<td>ABS-M30i</td>
<td>36</td>
<td>2.4</td>
<td>4</td>
<td>Available in multiple colors, most commonly white; a strong and durable material suitable for general use; biocompatible</td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>68</td>
<td>2.28</td>
<td>4.8</td>
<td>White; good combination of mechanical properties and heat resistance</td>
</tr>
<tr>
<td>Selective laser sintering</td>
<td>WindForm XT</td>
<td>77.85</td>
<td>7.32</td>
<td>2.6</td>
<td>Opaque black polymide and carbon; produces durable heat- and chemical-resistant parts; high wear resistance</td>
</tr>
<tr>
<td></td>
<td>Polyamide PA 3200GF</td>
<td>45</td>
<td>3.3</td>
<td>6</td>
<td>White; glass-filled polyamide has increased stiffness and is suitable for higher temperature applications</td>
</tr>
<tr>
<td></td>
<td>SOMOS 201</td>
<td>—</td>
<td>0.015</td>
<td>110</td>
<td>Multiple colors available; mimics mechanical properties of rubber</td>
</tr>
<tr>
<td>Electron-beam melting</td>
<td>ST-100c</td>
<td>305</td>
<td>137</td>
<td>10</td>
<td>Bronze-infiltrated steel powder</td>
</tr>
<tr>
<td></td>
<td>Ti-6Al-4V</td>
<td>970–1030</td>
<td>120</td>
<td>12–16</td>
<td>Can be heat treated by HIP to obtain up to 600-MPa fatigue strength</td>
</tr>
</tbody>
</table>
Scanning Beam Stereolithography

3D Systems SLA 3500 Series
Schematic illustration of the stereolithography process.
3D Systems Scanning Beam Stereolithography System

SLA 7000 Series - Dual spot laser technology gives greater speed

iPro 8000 SLA Printer – 650x750x550mm
STL Interface
STL triangle format
Slices from STL Model
Data Flow

Generate 3D CAD model of object

Generate STL file on CAD system

Generate support structures, if required, and object level slice data on target machine

Generate vector scanning data to control the beam scanning mirrors or inkjet head, the Z axis and machine process control instructions
Rapid Prototyping

Stereolithography

SLA 250

Magnetic Resonance Imaging

Daewoo manifold

Logitech - From quote to working prototype in 7 days - 3D Systems

3D Model

SLA Model

Courtesy of Ricardo
SLA250 Stereolithography
Products Using 3D Systems SLA Machine

16 weeks to 39hrs; £22,000 to £1200

Rover - Injection manifold for new engine - 90% lead time reduction

Texas Instruments - New shell casing – 20 off $450,000 saving on tooling

Oldsmobile Aurora – 500 ABS parts 9 weeks to 4 weeks - TC 50% Bose Corp

Johnson Controls for Coca-Cola - 11 hours build time, 1 week design

Electrolux - Vacuum Cleaner 50% lead time reduction

Black & Decker - Shrub Trimmer 100 days 30 functioning prototypes

https://www.youtube.com/watch?v=4y-m1URlh00
Coffeemaker prototypes produced through MultiJet modeling and final product (at right).

Source: Courtesy Alessi Corporation, and 3D Systems, Inc.

https://www.youtube.com/watch?v=apm5Gn2s_-M
SLS system

1. Spread a layer of powdered material. As the process begins, a precision roller mechanism automatically spreads a thin layer of powdered SLS material across the build platform.

2. Sinter a cross-section of the CAD file. Using data from the STL file, a CO₂ laser selectively draws a cross section of the object on the layer of powder. As the laser draws the cross section, it selectively "sinters" (heats and fuses) the powder creating a solid mass that represents one cross section of the part.

Sinterstation 2500\textit{plus}

1) More material choices: plastic, elastomer, metal, or ceramic

2) More application options: functional prototypes, tooling, patterns—even final parts.

3) Build chamber dimensions (W) 381 mm x (D) 330 mm x (H) 457 mm
Schematic illustration of the selective-laser-sintering process.
Source: After C. Deckard and P.F. McClure.

https://www.youtube.com/watch?v=9E5MfBAV_tA SLS
SLS - Materials

Functional Plastic Prototypes - Create visual models, functional prototypes, durable patterns—even plastic parts for final use. *DuraForm Polyamide and DuraForm Glass Filled*

Durable Elastomer Prototypes - Produce, flexible, rubber-like prototypes and parts. *SOMOS 201*

Casting Patterns, Cores, and Molds - Quickly generate investment casting patterns or sand casting cores and molds. *CastForm Polystyrene, SandForm Zr, SandForm Si*
Summary:
NASA used its in-house Sinterstation® system and DuraForm PA™ to quickly produce a "science cup," a tray-like fixture that holds a variety of instruments, wiring, and batteries within a hockey puck-sized, self-contained spacecraft called the Free Flying Magnetometer (FFM).

The parts generated on the Sinterstation cost only **300 US $ to produce**, compared to the **3,000 to 5,000 US $** it would have taken to fabricate the parts using traditional machining methods in aluminium, steel, or titanium.
Summary
Reebok's Golf Division was in the early stages of developing a new spikeless golf shoe sole design and needed a fast, cost-effective way to create a flexible, testable prototype. Using traditional prototyping methods (standard tooling and injection moulding) would have taken 30 to 60 days and cost Reebok $3,500 to $4,000 per prototype.

Reebok took another approach and prototyped the new sole design on its in-house Sinterstation system using SOMOS® 201. The process took just seven hours and about $250 worth of SOMOS 201. The prototype soles were affixed to a pair of golf shoes and worn by an experienced golfer for two rounds of golf.
Duraform Flex Plastic

Above: Radiator hose prototype withstands bending without permanent damage or deformation (shown without infiltrant).
Summary:
When Woodward Governor Company (WGC) needed a casting of a new aircraft fuel control system for a gas turbine engine, it faced a formidable challenge: finding a process that could produce a large, complex casting within a very tight time frame.

Conventional tooling would have typically required **35 weeks**, just to generate the tools. Then it would have taken **another 12 weeks** to get the first casting.

These times were **cut in half**. It took just two months to get the sand cores. What's more, the cost was only **20% of the cost** of conventional tooling.
Direct Metal Laser-Sintering (DMLS)

EOSINT M 280 builds metal parts using Direct Metal Laser-Sintering (DMLS)
Sintering

http://www.youtube.com/watch?v=VImKhUD-8hk

DMLS Direct Metal Laser Sintering process in action utilizing EOS GmbH platform, the M280. This technology sinters layers of fine metal alloys utilizing a 100 watt laser to additively manufacture real, fully dense metal parts.
How does it work?
What can you do with the EOSINT M 280?

Sintered tool insert

Completed injection mould

Project took 6 days from start to finish

Injection Mould (core side) for two components

Four completed injection moulding tools

5000 sets (14 parts per set) moulded in six weeks, best quote 16 weeks

Production of a joystick for a construction vehicle. Moulded components & assembled joystick

FIT GmbH

Two small LED polycarbonate light guide moulded parts

EGi PAKTO
How Does it Perform?

- Laser Type: Yb-fibre laser, 200 W or 400 W
- Layer Thickness: 20 - 60 µm
- Effective building volume (including building platform): 250mm x 250mm x 325mm
- Building speed (material-dependent): 2 - 20 mm³/s
- Scan speed: up to 7.0 m/s
- Variable focus diameter: 100 - 500 µm
What Materials are available for EOSINT M 280 systems?

- **DirectMetal 20**
 - Bronze-based mixture Injection moulding tooling, functional prototypes
- **EOS MaragingSteel MS1**
 - 18 Mar 300 / 1.2709 Injection Moulding series tooling, engineering parts
- **EOS StainlessSteel GP1**
 - Stainless steel 17-4 / 1.4542 Functional prototypes and series parts, engineering and medical
What Materials are available for EOSINT M 280 systems?

- **EOS StainlessSteel PH1**
 - Hardenable Stainless steel Functional prototypes and series parts, engineering and medical

- **EOS CobaltChrome MP1**
 - CoCrMo superalloy Prototypes and series parts, engineering, medical, dental

- **EOS CobaltChrome SP1**
 - CoCrMo superalloy Dental restorations (series production)
What Materials are available for EOSINT M 280 systems?

- **EOS Titanium Ti64**
 - Ti6Al4V light alloy Prototypes and series parts, aerospace, motor sport etc.

- **EOS Titanium TiCP**
 - Pure titanium Functional prototypes and series parts, medical dental

- **EOS Aluminium AlSi10Mg**
 - Light Metal for Motorsports and Aerospace Interior Applications
What Materials are available for EOSINT M 280 systems?

- **EOS Aluminium AlSi10Mg/200 °C**
 - Light Metal for Motorsports and Aerospace Interior Applications

- **EOS NickelAlloy IN625**
 - Nickel-Chromium Alloy for Aerospace, Motorsports and Industry

- **EOS NickelAlloy HX**
 - Nickel-Alloy for Aerospace and Industry
Medical Applications

Knee implant in EOS CobaltChrome MP1 (Source: EOS)

Medical devices in EOS StainlessSteel 17-4 (Source: PEP / DePuy)

Components for a sawing guide for big toe joint in DirectMetal 20 (Built on an EOS M250Xtended) (Source: PEP/DePuy)
Bed of Aerospace parts built using DMLS
Formula 1 & Aerospace

http://www.youtube.com/watch?v=1CizD2YLTGg&feature=related

Engine exhausts in Cobalt Chrome (EOS CC MP1)

Propeller prototype for wind tunnel testing in Bronze (DirectMetal EOS DM20)

Turbine blade in Cobalt Chrome (EOS CC MP1)

Examples of Aerospace Parts built on 3T's EOS M270 machines in Cobalt Chrome
CobaltChrome MP1 superalloy for fully-functional aircraft engine parts

Aerospace

Prototypes for Test Rigs

Requirements
- Functional prototypes for developing helicopter gas-turbine engine components
- Capable of running in test-bed conditions, e.g. high strength at high temperature

Solution
- Production with EOSINT M system using EOS CobaltChrome MP1 superalloy

Result
- Can be delivered in less than a week
- Can be automatically polished
- Properties fulfill requirements for running on test-rig

Source: PEP/Turbomeca/Best in Class
EOS IN718 combustor part for high temperature environment

Aerospace

Demonstration part

EOSINT M enables product optimization
- For aerospace devices
- New design concepts

Aerospace part design
- High complexity
- Thin walled
- Large size (max Ø 248mm ~10 inches)

New materials
- EOS Nickel Alloy IN718
- EOS Nickel Alloy IN 625
- Hastalloy X

Lightweight turbine combustion chamber, produced on EOSINT M system, material EOS Nickel Alloy IN 718

Source: Materials Solutions
Function integration for fuel systems

Aerospace

Fuel Injector & Swirler

Challenge
- Improve fuel efficiency of jet engines
- Optimize airflow and fuel swirling
- Cooling with integrated fuel channels

Solution
- Laser sintered on EOS M system
- Material: EOS CobaltChrome MP1

Benefits
- Highly complex design built as "one piece"
- Cost - < 50%
- Weight reduction - < 40%
- Increased robustness – no joining sections

Source: EOS GmbH, Morris Technologies
Tooling Inserts

Prototype tooling, Bronze DM20
Low volume Injection Moulding

Die casting tool (Maraging Steel)

Die cast car safety belt winder,
1,500 aluminium parts produced in
good quality more possible
with coating

http://www.youtube.com/watch?v=88BPmL8cGAo&feature=related
Laser Deposition Technology (LDT)

https://www.youtube.com/watch?v=d2foaRi4nxM
Trumpf metal laser deposition welding

https://www.youtube.com/watch?v=Ao319dj6kiM
Laminated Object Manufacture – Helisys – Cubic Technologies

LOM PROCESS
CAD data goes into the LOM system’s process controller and a cross-sectional slice is created by the LOM software.

The laser cuts the cross-sectional outline in the top layer and then cross-hatches the excess material for later removal.

A new layer is bonded to the previously cut layer and a new cross section is created and cut as before. Once all layers have been laminated and cut, excess material is removed to expose the finished model.
<table>
<thead>
<tr>
<th>Specification</th>
<th>LOM-2030</th>
<th>LOM-1015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Part Size</td>
<td>32" L x 22" W x 20" H</td>
<td>15" L x 10" W x 14" H</td>
</tr>
<tr>
<td>Part Accuracy</td>
<td>±0.010" X-Y-Z (relative feature location)</td>
<td>±0.010" X-Y-Z (relative feature location)</td>
</tr>
<tr>
<td>Laser</td>
<td>50 Watt CO₂</td>
<td>25 Watt CO₂</td>
</tr>
<tr>
<td>Laser Beam Diameter</td>
<td>0.010"-0.015"</td>
<td>0.010"-0.015"</td>
</tr>
<tr>
<td>Positioning System</td>
<td>X-Y Positioning Table Moves the Laser Beam</td>
<td>X-Y Positioning Table Moves the Laser Beam</td>
</tr>
<tr>
<td>Cutting Speed</td>
<td>Up to 24" / second</td>
<td>Up to 15" / second</td>
</tr>
</tbody>
</table>
Laminated Object Manufacture

The laminated stack is removed from the machine’s elevator plate.

The surrounding wall is lifted off the object to expose cubes of excess material.

Cubes are easily separated from the object’s surface.

SAND CASTING
The LOM process can be used to produce solid cores or core boxes quickly by simply outlining the periphery of each cross-section. Using inexpensive LOM materials, the creation of large and bulky patterns is especially fast and cost-effective.

The object’s surface can then be sanded, polished or painted as desired.
Laminated Object Manufacture

LOM OBJECT AS AN ACTUAL MOLD
LOM can also be used to generate two part molds for the creation of strong plastic parts or multiple wax patterns for investment casting. LOM mold cavities are coated with mold release material and then filled with polyurethane, epoxy or wax. Paper LOM molds can also be coated with metal or ceramic materials for injection molded parts.

Silicon Rubber Moulding – Urethane or epoxy cast plastic parts

Spray Metal Moulds for prototype injection moulding
TECHNICAL SPECIFICATIONS

LOMPart™: Ballistic Projectiles
Company: Lufkin Industries, Inc.

Matchplate Dimensions (X-Y-Z): 17” x 12” x 3” (both plates)
Core Box Dimensions (X-Y-Z): 8” x 5” x 1.75” (both halves)
LOM System: LOM-2030
LOMPaper™: 0.0038” Double Layered

Matchplates: Data Preparation: 30 min. LOM Build: 35 hrs. Finishing: 8 hrs.
Core Boxes: Data Preparation: 30 min. LOM Build: 20 hrs. Finishing: 6 hrs.
Finishing Materials: Sanding lacquer sealer & lacquer spray

Application: Sand Casting
Matchplates were cast in sand and sand was injected into core box to produce over 400 prototype metal projectiles.

TECHNICAL SPECIFICATIONS

LOMPart™: Oversized 7-Iron Golf Club Head
Dimensions (X-Y-Z): 7” x 5” x 3.5”
LOM System: LOM-1015
LOMPaper™: 0.0038” Single Layer

Data Preparation: 30 min. LOM Build: 23 hrs. Finishing: 4 hrs.
Finishing Materials: Sanding lacquer sealer & lacquer spray

Application: Investment Casting
50 wax patterns were injected into the LOM golf club mold for the investment casting process. Resulting metal club heads were finished and tested on the golf course.
Solid Ground Curing - Cubital

SGC 5600 – Build Envelope 500x350x500 mm – resolution 0.1 mm
MIT Alpha Machine – 3D Printing

Spread Powder → Print Layer → Drop Piston → Repeat Cycle

Intermediate Stage → Last Layer Printed → Finished Part
Schematic illustration of the three-dimensional-printing process.

Source: After E. Sachs and M. Cima.

1. Spread powder
2. Print layer
3. Piston movement
4. Intermediate stage
5. Last layer printed
6. Finished part

https://www.youtube.com/watch?v=7QP73uTJApw
Materials for Z Corporation’s Machines now 3D systems

<table>
<thead>
<tr>
<th></th>
<th>zp14 powder</th>
<th>zp100 powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>starch/cellulose</td>
<td>plaster</td>
</tr>
<tr>
<td>Layer Thickness</td>
<td>0.004-0.01 inches</td>
<td>0.003-0.004 inches</td>
</tr>
<tr>
<td>Part Strength</td>
<td>4 MPa</td>
<td>10 MPa</td>
</tr>
<tr>
<td>Speed</td>
<td>1 vertical inch per hour</td>
<td>0.5 vertical inches per hour</td>
</tr>
<tr>
<td>Ability to Reuse Unprinted Powder</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
The machine spreads a layer of powder from the feed box to cover the surface of the build piston.

The Z402 System then prints binder solution onto the loose powder, forming the first cross-section.

Where the binder is printed, the powder is glued together.

The remaining powder remains loose and supports the layers that will be printed above.

When the cross-section is complete, the build piston is lowered slightly, a new layer of powder is spread over its surface, and the process is repeated.

The part grows layer by layer in the build piston until the part is complete, completely surrounded and covered by loose powder.

Finally the build piston is raised and the loose powder is vacuumed away, revealing the complete part.

Z™402 3D PRINTER
Build Volume: 8" x 10" x 8"
(203 x 254 x 203 mm)
Z Corporation 3D Colour Printing

Build Speed: Colour Mode: 0.33-0.66 vertical inches (8-16 millimeters) per hour at 0.007" layer

Build Volume: 6" x 6" x 6" (150 x 150 x 150 mm)

Layer Thickness: User selectable at the time of printing. 0.003"-0.010" (.076-.254 mm)

Materials: The Z402C System requires zb™7 binder. While both starch-based powder and plaster-based powder may be used, the plaster-based powder produces colours that are more brilliant. Colour is applied to the surface of the parts to a uniform depth of approximately 0.08 inches or 2 mm.

Equipment Dimensions: 29" x 39" x 42" (74 x 99 x 107 cm)
Sussex Machine
Parts Created
Flow & Thermal Analysis
The computational steps in producing a stereolithography (STL) file

(a) CAD Three-dimensional description of part.

(b) The part is divided into slices: only 1 in 10 is shown.

(c) Support material is planned.

(d) A set of tool directions is determined to manufacture each slice. Also shown is the extruder path at section A–A from (c) for a fused-deposition modeling operation.
(a) Schematic illustration of the fused-deposition modeling process. (b) The FDM 900mc, a fused-deposition-modeling machine. Source: Courtesy of Stratasys, Inc.
(a) A part with a protruding section that requires support material. (b) through (e) Common support structures used in rapid-prototyping machines. The gray areas are support material.

Source: Reused with permission from Society of Manufacturing Engineers.

https://www.youtube.com/watch?v=ik39_sv-wgQ FDM
Examples of low-cost rapid-prototyping systems, based on fused-deposition modeling. (a) The MakerBot® Replicator® 2 Desktop 3D printer, based on fused-deposition modeling and open-source software, with a build volume of up to 110 mm × 110 mm × 120 mm, using either ABS or PLA (polylactic acid) polymers and (b) the Cube, with a build space of up to 140mm × 140 mm × 140 mm.

Source: (a) Courtesy of MakerBot, Inc. (b) Courtesy of 3D systems.
Three-dimensional printing using (a) part-build; (b) sinter; and (c) infiltration steps to produce metal parts. Source: Courtesy of The ExOne Company.

https://www.youtube.com/watch?v=i6Px6RSL9Ac
Rapid-prototyped versions of user-defined characters, or avatars, produced from geometric descriptions within popular websites or games. (a) Second Life avatar, as appears on a computer screen (left) and after printing (right) and (b) an avatar known as “Wreker” from World of Warcraft.

Source: (a) Courtesy of Z Corporation. (b) Courtesy of Figure Prints and Fabjectory, Inc.
A fitting for a helicopter fuselage. (a) CAD representation with added dimensions. (b) Dies produced by three-dimensional printing. (c) Final forged workpiece.

Source: (a) Courtesy of The ExOne Company; (b) and (c) Courtesy of Kennametal Extrude Hone Corporation.
Manufacturing steps for investment casting with rapid-prototyped wax parts as blanks; this method uses a flask for the investment, but a shell method also can be used.

Source: Courtesy of 3D Systems, Inc.
Production of tooling for injection molding by the sprayed-metal tooling process. (a) A pattern and baseplate are prepared through a rapid-prototyping operation; (b) a zinc–aluminum alloy is sprayed onto the pattern; (c) the coated baseplate and pattern assembly are placed together in a flask and backfilled with aluminum-impregnated epoxy; (d) after curing, the baseplate is removed from the finished mold; and (e) a second mold half suitable for injection molding is prepared.
Sand molds produced through three-dimensional printing.
New faucet design, produced by casting from rapid prototyped sand moulds.
Multi Material PolyJet 3D Printing

https://www.youtube.com/watch?v=D4Yq3glEyec
Hp Polymer jet

http://www.youtube.com/watch?v=MrQr_gdI-ss&feature=endscreen&NR=1

REP RAP

http://www.youtube.com/watch?v=FUB1WgiAFHg

https://www.youtube.com/watch?v=rjYA1w1uuAw

https://www.youtube.com/watch?v=s9IdZ2pI5dA additive subtractive manufacture
Hair Dryer