Systematic Studies of Hexanuclear \{M^{II}_4Ln^{III}_2\} Complexes (M = Fe, Ga; Ln = Er, Ho): Structures, Magnetic Properties and SMM Behavior

Siuhai Chen, a,b Valeriu Mereacre, a George Kostakis, c Christopher E. Anson a and Annie K. Powell a,d

Four isostructural M^{II}_4Ln^{III}_2 coordination clusters, [M₄Ln₄(μ-OH)₄(nbdea)₄(C₆H₅COO)₄]·MeCN (M = Fe, Ln = Er (1); M = Ga, Ln = Er (2); M = Fe, Ln = Ho (3); M = Ga, Ln = Ho (4)) have been synthesized and characterized. Single-crystal X-ray diffraction and X-ray powder diffraction studies revealed that all four compounds crystallize isomorphously to each other, and to the previously reported M^{II}_4Dy₄ (M = Fe or Ga) and Fe₄Y₄ analogues. DC magnetic susceptibility measurements for compounds 1-4, taken in combination with those for the Fe₄Er₄ analogues, indicated that the interactions between Er^{III} ions are weakly ferromagnetic and the Fe^{III}-Er^{III} interactions are very weakly antiferromagnetic, while the Ho^{III}-Ho^{III} and Fe^{III}-Ho^{III} interactions are both negligible. By comparison, for the Fe₄Dy₄ analogue, the Dy₄-Dy₄ interactions are antiferromagnetic while the Fe₄Dy₄ are ferromagnetic. Both Er analogues 1 and 2 display single-molecule magnet (SMM) behavior with the effective energy barrier Uₐ for Dy increasing from 12.8 K (for Fe₄Er₂) to 53.5 K (for Ga₄Er₂), indicating that the very weak 3d-4f interaction enhances the QTM effect.

Introduction

Single-molecule magnets (SMMs) are a class of molecular metal clusters, which display slow relaxation of the magnetization at low temperature. The combination of a high spin ground state and a large uniaxial magnetoanisotropy leads to higher relaxation energy barrier Uₐ and blocking temperature Tₛ for SMMs. Due to the large unquenched orbital angular momentum, Ln^{III} ions can exhibit large single-ion magnetic anisotropies, leading to significant energy barriers in lanthanide-based SMMs. Therefore, the synthesis and characterization of high-nuclearity 3d-4f SMMs have attracted intensive attention in recent years. Although many studies on 4f-4f or 3d-3d interactions have been reported, research on 3d-4f exchange interactions is less developed. Furthermore, according to the model of free-ion electron densities for all Ln^{III} ions, the shape of the 4f electron density for the Dy^{III} ion is oblate, while that for Er^{III} is prolate. Therefore, in order to maximize the magnetic anisotropy, a sandwich-type ligand geometry with harder or negatively-charged ligand atoms predominantly in axial positions is expected to be appropriate for Dy^{III}, while a ligand field with such harder atoms mainly in an equatorial coordination positions should be necessary for Er^{III}. However, 3d-Er^{III} coordination clusters showing SMM behavior are rare in comparison to 3d-Dy^{III} or 3d-Tb^{III} complexes. Sessoli et al. recently published two isostuctural Ln(trensal) complexes with identical ground state J = 15/2, namely the easy-plane Dy(trensal) and easy-axis Er(trensal). Perhaps surprisingly, both of these show slow magnetic relaxation at low temperature, indicating the complexity of the relationship between the magnetoanisotropy and the dynamic of magnetic relaxation at low temperature in lanthanide-based SMMs.

Recently, we reported a series of heterometallic complexes [M₄Ln₄(μ-OH)₄(nbdea)₄(C₆H₅COO)₄]·MeCN (M = Fe, Ln = Dy; M = Ga, Ln = Dy; M = Fe, Ln = Y) which enabled us to separate out the magnetic contributions of the Fe^{II} and Dy^{III} ions and the Fe^{II}-Fe^{II}, Dy^{II}-Dy^{II} and Fe^{III}-Dy^{III} interactions within the systems. To investigate further the Fe^{III}-Ln^{III} and Ln^{II}_2-Ln^{III} interactions and the relaxation of the magnetization in such M^{II}_4Ln^{III}_2 systems, we have now extended that work from Dy^{III} to Ho^{III} and Er^{III}, synthesising the isostructural Ho and Er analogues of the Dy compounds, [M^{II}_4Ln^{III}_2(μ-OH)₄(nbdea)₄(C₆H₅COO)₄]·MeCN (M = Fe, Ln = Er (1); M = Ga, Ln = Er (2); M = Fe, Ln = Ho (3); M = Ga, Ln = Ho (4)). We here describe the syntheses, structures and magnetic properties of these four compounds. Comparison of these results with data from the previously reported Fe₄Y₂ and M₄Dy₂ compounds shows that trends in Fe-Ln and Ln-Ln interactions are not simple. Compounds 1 and 2 show slow relaxation of their magnetisation, with 1 another example of a 3d-Er^{III} SMM; replacement of paramagnetic Fe^{III} in 1 by diamagnetic Ga^{III} in 2 significantly improves the SMM properties.

Experimental

Synthesis. Unless otherwise stated, all chemicals and solvents were obtained from commercial sources and were used without further purification. All reactions were carried out under aerobic conditions. C₆H₅CO₂H₄ were obtained from commercial sources and were used without further purification. [Fe₄(O(C₆H₅)COO)₄](H₂O)₂·C₆H₅CO₂H and [Ga₆(O(C₆H₅)COO)₄(H₂O)]·C₆H₅CO₂H were prepared according to the literature procedure.

Elemental analyses for C, H, N were performed using an Elementar Vario EL analyzer and were carried out at the Institute of Inorganic Chemistry, Karlsruhe Institute of Technology. IR spectra were measured on a Perkin-Elmer Spectrum One spectrometer using KBr pellets and the X-ray powder diffraction patterns were measured at room temperature using a Stoe STADI-P diffractometer with Cu-Kα radiation.

Synthesis of [Fe₄Er₂(μ-OH)₄(nbdea)₄(C₆H₅COO)₄]·MeCN (1)

A solution of [Fe₄O(C₆H₅)COO]₄(H₂O)₄·C₆H₅CO₂H (0.127 g, 0.12 mmol), Er(NO₃)₃·6H₂O (0.056 g, 0.12 mmol) and nbdeaH₂ (0.161 g, 1.00 mmol) in MeCN (10 ml) was stirred at room temperature for one hour. The resulting solution was left undisturbed in air. Yellow blocks were crystallized after three hours, washed with MeCN and dried in the air. Yield: 47% (based on Er). Anal. Calc. for C₆H₁₉N₂O₂Fe₄Er₂: C, 48.28; H, 5.09; N, 3.13; found C, 48.36; H, 4.87; N, 3.03%. IR (KBr/cm⁻¹): 3450 (br), 2958 (s), 1965 (w), 1643 (s), 1599 (s), 1558 (s), 1492 (m), 1449 (s), 1400 (vs), 793 (s), 716 (m), 692 (m), 584 (m), 555 (m), 503 (m).
1323 (s), 1301 (s), 1175 (m), 1135 (m), 1085 (s), 1026 (s), 908 (m), 825 (m), 721 (s), 691 (m), 678 (s), 632 (w), 590 (m), 538 (mw).

Synthesis of [GaEr(μ2-H2)·(nbdea)2(C6H4COO)2]·MeCN (2)
The synthetic method for 2 was similar to that of 1 but replacing [Fe3O(C6H4COO)3(H2O)] (C6H4COO) with [GaO(C6H4COO)3(H2O)]·(O2CC6H4H)·2H2O. Colorless crystals were obtained after one day, washed with MeCN and dried in the air. Yield: 55% (based on Er). Anal. Calc. for C50H43N2O29GaErZ: C, 47.12; H, 4.96; N, 3.05; found C, 47.10; H, 5.08; N, 2.99%. IR (KBr)/cm⁻¹: 3433 (br), 2960 (s), 1962 (w), 1643 (s), 1598 (s), 1558 (s), 1493 (m), 1449 (s), 1401 (vs), 1323 (s), 1301 (s), 1174 (m), 1135 (m), 1085 (s), 1026 (s), 905 (m), 823 (m), 721 (s), 691 (m), 678 (s), 632 (w), 590 (m), 538 (mw).

Synthesis of [FeHoH2(μ2-OH)·(nbdea)2(C6H4COO)2]·MeCN (3)
The synthetic method for 3 was similar to that of 1 but replacing Er(NO3)3·6H2O with Ho(NO3)3·6H2O. Yellow crystals were obtained after one day, washed with MeCN and dried in the air. Yield: 59% (base on Ho). Anal. Calc. for C50H43N2O29FeHoZ: C, 48.38; H, 5.10; N, 3.13; found C, 48.17; H, 5.01; N, 3.05%. IR (KBr)/cm⁻¹: 3437 (br), 2959 (s), 1962 (w), 1643 (s), 1598 (s), 1558 (s), 1493 (m), 1449 (s), 1399 (vs), 1322 (s), 1301 (s), 1174 (m), 1135 (m), 1084 (s), 1026 (s), 908 (m), 824 (m), 721 (s), 690 (m), 677 (s), 632 (w), 590 (m), 537 (mw).

Synthesis of [GaHo(μ2-OH)·(nbdea)2(C6H4COO)2]·MeCN (4)
The synthetic method for 4 was similar to that of 3 but replacing [Fe3O(C6H4COO)3(H2O)]·(C6H4COO) with [GaO(C6H4COO)3(H2O)]·(O2CC6H4H)·2H2O. Colorless crystals were obtained after one day, washed with MeCN and dried in the air. Yield: 38% (base on Ho). Anal. Calc. for C50H43N2O29GaHoZ: C, 47.21; H, 4.97; N, 3.06; found C, 47.07; H, 4.85; N, 2.98%. IR (KBr)/cm⁻¹: 3445 (br), 2960 (s), 1960 (w), 1643 (s), 1599 (s), 1559 (s), 1492 (m), 1450 (s), 1400 (vs), 1322 (s), 1300 (s), 1175 (m), 1135 (m), 1085 (s), 1027 (s), 909 (m), 823 (m), 721 (s), 690 (m), 678 (s), 632 (w), 589 (m), 538 (mw).

Magnetic Measurements. The magnetic susceptibility measurements were carried out using a Quantum Design SQUID magnetometer MPMS-XL. This magnetometer works between 1.8 and 300 K for dc applied fields ranging from -7 to 7 T. Measurements were carried out on finely ground polycrystalline samples. AC susceptibility measurements were measured with an oscillating ac field of 3 Oe and ac frequencies ranging from 1 to 1500 Hz. The magnetic data were corrected for the sample holder.

X-ray Crystallography. Data were collected on Rigaku Oxford Diffraction Supernova E (2) or Stoe IPDS (3) diffractometer using graphite-monochromated Mo-Ka radiation, and were corrected for absorption. Structures were solved using dual-space direct methods (SHELXTL), followed by full-matrix least-squares refinement against F² (all data) using SHELXL-2014. Anisotropic refinement was used for all ordered non-hydrogen atoms; disorder within the nbdea ligands was modelled using partial occupancy isotropic carbon atoms with geometrical similarity restraints. O-H hydrogen atoms in 2 were refined, whereas all other H-atoms were placed in calculated positions. The crystallographic and structure refinement data for all compounds are summarised in Table 1. Crystallographic data (excluding structure factors) for the fully refined structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1505110 and 1505111. Copies of the data can be obtained from https://summary.ccdc.cam.ac.uk/structure-summary-form

Results and discussion

Synthesis and Crystal Structures. The reaction of Ln(NO3)3·6H2O (Ln = Er, Ho) and [M2O(O2CC6H4)2(H2O)2](O2CC6H4) (M = Fe, Ga) with nbdeaH2 in MeCN at room temperature produced the compounds [M2+Ln3+(μ2-OH)·(nbdea)2(C6H4COO)2]·MeCN (M = Fe, Ln = Er (1); M = Ga, Ln = Er (2); M = Fe, Ln = Ho (3); M = Ga, Ln = Ho (4)). The structures of compound 2 and 3 were determined by single-crystal X-ray diffraction studies; both compounds crystallize in the monoclinic space group P2₁/c with Z = 4, with the cluster molecules occupying general positions. Comparison with the unit cells of 1 and 4 showed that all four of the compounds reported here crystallised isotypically to each other and to the previously reported Fe3Dy2, Fe2Y2 and Ga2Dy2 analogues.35,36

![Fig. 1](image-url) The [FeHoH2(μ2-OH)·(nbdea)2(C6H4COO)2] cluster in 3. Organic H-atoms and lattice MeCN omitted for clarity.

<table>
<thead>
<tr>
<th>Formula</th>
<th>C50H43N2O29Fe</th>
<th>C50H43N2O29Ga</th>
<th>C50H43N2O29FeHo</th>
<th>C50H43N2O29GaHo</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.</td>
<td>2238.81</td>
<td>2294.25</td>
<td>2234.11</td>
<td>2289.66</td>
</tr>
<tr>
<td>Crystall system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
</tr>
<tr>
<td>T (K)</td>
<td>298</td>
<td>150(2)</td>
<td>243(2)</td>
<td>298</td>
</tr>
<tr>
<td>α (Å)</td>
<td>15.22</td>
<td>15.078(4)</td>
<td>15.221(4)</td>
<td>15.23</td>
</tr>
<tr>
<td>β (Å)</td>
<td>29.03</td>
<td>29.133(6)</td>
<td>29.282(5)</td>
<td>29.31</td>
</tr>
<tr>
<td>γ (Å)</td>
<td>22.35</td>
<td>22.2449(7)</td>
<td>22.420(5)</td>
<td>22.49</td>
</tr>
<tr>
<td>a (‘)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>b (‘)</td>
<td>108.15</td>
<td>106.817(3)</td>
<td>108.003(3)</td>
<td>107.39</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>9383</td>
<td>9353.8(5)</td>
<td>9504(4)</td>
<td>9581</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1 Crystallographic and structure refinement data for 1-4.
The structure of the Fe₃Ho₂ compound 3 is shown in Fig. 1. The hexagonal core is made up of a central Ho₂(μ₂-OH)₂ core, which is flanked by two Fe₂(nbdela)₂ moieties. Within each of the latter, each Fe³⁺ centre is chelated by a doubly-deprotonated (nbdela)²⁻ ligand, with one oxygen from each of these ligands bridging to the other Fe³⁺ in the dinuclear unit. One of these two bridging oxygens also coordinates to a Ho³⁺ forming a μ₂-alkoxo bridge. The remaining deprotonated oxygen from each diethanolamine ligand then bridges between its respective Fe³⁺ and a Ho³⁺, completing the core structure. Peripheral ligation is then provided by four syn,syn-bridgingand four undentate benzoates. Overall the molecule has idealised C₂ symmetry (in Figure 1 the twofold axis is normal to the plane of the paper and midway between the two Ho centres) with both Fe₂ units displaced to the same side of the Ho₂(μ₂-OH)₂ plane. Both Ho³⁺ ions are eight-coordinated with square antiprismatic geometry, while all the Fe³⁺ ions are hexacoordinate with distorted octahedral geometries.

Magnetic Properties. The dc magnetic susceptibilities of 1-4 were measured under an applied magnetic field of 1000 Oe over the temperature range 1.8 - 300 K. As shown in Fig. 2a, the χT value for compound 1 at 300 K is 36.2 cm³ K mol⁻¹, lower than the expected value of 40.5 cm³ K mol⁻¹ for four Fe³⁺ (S = 5/2, g = 2) and two Er³⁺ (S = 3/2, L = 6, ²I₃/₂, g = 6/5) non-interacting ions. On lowering the temperature, the χT value decreases continuously, reaching 19.2 cm³ K mol⁻¹ at 5 K. This decrease results from a combination of thermal depopulation of excited Mₗ sub-levels of the Er³⁺ cations and antiferromagnetic Fe³⁺-Fe³⁺ interactions, with Jₘₗₗ found to be -7 cm⁻¹ in the isostructural Fe₃⁻Er₂Y₂ analogue 5³⁵. Below 5 K, χT then increases slightly to reach 20.1 cm³ K mol⁻¹ at 2 K, with this upturn due to the presence of weak ferromagnetic interactions, either Er³⁺-Er³⁺ and/or Fe³⁺-Er³⁺, in 1. Comparison of the data for 1 with those for 2 and 5 now enable us to identify the source of these ferromagnetic interactions.

For compound 2, containing diamagnetic Ga³⁺ ions in place of Fe³⁺, the χT value of 23.2 cm³ K mol⁻¹ at 300 K is in good agreement with the expected value of 23.0 cm³ K mol⁻¹ for two isolated Er³⁺ (S = 3/2, L = 6, ²I₃/₂, g = 6/5) ions. On lowering temperature from 300 K to 100 K, the χT product for 2 remains almost constant, and then drops slightly and steadily to 19.4 cm³ K mol⁻¹ at 12 K, followed by an increase to reach 21.1 cm³ K mol⁻¹ at 2 K (Fig. 2a). Figure 2a also shows the corresponding curve for the Fe₂Y₂ analogue 5³⁵ together with a plot of the sum of the curves for 2 and 5 (Ga₃Er₂ + Fe₂Y₂), with an enlargement of the 2-50 K regions of the Fe₂Er₂ and (Ga₃Er₂ + Fe₂Y₂) curves shown in Figure 3.

Table: Magnetic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>χT (all data)</td>
<td>1.037</td>
<td>0.953</td>
</tr>
<tr>
<td>Largest peak/hole</td>
<td>+0.97 /</td>
<td>+1.27 /</td>
</tr>
<tr>
<td>(e/A²)</td>
<td>-0.99</td>
<td>-1.51</td>
</tr>
<tr>
<td>CCDC</td>
<td>1505110</td>
<td>1505111</td>
</tr>
</tbody>
</table>

Fig. 2 (above) Temperature dependence of the χT product for compounds 1, 2 and 5 with a plot of the sum of the χT values for 2 and 5; (below) the corresponding plots for 3, 4 and 5 with the plot of the sum of the χT values for 4 and 5. (Data for 5 from Ref. 35).

Fig. 3 (left) χT -vs- T plot below 50 K for 1 (Fe₂Er₂) compared with a plot of the sum of the χT values for 2 (Ga₃Er₂) and 5 (Fe₂Y₂); (right) χT -vs- T plot below 50 K for the previously reported 6 (Fe₄Dy₂) compared with a plot of the sum of the χT values for 7.
The increase of the χT product for 2 at low temperature indicates that the magnetic interaction between the two central ErIII ions is ferromagnetic, since these are the only magnetic ions in the molecule. Furthermore, the FeII-ErIII exchange interactions in 1 can be estimated by comparing the temperature dependence of the sum of the χT values for Ga$_4$Er$_2$ (2) and Fe$_4$Y$_2$ (5) (which between them contain the contributions from the ErIII-ErIII and FeII-FeII interactions together with the thermal depopulation of ErIII M_I sub-levels) with that of χT for Fe$_2$Er$_2$ (1) (which contains all these contributions, but additionally the FeII-ErIII interactions). As can be seen in Figures 2 and 3, the χT vs T curves for 1 and for (2 + 5) are very similar, with the non-superposition resulting from only a slight scaling issue. Importantly, both curves show essentially identical upturns at temperatures below 10 K, indicating that the FeII-ErIII interactions are here negligible or very weak antiferromagnetic.

The χT value for compound 3 at 300 K is 41.8 cm$^{-3}$ K mol$^{-1}$, which is lower than the value of 45.6 cm$^{-3}$ K mol$^{-1}$ expected for isolated four FeIII ($S = 5/2$, $g = 2$) and two HoIII ($S = 2$, $L = 6$, $g = 5/2$) spin centers. For 4, the χT product of 27.2 cm$^{-3}$ K mol$^{-1}$ is in relatively good agreement with the expected value of 28.1 cm$^{-3}$ K mol$^{-1}$ for two magnetically uncoupled HoIII ($S = 2$, $L = 6$, $g = 5/2$) ions. The χT product for both 3 and 4 decrease steadily with decreasing temperature down to 1.8 K (Fig. 3). The curves for Fe$_4$Ho$_2$ (3) and for (Ga$_4$Ho$_2$ (4) + Fe$_4$Y$_2$ (5)) (Figure 2) are almost exactly superposed. Both curves show the same almost linear decrease below 30 K, with neither upturn nor downturn at the lowest temperatures. It can be concluded that for the HoIII compounds, the HoIII-HoIII and FeII-HoIII interactions are all negligible.

Our earlier data for the Ga$_4$Dy$_2$ (636) and Fe$_4$Dy$_2$ (735) analogues can be used to construct a similar pair of χT-v. T curves (Figure 3) for an instructive visual comparison to those for ErIII. The curves for 6 and (5 + 6) show a steepening of the decrease in χT below about 8 K, which was interpreted as the effect of antiferromagnetic DyIII-DyIII interactions superimposed on the thermal depopulation of DyIII M_I sub-levels29. The curve for Fe$_4$Dy$_2$ (7), by contrast shows a significant upturn below 10 K, which is significantly larger than those seen for the ErIII analogues. Such an upturn indicates that the FeII-DyIII interactions in 7 have forced the two DyIII spins into a coparallel ferromagnetic arrangement. Note that this does not necessarily imply that these interactions are themselves ferromagnetic. If one only considers the Fe-Dy interactions within the central Fe$_2$Dy$_2$ butterfly, then either ferro- or antiferromagnetic Fe-Dy interactions would force the Dy spins coparallel, provided they were all similar and significantly stronger than the Dy-Dy.

The field dependence of magnetization at low temperature for compounds 1-4 is shown in Fig. S1 and S2. The lack of saturation even up to 70 kOe suggests the thermally and/or field-induced population of low lying excited states, but also the presence of significant magnetic anisotropy in these systems. In order to investigate the dynamics of magnetization, ac magnetic susceptibility measurements were performed for all four compounds. No ac signals were observed for either of the Ho analogues 3 and 4. For Fe$_4$Er$_2$ (1) compound, very weak out-of-phase ac signals were shown in zero dc field. However, under a dc field of 500 Oe, strong frequency-dependent in-phase and out-of-phase signals with well-defined peaks were detected (Fig. 4), indicating slow relaxation of magnetization and the suppression of quantum tunneling of magnetization (QTM) by applying a small external dc field. Fitting the data by an Arrhenius law results in an energy barrier $U_{eff} = 12.8$ K and relaxation time $\tau_0 = 4.6 \times 10^{-7}$ s (Fig. S3). By comparison, for the Fe$_4$Dy$_2$ analogue, clear peaks were shown in frequency-dependent out-of-phase plots under zero dc field, no quantum tunneling regime was observed, and U_{eff} and τ_0 were 21.4 K and 2.7 $\times 10^4$ s, respectively35. The difference in the dynamics of magnetization for both compounds should not only result from the coordination environment of the LnIII ions, but also from the interactions between the LnIII ions and the paramagnetic FeII ions. Firstly, an approximately square antiprismic configuration is preferable to maximize the anisotropy for the oblate DyIII ions, rather than for the prolate ErIII ions. Furthermore, weak 3d-4f interactions lead to the trigger of the QTM and diminishing the energy barrier, while strong 3d-4f exchange couplings suppress the QTM under zero dc field and slow down the relaxation of magnetization$^{18-21}$.

The Cole-Cole plots for 1 under a 500 Oe dc field can be fitted based on a generalized Debye function (Fig. S4). The value of α parameter varies from 0.026 (at 2.5 K) to 0.25 (at 1.8 K), suggesting that the distribution of the relaxation time becomes larger on lowering the temperature. The large α value might result from the QTM at very low temperature.

Compound 2, with diamagnetic GaIII ions in place of the FeIII ions in 1, displayed temperature-dependent in-phase and out-of-phase ac signals under zero dc field, but no maxima were observed in the χ'' vs. T plots (Fig. 5), suggesting the presence of QTM or multi-relaxation processes in this system. However, by applying a small dc field of 750 Oe, clear maxima were detected in both χ'' vs T and χ'' vs. ω plots (Fig. 6 and 7). Linear Arrhenius fitting of the frequency-dependent ac data gives an estimated energy barrier of $U_{eff} = 53.5$ K and the relaxation time $\tau_0 = 8.6 \times 10^{-6}$ s (Fig. S5). By replacing the paramagnetic FeIII ions with the diamagnetic GaIII ions, the energy barrier U_{eff}
Fig. 4 Frequency dependence of the in-phase (χ') (top) and out-of-phase (χ'') (bottom) ac susceptibility components at different temperatures in a dc field of 500 Oe for 1.

Fig. 5 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at different frequencies in zero dc field for 2.

Fig. 6 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at different frequencies in a dc field of 750 Oe for 2.
increases from 12.8 K (for 1) to 53.5 K (for 2), confirming that the weak 3d-4f interaction enhances the QTM and reduces the energy barrier. The Cole–Cole plots for 2 under 750 Oe field (Fig. S6) show symmetric semicircles and can be fitted to a generalized Debye function with $\alpha = 0.058$ (at 6.2 K) - 0.22 (at 2.0 K). The relatively large α values within the low temperature regime indicate a wide distribution of relaxation time due to the incompletely quenched QTM.

Conclusions

We have reported the synthesis, structures and magnetic properties of four isostructural hexanuclear MIInLnm coordination clusters, [M$_6$Er$_2$((μ$_3$-OH)$_2$(nbdea)$_2$(C_3H_5COO)$_3$)MeCN ($M =$ Fe (1), Ga (2)) and [M$_6$Ho$_2$((μ$_3$-OH)$_2$(nbdea)$_2$(C_3H_5COO)$_3$)MeCN ($M =$ Fe (3), Ga (4))]. Upon systematic dc magnetic susceptibility studies on all four compounds and the recently reported isomorphous Fe$_2$Y$_3$ compound 5, we found that the ErIII-FeIII interaction is ferromagnetic and the FeIII-ErIII interactions are weak antiferromagnetic within Fe$_2$Er$_2$ compound 1, while the HoIII-HoIII interaction is antiferromagnetic and the FeIII-HoIII interactions are negligible in Fe$_2$Ho$_2$ compound 3. The magnetic susceptibility studies reveal that both ErIII-based compounds 1 and 2 exhibit SMM behavior. By replacing the FeIII ions with diamagnetic GaIII ions, the energy barrier increases from 12.8 K (for 1) to 53.5 K (for 2), indicating that the weak FeIII-ErIII interactions enhance the QTM, leading to a lower energy barrier.

Acknowledgements

We acknowledge the Karlsruhe Institute of Technology for financial support.

Notes and references
