Cu(II) coordination polymers as vehicles in the A³ coupling

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/67234/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Cu(II) coordination polymers as vehicles in the A^3 coupling

Edward Loukopoulos,a Michael Kallitsakis,a,b Nikolaos Tsoureas,a Alaa Abdul-Sada,a Nicholas F. Chilton,c Ioannis N. Lykakisb and George E. Kostakis*a

aDepartment of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom.

E-mail: G.Kostakis@sussex.ac.uk

bDepartment of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.

E-mail: lykakis@chem.auth.gr

cSchool of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
ABSTRACT

A family of benzotriazole based coordination compounds, obtained in two steps and good yields from commercially available materials, formulated \([\text{Cu}^{II}(L^1)_2(\text{MeCN})_2] \cdot 2(\text{ClO}_4) \cdot \text{MeCN}(1), [\text{Cu}^{II}(L^1)(\text{NO}_3)_2] \cdot \text{MeCN} (2), [\text{Zn}^{II}(L^1)_2(\text{H}_2\text{O})_2] \cdot 2(\text{ClO}_4) \cdot 2\text{MeCN} (3), [\text{Cu}^{II}(L^1)_2\text{Cl}]_2 (4), [\text{Cu}^{II}(L^1)_2\text{Cl}]_{10} (5), [\text{Cu}^{II}(L^2)_4\text{Br}] \cdot 4\text{MeCN} \cdot (\text{Cu}^{II}_2\text{Br}_6) (6), [\text{Cu}^{II}(L^1)_2(\text{MeCN})_2] \cdot 2(\text{BF}_4) (7), [\text{Cu}^{II}(L^1)_2(\text{CF}_3\text{SO}_3)_2] (8), [\text{Zn}^{II}(L^1)_2(\text{MeCN})_2] \cdot 2(\text{CF}_3\text{SO}_3) (9), [\text{Cu}^{II}(L^2)_4(\text{H}_2\text{O})_2] \cdot 4(\text{CF}_3\text{SO}_3) \cdot 4\text{Me}_2\text{CO} (10) \text{ and } [\text{Cu}^{II}(L^3)_4(\text{CF}_3\text{SO}_3)_2] \cdot 2(\text{CF}_3\text{SO}_3) \cdot \text{Me}_2\text{CO} (11)\) are reported. These air stable compounds were tested as homogeneous catalysts for the \(\text{A}^3\) coupling synthesis of propargyl amine derivatives from aldehyde, amine and alkyne under a non-inert atmosphere. Fine-tuning of the catalyst resulted in a one dimensional (1D) coordination polymer (CP) (8) with excellent catalytic activity in a wide range of substrates, avoiding any issues that would inhibit its performance.
Introduction

Coordination polymers (CPs) are compounds constructed from metal centers and polytopic organic ligands through coordination bonds, in order to form structures that extend into one, two or three dimensions. These species have received tremendous attention due to their use in gas sorption, drug delivery, luminescence, magnetism, sensing and catalysis. The latter application has been thoroughly studied for porous three dimensional CPs, also known as metal organic frameworks (MOFs); however, there is a significant impact on their preparation and handling. One dimensional (1D) CPs are typically easy to synthesize and their composition may be easily tuned, via variation of ligand/metal/counter ion, in order to optimize their application potential, of which most interestingly, their catalytic properties have been scarcely studied.

The metal catalyzed multi-component reaction (MCR) of an aldehyde, an amine and an alkyne, also known as the A3 coupling, has gathered significant interest. This coupling reaction yields propargyl amines, which have been proposed as key intermediates in the synthesis of nitrogen-containing biologically active compounds such as acrylamidines, oxazoles, pyrroles, pyrrolidines as well as natural products. Due to this importance, a large variety of metal sources have been employed to catalyze this reaction such as Au(I)/Au(III), Ag(I), Cu(I), In(III) or Rh(III). More common transition metals, such as Cu(II), Fe(III), Ni(II) and Zn(II) have also been occasionally employed, albeit with higher catalyst loadings and under inert conditions.

Benzotriazole has been extensively used in organic transformations as auxiliary or to yield other heterocycles. More importantly in the context of this work, its derivatives provide enormous coordination versatility in combination with transition metal ions, to yield coordination polymers or coordination clusters. Our previous studies focused on the catalytic potential of one- and two-dimensional CPs and were focused in semi-rigid
benzotriazole-based ligands. As the organic ligand 1,2-bis((1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L1, Scheme 1) has not been extensively used in coordination chemistry, we recently used it to synthesize three 1D CPs, formulated as [CuII(L1)2(MeCN)2]·2(ClO4)·MeCN (1), [CuII(L1)(NO3)2]·MeCN (2), and [ZnII(L1)2(H2O)2]·2(ClO4)·2MeCN (3). Astonishingly, only 1 was found to catalyse the one pot synthesis of N-substituted dihydropyridines, from azines and ethyl propiolate, whereas 2 and 3 were catalytically inactive. This big discrepancy in catalytic activity can be explained by the different coordination environment (1 and 2) as well as metal center (1 and 3). Moreover, the catalytic performance of 1 is inhibited due to its conversion to the catalytic inactive [CuI(L1)Cl] (1’) specie (ClO4− is converted to Cl−), confirmed by single crystal X-ray analysis.

Encouraged from our recent study, we decided on further exploring the coordination capabilities of L1 and its derivatives L2 and L3 with other Cu salts to characterize new coordination polymers and use them as catalysts towards chemical transformations of current high interest. The ultimate goal of this research is to establish a library of 1D coordination polymers as catalysts and by fine tuning their composition to be able to optimize their catalytic performance as well as to gain useful mechanistic insights. To the best of our knowledge, 1D Cu(II) CPs have not been employed as catalysts for the A3 coupling so far. Therefore, we report the synthesis and characterization of eight new compounds formulated as [CuII(L1)2Cl2]2 (4), [CuII3(L1)2Cl10] (5), [CuII2(L1)4Br2]·4MeCN·(CuII2Br6) (6), [CuII(L1)2(MeCN)2]·2(BF4) (7), [CuII(L1)2(CF3SO3)2] (8), [ZnII(L1)2(MeCN)2]·2(CF3SO3) (9) [CuII2(L2)4(H2O)2]·4(CF3SO3)·4Me2CO (10) and [CuII2(L3)4(CF3SO3)2]·2(CF3SO3)·Me2CO (11), as well as the catalytic application of 1 – 11 in to the A3 coupling reaction between aldehydes, alkynes and amines yielding the corresponding propargylamines derivatives.
Scheme 1. The organic ligands (L₁-L₃) used in this study.

EXPERIMENTAL

Materials. Chemicals (reagent grade) were purchased from Sigma Aldrich, Acros Organics and Alfa Aesar. Materials and solvents were used with no further purification. Ligand L₁ and compounds 1-3 were synthesized according to the reported procedure⁶⁹. Safety note: Perchlorate salts are potentially explosive; such compounds should be used in small quantities and handled with caution and utmost care at all times.

Instrumentation. IR spectra of the samples were recorded over the range of 4000-650 cm⁻¹ on a Perkin Elmer Spectrum One FT-IR spectrometer fitted with a UATR polarization accessory. EI-MS was performed on a VG Autospec Fissions instrument (EI at 70 eV). TGA analysis was performed on a TA Instruments Q-50 model (TA, Surrey, UK) under nitrogen and at a scan rate of 10°C/min. NMR spectra were measured on a Varian VNMRS solution-state spectrometer at 30°C. Chemical shifts are quoted in parts per million (ppm). Coupling constants (J) are recorded in Hertz (Hz). UV-Vis measurements were performed on a Thermo Scientific Evolution300 UV-Vis Spectrophotometer and the collected data were processed using the Vision Pro software. Cyclic voltammetry studies were performed using a BASi-Epsilon potentiostat under computer control. IR drop was compensated using the feedback method. Cyclic voltammetry experiments were performed using a three-electrode configuration with glassy carbon disc (7.0 mm²) as the working electrode, a Pt wire as the counter electrode and Ag wire as the pseudoreference electrode. Sample solutions were prepared by dissolving the
analyte (ca. 5 mM) in DMSO (1 ml) followed by addition of 0.05 M of the supporting electrolyte \(\text{[nBu}_4\text{N)][PF}_6 \). The reported half potentials are referenced to the FeCp\(^2+\) redox couple, which was measured by adding ferrocene (ca. 1 mg) to the sample solution. Magnetic measurements were performed on crushed crystalline samples using a Quantum Design MPMS XL7 SQUID magnetometer.

X-Ray crystallography. Data for compounds 4, 5 and 9 were collected (ω-scans) at the University of Sussex using an Agilent Xcalibur Eos Gemini Ultra diffractometer with CCD plate detector under a flow of nitrogen gas at 173(2) K and Cu Kα radiation (\(\lambda = 1.54184 \) Å). CRYSALIS CCD and RED software was used respectively for data collection and processing. Reflection intensities were corrected for absorption by the multi-scan method. Data for 6-8 and 10 were collected at the National Crystallography Service, University of Southampton. All structures were determined using Olex2\(^{71}\), solved using SHELXT\(^{72,73}\) and refined with SHELXL-2014\(^{74}\). All non-H atoms were refined with anisotropic thermal parameters, and H-atoms were introduced at calculated positions and allowed to ride on their carrier atoms. Compound 9 is isostructural to 8 (unit cell comparison, ESI) and its formula was confirmed by ESI-MS, TGA and CHN analysis, however the lattice OTf molecules were not possible to be refined with anisotropic parameters, therefore the SQUEEZE method was applied to remove them. For compound 11, three different crystallographic datasets (University of Sussex, National Crystallography Service, University of Southampton, Diamond Source) confirmed the synthesis of the proposed formula, also suggested from ESI-MS, TGA and CHN analysis (see ESI). However, despite producing large block shaped green crystals, none of these datasets fulfilled the publication criteria, therefore the cif file is not provided; a figure of the structure showing connectivity is provided in the ESI. Crystal data and structure refinement parameters for newly reported compounds are given in Tables S1-S2. Geometric/crystallographic calculations were performed using PLATON\(^{75}\), Olex2\(^{71}\), and WINGX\(^{74}\) packages; graphics
were prepared with Crystal Maker and MERCURY26. Each of the crystal structures (4-10) has been deposited at the CCDC 1522927-1522931, 1538190 and 1538191.

SYNTHETIC PROCEDURES

General Catalytic Protocol for A3 coupling. A mixture of aldehyde (1 mmol), amine (1.1 mmol), alkyne (1.2 mmol), Cu catalyst (2 mol\%, based on aldehyde amount) and 2-propanol (5 ml) was added into a sealed tube and stirred at 90 °C for selected time. The reaction was monitored by thin layer chromatography (TLC). After completion, the slurry was filtered upon a short pad of silica (to withhold the catalyst) and the filtrate was evaporated under vacuum. The resulting residue was then loaded to a flash column chromatography and the product propargyl amine was isolated through a silica gel using a mixture of hexane/EtOAc in a ratio of 10/1, as the eluent.

Synthesis of 1-((5-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzyl)-5-methyl-1H-benzo[d][1,2,3]triazole (L2). 5-methyl-1H-benzotriazole (2.796 g, 21.0 mmol) was dissolved in acetone (40 mL) and then potassium carbonate (6 g, 43 mmol) and potassium iodide (0.50 g, 3.01 mmol) were added. After stirring for 30 min, solid \(\alpha,\alpha\)'-dichloro-o-xylene (1.75 g, 10.0 mmol) was added slowly. The mixture was refluxed for 5 hrs. After cooling, the solution was filtered and the filtrate was evaporated to dryness. The resulting colourless syrup was then dissolved in 20 ml methanol after which a white microcrystalline precipitate was formed. Yield: 33\% (1.2 g). Selected IR peaks (cm-1): 2972 (w), 1624 (w), 1501 (m), 1455 (m), 1311 (w), 1278 (m), 1265 (w), 1222 (s), 1163 (w), 1135 (w), 1117 (m), 1103 (m), 1075 (m), 1039 (w), 951 (m), 930 (m), 860 (m), 801 (s), 757 (s), 740 (s), 722 (s), 693 (m), 664 (w), 616 (m).

HRMS for \(\text{C}_{22}\text{H}_{21}\text{N}_{6}\) [M + H]: theor. 369.1827 m/z, calcd. 369.1822 m/z.

Synthesis of 1-((5,6-dimethyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzyl)-5,6-dimethyl-1H-benzo[d][1,2,3]triazole (L3). 5,6-Dimethyl-1H-benzotriazole monohydrate (1.3
g, 8 mmol) was dissolved in acetone (30 mL) and then potassium carbonate (2.2 g, 16 mmol) and potassium iodide (0.50 g, 3.01 mmol) were added. After stirring for 30 min, solid α,α'-dichloro-o-xylene (0.65 g, 3.75 mmol) was added slowly. The mixture was refluxed for 5 hrs. After cooling, the solution was filtered and the filtrate was evaporated to dryness after which a brown microcrystalline precipitate was formed. Yield: 93% (1.38 g). Selected IR peaks (cm\(^{-1}\)): 2974 (w), 1630 (w), 1493 (m), 1449 (m), 1372 (w), 1314 (w), 1284 (m), 1259 (w), 1222 (s), 1158 (w), 1117 (m), 1102 (m), 1070 (m), 1049 (w), 1023 (w), 999 (m), 934 (m), 846 (s), 784 (w), 746 (s), 718 (s), 685 (m), 664 (w), 606 (m). HRMS for C\(_{24}\)H\(_{25}\)N\(_6\)[M + H]: theor. 397.2140 m/z, calcd. 397.2135 m/z.

Synthesis of [Cu\(^{II}\)(L\(_1\))Cl\(_2\)]\(_2\) (4). 0.12 mmol (0.041 g) of L and 0.12 mmol (0.016 g) of anhydrous CuCl\(_2\) were dissolved in 8 ml MeCN while stirring to produce a yellow solution. After a further 15 minutes of stirring, the solution was filtrated, stored in a glass vessel and heated at 75 °C for 18 hours to produce large green block crystals. Selected IR peaks (cm\(^{-1}\)): 1590 (w), 1492 (w), 1455 (m), 1315 (m), 1290 (w), 1235 (w), 1145 (w), 1015 (w), 1006 (w), 952 (m), 900 (w), 778 (m), 770 (m), 729 (s), 661 (m). Yield: 18% (based on Cu). Elemental analysis for C\(_{40}\)H\(_{32}\)Cl\(_4\)Cu\(_2\)N\(_{12}\): calcd. C 50.74, H 3.41, N 17.76; found C 50.79, H 3.46, N 17.89.

Synthesis of [Cu\(^{II}\)_5(L\(_1\))_2Cl\(_{10}\)] (5). 0.12 mmol (0.041 g) of L and 0.36 mmol (0.048 g) of anhydrous CuCl\(_2\) were dissolved in 8 ml MeCN while stirring to produce a yellow solution. After a further 15 minutes of stirring, the solution was filtrated, stored in a glass vessel and heated at 95 °C for 18 hours to produce good quality brown block crystals. Selected IR peaks (cm\(^{-1}\)): 1589 (w), 1492 (w), 1452 (m), 1370 (w), 1331 (m), 1313 (w), 1278 (w), 1231 (m), 1165 (w), 1144 (w), 1002 (w), 970 (w), 961 (w), 841(w), 792 (w), 779 (w), 752 (m), 738 (s), 711 (m), 668 (m). Yield: 33% (based on Cu). Elemental analysis for C\(_{40}\)H\(_{32}\)Cl\(_{10}\)Cu\(_5\)N\(_{12}\): calcd. C 35.70, H 2.40, N 12.50; found C 35.59, H 2.46, N 12.43.
Synthesis of \([\text{Cu}^{II}_2(\text{L}^1)_4\text{Br}_2]\cdot4\text{MeCN}-\text{(Cu}^{II}_2\text{Br}_6\) (6). Anhydrous CuBr\(_2\) was used as the metal salt in a procedure similar to the synthesis of 4. The resultant dark green solution was stored in a vial at room temperature. Small green crystals were obtained after 3 days. Selected IR peaks (cm\(^{-1}\)):

- 1594 (w), 1494 (s), 1456 (m), 1321 (w), 1283 (w), 1233 (m), 1167 (m), 1144 (m), 1002 (w), 966 (w), 843 (w), 789 (m), 736 (s), 670 (w), 628 (m).

Yield: 11\% (based on Cu). Elemental analysis for C\(_{88}\)H\(_{76}\)Br\(_8\)Cu\(_4\)N\(_2\): theor. C 43.69, H 3.17, N 16.21; found C 43.81, H 3.13, N 16.11.

Synthesis of \([\text{Cu}^{II}_2(\text{L}^1)_2(\text{MeCN})_2]\cdot2\text{(BF}_4\) (7). 0.24 mmol (0.082 g) of L were dissolved in 10 ml MeCN while stirring to produce a colourless solution. A solution containing 0.48 mmol (0.170 g) of Cu(BF\(_4\))\(_2\)-6H\(_2\)O in MeCN (7.5 ml) was slowly added. The resulting green solution was filtrated and kept stored at room temperature. Green block crystals were obtained after 1 day. Selected IR peaks (cm\(^{-1}\)):

- 3468 (w), 3508 (w), 1651 (w), 1592 (w), 1495 (w), 1454 (m), 1320 (m), 1282 (m), 1234 (m), 1172 (m), 1159 (w), 1060 (s), 1017 (s), 969 (m), 953 (w), 853 (w), 793 (w), 780 (m), 757 (s), 748 (s), 739 (s), 672 (w).

Yield: 49\% (based on Cu). Elemental analysis for C\(_{44}\)H\(_{38}\)B\(_2\)CuF\(_8\)N\(_{14}\): theor. C 52.84, H 3.83, N 19.62; found C 52.92, H 3.86, N 19.70.

Synthesis of \([\text{Cu}^{II}_2(\text{L}^1)_2(\text{CF}_3\text{SO}_3)_2]\) (8). 0.24 mmol (0.082 g) of L and 0.48 mmol (0.180 g) of Cu(OTf\(_2\)-H\(_2\)O were dissolved in 15 ml Me\(_2\)CO while stirring to produce a dark green solution. After stirring for 1 hr, the solution was filtrated, then layered over n-hexane in a 1:2 ratio to produce large blue block crystals after 7 days. Selected IR peaks (cm\(^{-1}\)):

- 1589 (w), 1492 (w), 1457 (m), 1320 (m), 1275 (m), 1244 (m), 1163 (w), 1140 (m), 1023 (s), 952 (w), 848 (w), 779 (m), 746 (s), 669 (m).

Synthesis of \([\text{Zn}^{II}_2(\text{L}^1)_2(\text{MeCN})_2]\cdot2(\text{CF}_3\text{SO}_3\) (9). 0.24 mmol (0.082 g) of L\(^1\) were dissolved in 15 ml MeCN while stirring to produce a colorless solution. 0.12 mmol (0.044 g) of Zn(OTf\(_2\) were then added. After stirring for a further 30 min., the resulting colorless solution was
filtrated, then layered over Et₂O in a 1:2 ratio. Large colorless block crystals were obtained after 2 weeks. Selected IR peaks (cm⁻¹): 3434 (br), 1654(w), 1592 (w), 1494 (w), 1456 (m), 1372 (w), 1319 (m), 1269 (m), 1226 (s), 1153 (m), 1094 (w), 1025 (s), 951 (w), 880 (w), 843 (w), 766 (w), 740 (s), 714 (w), 669 (m). Yield: 38% (based on Zn). Elemental analysis for C₄₆H₃₈F₆N₆O₆S₂Zn: C 49.04, H 3.40, N 17.42; found C 49.11, H 3.53, N 17.38.

Synthesis of [CuII₂(L²)(H₂O)₂]-4(CF₃SO₃)-4Me₂CO (10). 0.1 mmol (0.036 g) of L² and 0.1 mmol (0.037 g) of Cu(OTf)₂·H₂O were dissolved in 15 ml acetone while stirring to produce a turquoise solution. The solution was filtrated, then layered over n-hexane in a 1:2 ratio to produce green needle-like crystals after a few hours. Selected IR peaks (cm⁻¹): 1592 (w), 1504 (w), 1457 (m), 1279 (m), 1223 (s), 1158 (m), 1027 (s), 868 (w), 805 (m), 758 (w), 721 (w), 636 (s). Yield: 23% (based on Cu). Elemental analysis for C₁₀₄H₁₀₈Cu₂F₁₂N₂₄O₁₈S₄: C 50.65, H 4.42, N 13.64; found C 50.73, H 4.36, N 13.63.

Synthesis of [CuII₂(L³)₄(CF₃SO₃)]₂-2(CF₃SO₃)-Me₂CO (11). 0.12 mmol (0.048 g) of L³ and 0.24 mmol (0.089 g) of Cu(OTf)₂·H₂O were dissolved in 15 ml acetone while stirring to produce a dark green solution. The solution was filtrated, then layered over n-hexane in a 1:2 ratio to produce small green block crystals after 10 days. Selected IR peaks (cm⁻¹): 3436 (br), 1707 (w), 1631 (w), 1590 (w), 1559 (w), 1494 (w), 1456 (m), 1252 (m), 1235 (s), 1221 (s), 1153 (m), 1026 (s), 1003 (m), 965 (w), 901 (w), 845 (m), 785 (w), 748 (m). Yield: 10% (based on Cu). Elemental analysis for C₁₀₃H₁₀₂Cu₂F₁₂N₂₄O₁₃S₄: C 52.25, H 4.35, N 14.21; found C 52.33, H 4.41, N 14.34.

RESULTS

Synthetic aspects. A crystalline material was obtained through a variety of techniques: leaving the sample undisturbed in room temperature (1, 3, 6, 7), solvothermal conditions (4, 5) or liquid diffusion (2, 8 – 11). All reactions, with the exception of compounds 4 and 5, are not sensitive
to the Cu(II):L molar ratio; ratios from 3:1 to 1:3 yield the same compound in comparable yields and purity. In the case of 4 and 5, the final product depends on the appropriate ratio of starting materials (1:1 and 3:1, respectively) and temperature (75° and 95°C, respectively). The metal centre (Cu(II) or Zn(II)) is not coordinated to the N2 nitrogen atom of the benzotriazole molecules in any of the compounds; this may be attributed to the steric effects of the bulky CH\(_2\)-C\(_6\)H\(_4\)-CH\(_2\) unit. All compounds are soluble in DMF and slightly soluble in other common organic solvents (e.g. acetonitrile, methanol, THF); their solubility in these solvents increases greatly when heated. However, they are insoluble in water.

Crystal structure description. The crystal structures of 1 – 3 were recently reported, however they will be described in detail to facilitate discussion and comparison with compounds 4 – 11. Compound 1 crystallizes in the triclinic space group \(\overline{P\overline{1}}\) and contains one molecule in the asymmetric unit. The unit consists of a Cu(II) center, one organic ligand molecule, a perchlorate lattice anion, and two acetonitrile solvent molecules, out of which one acts as a terminal ligand and one is in the lattice; the latter will not be further discussed. In this conformation of the ligand (Table 1, Mode A), the angle between the planes of the benzotriazole molecules is 123.00(5)°. As a result, the structure extends to one dimension along the \(a\) axis, forming a 1D framework with small voids (Figure 1). Cu(II) is coordinated to six nitrogen atoms and possesses a distorted octahedral geometry, in which the axial positions are occupied by the acetonitrile nitrogen atoms. The relevant N - Cu - N bond angles range from 87.02(7)° to 92.98(7)°. As for the relevant bond lengths, the mean \(\text{Cu-N}_{\text{ligand}}\) distances are 2.0815(16) and 2.0133(17) Å, significantly shorter than the respective \(\text{Cu-N}_{\text{acetonitrile}}\) distance which was measured at 2.422(2) Å. No strong hydrogen bonds or other supramolecular interactions are observed. Additionally, compounds 3, 7 and 9 were found to be isostructural to 1; In 7, (Figure S3, ESI) the counter anion is BF\(_4\)\(^-\) instead of ClO\(_4\)\(^-\). 3 was synthesized using Zn(ClO\(_4\))\(_2\)-6H\(_2\)O and shows an identical 1D framework, however the two coordinating
acetonitrile moieties are replaced by H$_2$O molecules (Figure S2, ESI). 9 is another Zn(II) compound that is a similar 1D CP and contains CF$_3$SO$_3^-$ anions in the lattice (Figure S4, ESI). As a result, these structures will not be further described.

![Figure 1](image)

Figure 1. (upper) The asymmetric unit of 1. H atoms are omitted for clarity. (lower) Part of the one-dimensional framework of 1. H atoms, certain perchlorate anions and solvent molecules are omitted for clarity. Color code Cu (blue), C (black), N (light blue), Cl (green), O (red).

In compound 2 the complex crystallizes in the monoclinic P2$_1$/n space group. Its asymmetric unit consists of a Cu(II) center, one organic ligand molecule, two nitrate anions and one acetonitrile solvent molecule (Figure S1, ESI). The coordination mode of the ligand is the same to the mode in 1 (Table 1, Mode A). The presence of the chelating and bridging nitrate moieties leads to the formation of an unusual dimeric Cu$_2$ unit as the structure extends in two
dimensions along the b0c plane (Figure 2). A search in the Cambridge Structure Database reveals no other example of Cu₂ unit based on nitrates. The metal center has a coordination environment of {N₂O₃} and possesses a pseudo-octahedral geometry; five nitrate oxygen atoms occupy the equatorial positions of the pseudo-octahedron, while two nitrogen atoms from ligand molecules occupy the axial positions. The mean Cu-N distances are 1.9849(6) and 1.9916(6) Å, while the Cu-O distances range from 1.9813(6) to 2.6587(6) Å. The relevant N-Cu-O bond angles range from 85.32(4)° to 95.66(4)°.

Figure 2. Part of the two-dimensional framework of 2. H atoms are omitted for clarity. Color code Cu (blue), C (black), N (light blue), O (red).

Compound 4 crystallizes in the triclinic P\̅1 space group and consists of two [Cu₂L₂Cl₄] units. All metal centers in the structure show a distorted trigonal bipyramidal geometry through a coordination environment of {N₂Cl₃} (τ = 0.46 for Cu1, 0.40 for Cu2). The basal plane in the geometries of both metal centers consists of chloride atoms, while ligand nitrogen atoms are in the axial positions. These units are not further linked through intermolecular interactions and each ligand adopts a syn-conformation regarding the position of the benzotriazole groups.
(Table 1, Mode B). This accounts for the eventual formation of zero-dimensional dimeric units (Figure 3, upper). The mean Cu-N distances are 2.015(4) and 2.028(4) Å. Cl-Cu-Cl bond angles range from 93.65(4)° to 154.33(6)° while the respective values for the N-Cu-N angles are 177.47(17)° and 178.44(17)°.

Compound 5 also crystallizes in the triclinic $P\bar{1}$ space group. However, in this case the asymmetric unit contains two full-occupancy and one half-occupancy Cu(II) centers, as well as one ligand molecule and five chlorine atoms. Two of the metal centers (Cu2, Cu3) are coordinated to the ligand and to chlorine atoms, while the third (Cu1) is only coordinated to chlorine atoms and bridges the [Cu2L2] nodes. The ligand adopts the same conformation as in Mode A, but a different coordination mode (Table 1, Mode C). All of the above lead to the formation of an unusual two-dimensional coordination polymer which extends along the $a0c$ plane, as shown in Figure 3 (lower). The coordination environment and geometries of the metal centers are also varied. Cu1 is coordinated to five chlorine atoms and exhibits a distorted square pyramidal geometry ($\tau = 0.15$) \cite{78}. The basal plane in this geometry has a mean deviation of 0.129 Å. Cu2 is also coordinated to five atoms and possesses a distorted square pyramidal geometry ($\tau = 0.09$) \cite{78}, however in this case the basal plane consists of three chlorine atoms and one ligand nitrogen atom, while the axial position is occupied by another ligand nitrogen atom, resulting in a $\{N2Cl3\}$ coordination environment. In this case, the respective plane has a deviation of 0.151 Å. Finally, Cu3 shows a $\{N2Cl4\}$ coordination environment; consistent with an octahedral geometry, in which the ligand nitrogen atoms occupy the axial positions while chlorine atoms form the basal plane. The mean Cu-Cl bond distances range from 2.2671(12) to 2.6348(10) Å, while the respective Cu-N bond lengths range from 2.016(3) to 2.425(3) Å.
Figure 3. The structures of compounds 4 (zero-dimensional dimer, upper) and 5 (two-dimensional framework, lower). H atoms are omitted for clarity. Color code Cu (blue), C (black), N (light blue), Cl (green).

Compound 6 was synthesized using CuBr$_2$ and crystallizes in the monoclinic C2/c space group. The main core of the structure consists of a [Cu$_2$L$_4$Br$_2$]$^{2+}$ dicationic dimer. A dianionic [Cu$_2$Br$_6$]$^{2-}$ unit is also present and completes the charge balance for all Cu(II) centers. In similar fashion to 4, this dimer does not form any intermolecular interactions and thus the structure is zero-dimensional (Figure 4). In this case the angle between the planes of the benzotriazole molecules of the ligand was measured at 125.4(4)$^\circ$, similar to the one in Mode A. However, a concurrent rotation of the non-rigid C-N bond is also observed, leading to a
different conformation mode (Table 1, Mode D). The metal center that shows ligand coordination (Cu1) possesses a distorted trigonal bipyramidal \((\tau = 0.65)^{78}\) geometry through a \(\{N_4Br\}\) environment. The bromine atom and two nitrogen atoms from ligand molecules consist of the basal plane, with the relevant angles ranging from 102.2(5)° to 139.0(3)°. The two remaining nitrogen atoms also derive from ligand molecules and occupy the axial positions of the bipyramid.

Figure 4. The structure of compound 6. H atoms and solvent molecules are omitted for clarity. Color code Cu (blue), C (black), N (light blue), Br (brown).

Compound 8 crystallizes in the triclinic \(P\bar{1}\) space group and its asymmetric unit contains a Cu(II) centre, one organic ligand molecule and one triflate anion molecule. The metal centre is coordinated to a total of six atoms and possesses an octahedral geometry through a \(\{N_4O_2\}\) coordination environment. The complex shows an identical one-dimensional framework to the one of compounds 1, 3, 7 and 9; the only difference is that the axial positions of the octahedron are now occupied by triflate oxygen atoms instead of acetonitrile nitrogen (Figure 5). Consequently, the ligand adopts the same coordination mode as in the aforementioned
compounds (Mode A). The mean Cu-O distance was measured at 2.536(4) Å, while the Cu-N bond lengths are 2.009(5) and 2.013(7) Å. No strong hydrogen bonds or other supramolecular interactions are observed.

Figure 5. Part of the one-dimensional framework of 8. H atoms are omitted for clarity. Color code Cu (blue), C (black), N (light blue), O (red), S (yellow), F (light green).

Compound 10 was prepared using L² and crystallizes in the monoclinic C2/c space group. The structure is similar to the one of compound 6 as it contains a dicationic dimer, \([\text{Cu}_2\text{L}_4(\text{H}_2\text{O})_2]^{2+}\), as the main core. Four triflate anions are present in the lattice to complete the charge balance for all metal centers. As a result, the structure is zero-dimensional (Figure 6) and the dimer is further stabilized through the formation of two strong O-H⋯O hydrogen bonds, each formed between a water molecule and a triflate anion. The L² ligand behaves similarly to L¹ in the case of compound 6, adopting the same conformation and coordination mode (Table 1, Mode D). Each metal center shows a \(\{\text{N}_4\text{O}\}\) coordination environment through four ligand nitrogen atoms and one oxygen atom from the water molecule, possessing a distorted square pyramidal \((\tau = 0.29)^{78}\) geometry. The basal plane of this pyramid consists of three nitrogen atoms and one oxygen and shows a mean deviation of 0.149 Å. Compound 11 may be considered as isoskeletal
to 10 as it contains a similar dimeric core; in this case the two coordinating water molecules are replaced by triflate anions (Figure S5, ESI). Due to the similarities, the resulting zero-dimensional structure will not be further described.

Figure 6. The structure of compound 10. Lattice solvent molecules, lattice anions and certain H atoms are omitted for clarity. Color code Cu (blue), C (black), N (light blue), O (red), H (light pink).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Geometry of M(II)</th>
<th>Coordination Mode</th>
<th>Dimensionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
<td>1D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>A</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>A</td>
<td>1D</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>B</td>
<td>0D</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>C</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>D</td>
<td>0D</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>A</td>
<td>1D</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>A</td>
<td>1D</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>A</td>
<td>1D</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>D</td>
<td>0D</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>D</td>
<td>0D</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Overview of the coordination characteristics (ligand conformation, coordination geometry of the metal) of the compounds used in this study (S = solvent).

Images of compounds with labels A, B, C, and D correspond to the modes of coordination listed in the table.
Characterization of compounds 1 - 11. Magnetic measurements for 1 and 2 in the solid state are consistent with octahedral $S = \frac{1}{2}$ Cu(II) centers with $g \sim 2.2$. For 1 there are negligible interactions along the chain (Figure S6, ESI), whilst for 2 we observe a weak short-range ferromagnetic exchange within the dimeric repeat unit of ca. 1 cm$^{-1}$ (Figure S7, ESI). Furthermore, given that the compounds are soluble in most common organic solvents, a range of techniques were used to determine their behavior in solution. ESI-MS (positive-ion mode) in methanolic solution for all Cu(II) complexes (1, 2, 4-8, 10-11) reveals two main peaks which perfectly correspond to the respective [Cu(L)]$^{1+}$ and [Cu(L)$_2$]$^{1+}$ fragments. Additional peaks are also observed in each spectrum and the main peaks correspond perfectly to metal-ligand-anion fragments; The most common fragments found were [Cu(L)X]$^{1+}$, [Cu$_2$(L)X]$^{1+}$, [Cu(L)$_2$X]$^{1+}$, [Cu(L)$_3$X]$^{1+}$, where X is the anion present in each compound. Similar fragments were obtained for the Zn(II) compounds (3 and 9). ESI-MS spectra, along with detailed analysis of the fragments are presented in Figures S8-S18, ESI. These results indicated that the CPs of this study could retain their polymeric structure into the solution. To further clarify this, the same method was applied in a DMF solution of 1, given that generally DMF molecules can easily coordinate to the metal center. Indeed, the mass spectrum showed identical peaks as above, as well as an additional peak at 575.07 m/z, corresponding perfectly to [Cu(L)1(DMF)(ClO$_4$)]$^{1+}$ (Figure S8, ESI).

Additionally, the UV-Vis spectra of 1, 7, 8, 10 and 11 in MeOH show a broad peak which is characteristic of Jahn Teller effect and consistent for a Cu(II) center with a octahedral $\{N_4O_2\}$ geometry (Figure S19, ESI).

TGA measurements were also conducted to examine the thermal stability of all complexes. In all cases (Figures S20 – S30, ESI), the first mass loss corresponds to the loss of any existing solvent molecules or the counter-anions. The stability of the remaining core is then
retained up to the region of \(~300-400~^\circ\text{C}\), where gradual decomposition takes place. A detailed analysis of the TGA graphs is presented in the Supporting Information.

Catalytic studies. In order to test the possible catalytic activity of \(1 - 11\), we studied the application of these catalytic systems in the \(\text{A}^3\) coupling of benzaldehyde, pyrrolidine and phenylacetylene (Table 2). During initial experiments with 1 as catalyst we managed to isolate a yellow crystalline material after the end of the reaction, as based on TLC. X-Ray crystallography showed that this material corresponds to the Cu(I) coordination polymer [Cu\((\text{L}^1)\text{Cl}\)] (1’), which has already been reported and found to inhibit the catalytic performance of 1\(^{69}\) (Table 3, Entry 1). To avoid the conversion issue, we therefore employed 8 in the following optimization procedures.

Furthermore, after screening a variety of solvents for the title reaction, 2-propanol (iPrOH) (an environmentally friendly solvent)\(^79\) was found to provide excellent yields when the reaction mixture was heated to 90°C (Table S3, Entry 6, ESI), while other common organic solvents (such as DMF, acetonitrile, DCM) afforded lower yields. In addition, the reaction was found to be catalyzed by only 0.02 mmol of the catalyst (in 1 mmol reaction scale of benzaldehyde), at 90°C and under air atmosphere (TON = 44.5, TOF = 3.71 hr\(^{-1}\)).
Table 2. Overview of the characteristics and catalytic activity of the coordination polymers in this study.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Geometry of M(II)</th>
<th>Yield<sup>a,b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>![Geometry Image]</td>
<td>68%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>![Geometry Image]</td>
<td><5%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>![Geometry Image]</td>
<td><10%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>![Geometry Image]</td>
<td>NR<sup>c</sup></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>![Geometry Image]</td>
<td>NR<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>![Geometry Image]</td>
<td>NR<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>![Geometry Image]</td>
<td>64%</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>![Geometry Image]</td>
<td>89%(85%)<sup>d</sup></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>![Geometry Image]</td>
<td>21%</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>![Geometry Image]</td>
<td>57%</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>![Geometry Image]</td>
<td>44%</td>
</tr>
</tbody>
</table>

^a Isolated yields based on aldehyde. ^b Reaction conditions: benzaldehyde (102 μL, 1 mmol), pyrrolidine (90μL, 1.1 mmol), phenylacetylene (132 mL, 1.2 mmol), catalyst (2 mol%), iPrOH (5 ml), T = 90°C, 12 hr stirring. ^c No reaction. ^d The reaction was performed in presence of 10% TEMPO.

To evaluate the catalytic activity of our compound, several control experiments with common Cu(II) salts were performed for the same A³ reaction and the results are summarized in Table 3. In all cases, the corresponding Cu(II) salts afforded significantly lower yields,
ranged from 55 to 65%, at higher catalyst loading ca. 10 mol%, based on the benzaldehyde amount (Table 4, entries 1-8). Moreover, the use of Cu(II) salts as catalysts in this A* coupling with other para-substituted benzaldehydes (such as the 4-chloro-, 4-trifluoromethyl-, 4-methoxy-) instead of benzaldehyde, yielded the corresponding product in low yields (10-15%) showcasing their limited catalytic efficiency. In absence of catalyst no reaction was observed, result that supports the catalytic behavior of the studied multi-component coupling.

Table 3. Evaluation of various Cu salts as catalysts in the multi-component coupling of phenylacetylene, pyrrolidine and benzaldehyde.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>[product]a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl2</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>Cu(NO3)2·2.5H2O</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Cu(ClO4)2·6H2O</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>CuBr2</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>CuBF2·6H2O</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Cu(OAc)2·H2O</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OTf)2·H2O</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>Cu(OTf)2·H2Oc</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>No catalyst</td>
<td>NRb</td>
</tr>
</tbody>
</table>

a Reaction conditions: Benzaldehyde (102 μL, 1 mmol), pyrrolidine (90μL, 1.1 mmol), phenylacetylene (132 μL, 1.2 mmol), catalyst (10 mol%), iPrOH (5 ml), heated at 90°C for 12 hr. Isolated yields based on aldehyde. b No reaction. c Two equivalents of L were added to the reaction mixture.

We then explored the scope of the reaction by employing a variety of aldehydes, amines and alkynes. The results are presented in Scheme 2. Using different aldehydes, pyrrolidine as the amine and phenylacetylene under the above described conditions, a variety of alkyl and aryl substituted propargylamines (1a-1k) were formed in moderated to high isolated yields. In particular, saturated aliphatic aldehydes react with higher isolated yields (98-100%), compared to the aromatic aldehydes that shows slightly lower reactivity with moderate yields in the range
of 57 to 89%. Consequently, the results of the amine screening (11-1u) indicate that only secondary amines lead to reaction completion, in contrast to primary amines in which no reaction was observed. In general, cyclic aliphatic and aromatic secondary amines afford the corresponding propargylamine products in excellent yields, ranging from 98 to 100%; acyclic secondary amines were found to be slightly less effective. Finally, the employment of 1-hexyne and 4-trifluoromethylphenylacetylene in the reaction process (1v-1x), demonstrated that both alkynes react with the produced imine forming the corresponding propargyl products in good to excellent yields.

Scheme 2. Catalytic activity of 8 in the A³ coupling between aldehydes, amines and substituted acetylenes towards propargylamine derivatives synthesis.
Mechanistic aspects. In order to investigate the role of CPs in the reaction and shed light into the reaction mechanism, we focused on synthesizing a variety of Cu(II) coordination polymers with the same ligand by fine tuning their composition; this would enable us to optimize their catalytic performance and see how factors such as the metal geometry or the different anion in the compounds would affect the catalytic activity. Our previous experience and familiarity with the ligand proved critical for this targeted synthesis, and as a result we obtained compounds which possess the desired characteristics (these are further detailed in Tables 1 and 2). 2 was synthesized using Cu(NO$_3$)$_2$·2.5H$_2$O and the metal center has a coordination environment of {N$_2$O$_5$}, possessing a pseudo octahedral geometry. The resulting 2D CP, however, only accounted for disappointing yields when tested as a catalyst (Table 2, Entry 2). The employment of halogen copper sources afforded complexes 4, 5 and 6, which show considerable differences. The presence of a coordinating anion once again affects the resulting coordination environments (\{N$_2$Cl$_3$\}, \{N$_2$Cl$_4$\}, \{N$_4$Br\}) and geometries (trigonal bipyramidal, octahedral), which can be found in further detail in Table 1 (Entries 4, 5, 6). Nevertheless, none of the compounds show any catalytic activity in the tested reaction. Furthermore, by using Cu(II) sources with traditionally non-coordinating anions (as in the case of our initial catalyst, 1), we were able to isolate compounds 7 and 8. Both compounds show an identical 1D framework and solution behavior compared to 1 and only the present anion is different. The use of 7 as a catalyst (Table 2, Entry 7) provided results similar to 1. This indicated that a similar Cu(I) specie is generated, possibly through the conversion of BF$_4^-$ to F$^-$ (further supported by the ESI-MS analysis of 7, in which several peaks containing F$^-$ as the anion were observed) and inhibits the performance of the catalyst. To our delight however, 8 showed very good catalytic activity in the tested reaction, with yields similar to the initial catalyst (Table 2, Entry 8). To investigate its electron donating capabilities, the electrochemistry of 8 was studied by cyclic voltammetry (CV). CV in the cathodic direction over several cycles showed a quasi-
reversible reduction process at -0.423 V vs Fe⁰⁻/²⁺ (iₐ/iₐc = 1.5) (Figure 7) vs FeCp₂⁻/⁰ and a non-reversible reduction process at -1.156 V vs Fe⁰⁻/²⁺. The former may be assigned to the [CuII]→[CuI] couple, further supporting the formation of a Cu(I) intermediate during the catalytic reaction. Additional control experiments were then performed to investigate the importance of the redox potential. Given that Zn(II) has lower potential than Cu(II), we employed compounds 3 and 9; both are 1D Zn(II) CPs with the same framework and have similar thermal and solution behavior. In the case of 3, the corresponding propargylamine was afforded only at 10% yield (Table 2, Entry 3). Interestingly, compound 9 (Zn(II)), which is isostructural to 8 (Cu(II)), was found to catalyze the title reaction in only 21% yield, as determined by ¹H NMR (Table 2, entry 9).

Figure 7. Overlaid CV scans (2 cycles) of 8 in 0.05 M [⁶Bu₄N][PF₆]/DMSO. Scan rate 300 mVs⁻¹.
The use of the modified benzotriazole derivatives in position 5 (L²) or positions 5,6 (L³) yielded the corresponding dimers, 10 and 11, and not the anticipated 1D CP. The latter were found to moderate catalyze the reaction (Table 2, Entries 10 and 11). In both structures, each Cu(II) center coordinates to 4N atoms (from 4 different ligands) and one O atom, adopting a distorted square planar geometry. However, the UV-Vis spectra show that the Cu(II) centers in 10 and 11 adopt an octahedral geometry (4N+2O) and possibly upon solvation 4 N atoms and 2 O atoms, from four ligands and two MeOH solvated molecules (catalysis takes place in iPrOH), occupy the equatorial and axial positions, respectively. In this way, the adaption of the symmetrical {N₄} plane in solution yields the anticipated 1D CP and this transformation may explain the catalytic activity of 10 and 11. However, the poorer catalytic performance of 10 and 11 in comparison to 8 may be explained by the following factors or a combination of them:
A) The aforementioned “in situ” transformation is required for 10 and 11 to behave as catalysts,
B) Substitution in position(s) 5(6) of the benzotriazole moieties may attribute a second coordination sphere effect to Cu centers. C) The presence of different axial ligands H₂O (10) or Br (6) vs OTf (8) may disrupt the aforementioned “in situ” transformation or decrease the reactivity of the catalysts. Finally, the use of Cu¹Cl as the metal source resulted in the synthesis of the catalytically inactive [Cu¹(L¹)Cl] (1’) species. It is also worth noting that the addition of 10 mol % of TEMPO did not affect the reaction yield, showcasing the absence of a clear radical process containing the Cu(I)-complex species and supporting the plausible in-situ formation of the copper(I)-acetylide intermediate, that is responsible for the catalytic cycle (Scheme S1).

Based on the above observations, the presence of a Cu(II) center in the solution featuring an octahedral geometry with four nitrogen atoms occupying the equatorial positions, is important in order to promote catalytic activity. Furthermore, the choice of the proper anion is critical. The desired catalytically active motif (4N+2O) can be reproduced by the use of non-
coordinating anions. In contrast, the use of other anions results in different coordination geometries and dimensionalities, with zero catalytic activity. These observations are also consistent with the commonly suggested mechanism of the A³ coupling, which involves the activation of the alkyne by the catalyst (Scheme S1). The planar \{N₄\} geometry of Cu(II) promotes the coordination of the alkyne with concomitant activation of the C–H bond and the formation of the corresponding Cu(I)-acetylide (the acetylenic hydrogen might be abstracted from the hydroxyl anions produced from the iminium ion formation). Consequently, the symmetrical \{N₄\} plane accounts for adequate electron delocalization to ensure the reduction of Cu(II) to Cu(I), which is further promoted by the redox potential of Cu(II). Finally, addition of the Cu(I) acetylide to the in situ generated iminium ion yields the corresponding propargylamine derivative and water, and regeneration of the catalyst. The proposed catalytic pathway can be supported, in part, by the recently reported kinetic studies on the effect of alcoholic solvents to Cu(II) Schiff base complexes, and Cu(II)-catalyzed aerobic oxidation of benzylic alcohols in an imidazole containing N₄ ligand framework.

CONCLUSION

In this work, we have introduced a system of 1D Cu(II) CPs that can catalyze the multicomponent reaction of aldehydes, amines and alkynes to produce propargylamine derivatives. In particular, fine-tuning of the catalyst allowed us to generate a 1D CP with excellent catalytic activity, avoiding any issues that would inhibit its performance. The method uses relatively mild conditions and provides results for a broad range of substrates, especially when aliphatic aldehydes and secondary amines are employed. Furthermore, it eliminates the need for expensive metal salts, inert atmosphere or high loadings. We have also attempted to shed more light on the mechanism of the reaction, from an inorganic point of view; through a thorough synthesis and study of targeted CPs, we evaluated how factors like coordination
geometry, anion, ligand tuning affect the catalytic activity. The results are consistent with the suggested mechanism. We envision that this work demonstrates the catalytic potential of the rarely used 1D CPs. As such, our future efforts will be dedicated to a) synthesize variations of 8 with the use of substituted benzotriazole derivatives with electron donating or withdrawing groups, b) use the present library of catalysts to other chemical transformations and c) employ CPs of other metals in the given A3 coupling reaction.

Supporting Information Available: Crystallographic data, Additional figures of certain structures Magnetic measurements, ESI-MS analysis for 1-11, UV-Vis spectra, Thermogravimetric analysis for 1-11, Evaluation of catalytic conditions, Characterization data for A3-coupling products (1H, 13C NMR and HRMS spectra)

Acknowledgements

We thank the EPSRC UK National Electron Paramagnetic Resonance Service at the University of Manchester for providing magnetic measurements of selected Cu(II) compounds. We thank the EPSRC UK National Crystallography Service at the University of Southampton for the collection of the crystallographic data for compounds 6-8 and 10. I.N.L. and M.K. acknowledge the sponsorship of the Short Term Scientific Mission from COST action CM1201.
References

10.1021/ja500191r.

(14) Mendes, R. F.; Silva, P.; Antunes, M. M.; Valente, A. A.; Almeida Paz, F. A. Sustainable Synthesis of a Catalytic Active One-Dimensional Lanthanide-Organic Coordination

(21) Kaur, S.; Kumar, M.; Bhalla, V. Aggregates of Perylene Bismide Stabilized

(29) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Preparation of 2,5-

(38) Lo, V. K.-Y.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Silver(I)-Mediated Highly

(46) Zhang, Y.; Li, P.; Wang, M.; Wang, L. Indium-Catalyzed Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amine via C-H Bond Activation In
This Paper, Indium (III) Chloride was found to be a highly effective catalyst for the Three-Component Coupling Reactions of Aldehyd. J. Org. Chem. 2009, 74, 4364–4367.

(60) Richardson, C.; Steel, P. J. Benzotriazole as a Structural Component in Chelating and Bridging Heterocyclic Ligands; Ruthenium, Palladium, Copper and Silver Complexes. Dalton Trans. 2003, 34, 992–1000 DOI: 10.1039/b206990c.

(62) Tangoulis, V.; Raptopoulou, C. P.; Psycharis, V.; Terzis, A.; Skorda, K.; Perlepes, S. P.; Cador, O.; Kahn, O.; Bakalbassis, E. G. Ferromagnetism in an Extended Three-

This Process Was Found to Interfere with the First Process upon Scanning in the Anodic Direction, Possibly due to an Electrochemically Produced Species.

A series of Cu(II) benzotriazole based coordination polymers is introduced as excellent homogeneous catalysts for the A^3 coupling synthesis of propargyl amine derivatives.