A role for introspection in AI research

Freed, Samuel (2017) A role for introspection in AI research. Doctoral thesis (PhD), University of Sussex.

[img] PDF - Published Version
Download (4MB)

Abstract

The main thesis is that introspection is recommended for the development of anthropic AI.

Human-like AI, distinct from rational AI, would suit robots for care for the elderly and for other tasks that require interaction with naïve humans. “Anthropic AI” is a sub-type of human-like AI, aiming for the pre-cultured, universal intelligence that is available to healthy humans regardless of time and civilisation. This is contrasted with western, modern, well-trained and adult intelligence that is often the focus of AI. Anthropic AI would pick up local cultures and habits, ignoring optimality. Introspection is recommended for the AI developer, as a source of ideas for designing an artificial mind, in the context of technology rather than science. Existing notions of introspection are analysed, and the aspiration for “clean” or “good” introspection is exposed as a mirage. Nonetheless, introspection is shown to be a legitimate source of ideas for AI using considerations of the contexts of discovery vs. justification. Moreover, introspection is shown to be a positively plausible basis for ideas for AI since if a teacher uses introspection to extract mental skills from themselves to transmit them to a student, an AI developer can also use introspection to uncover the human skills that they want to transfer to a computer. Methods and pitfalls of this approach are detailed, including the common error of polluting one's introspection with highly-educated notions such as mathematical methods.

Examples are coded and run, showing promising learning behaviour. This is interpreted as a compromise between Classic AI and Dreyfus's tradition. So far AI practitioners have largely ignored the subjective, while the Phenomenologists have not written code – this thesis bridges that gap. One of the examples is shown to have Gadamerian characteristics, as recommended by (Winograd & Flores, 1986). This serves also as a response to Dreyfus's more recent publications critiquing AI (Dreyfus, 2007, 2012).

Item Type: Thesis (Doctoral)
Schools and Departments: School of Engineering and Informatics > Informatics
Subjects: Q Science > QA Mathematics > QA0075 Electronic computers. Computer science
Depositing User: Library Cataloguing
Date Deposited: 12 Jan 2017 11:21
Last Modified: 12 Jan 2017 11:21
URI: http://sro.sussex.ac.uk/id/eprint/66141

View download statistics for this item

📧 Request an update