Planck 2015 results. XVII. Constraints on primordial non-Gaussianity

Lewis, A, Munshi, D and The Planck Collaboration, et al. (2016) Planck 2015 results. XVII. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 594 (A17). ISSN 0004-6361

[img] PDF - Published Version
Download (16MB)


The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone fNL^local=2.5+\-5.7, fNL^equil=-16+\-70 and fNL^ortho=-34+\-33(68%CL). Combining temperature and polarization data we obtain fNL^local=0.8+\-5.0, fNL^equil=-4+\-43 and fNL^ortho=-26+\-21 (68%CL). The results are based on cross-validation of these estimators on simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with Minkowski functionals based measurements. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond fNL estimates, we present model-independent reconstructions of the CMB bispectrum and derive constraints on early universe scenarios that generate NG, including general single-field and axion inflation, initial state modifications, parity-violating tensor bispectra, and directionally dependent vector models. We also present a wide survey of scale-dependent oscillatory bispectra, and we look for isocurvature NG. Our constraint on the local primordial trispectrum amplitude is gNL^local=(-9.0+\-7.7)x10^4 (68%CL), and we perform an analysis of additional trispectrum shapes. The global picture is one of consistency with the premises of the LambdaCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.[abridged]

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Research Centres and Groups: Astronomy Centre
Subjects: Q Science > QB Astronomy
Depositing User: Richard Chambers
Date Deposited: 12 Jan 2017 15:47
Last Modified: 26 Jan 2018 12:09

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
Precision cosmological parameters : CosmoParsG1365EUROPEAN UNION616170 ERC-2013-CoG
Astrophysics and Cosmology - Sussex Consolidated GrantG1291STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCILST/L000652/1