Experiments in climate governance – a systematic review of research on energy and built environment transitions

Article (Accepted Version)

Kivimaa, Paula, Hildén, Mikael, Huitema, Dave, Jordan, Andrew and Newig, Jens (2017) Experiments in climate governance – a systematic review of research on energy and built environment transitions. Journal of Cleaner Production. ISSN 0959-6526

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/66058/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Experiments in climate governance – a systematic review of research on energy and built environment transitions

Accepted for publication in Journal of Cleaner Production, 5 January 2017

Authors: Paula Kivimaaab, Mikael Hildénb, Dave Huitemac, Andrew Jordana, Jens Newigf

Abstract

Experimentation has been proposed as a key way in which governance drives sustainability transitions, notably by creating space for innovative solutions to emerge. In seeking to bring greater coherence to the literatures on climate and sustainability governance experiments, this article reports on a systematic review of articles published between 2009 and 2015. Based on these results a new definition and typology of climate governance experiments is suggested. The typology distinguishes between the various purposes experiments can have, including niche creation, market creation, spatial development, and societal problem solving. It deepens the understanding of the diversity in experimenting by highlighting the salient features of different types of governance experiments. It can therefore guide future research to generate more cumulative research findings contributing to a better understanding of the role and outcomes of experiments in societal transitions. The findings also suggest that real transitions towards low-carbon and climate-resilient societies will require a systematic deliberate combination of different types of experiments.

Keywords
Governance experiments, experimentation, transitions, climate policy, climate governance, governance innovation
1. Introduction

Experimental approaches to governance have recently received increasing attention in the academic literature. Experimentation can challenge the status quo and enable the exploration of governance innovations, technologies and services in a temporary space (Sanderson, 2002; Berkhout et al., 2010; Heilmann, 2008). In the literature on sustainability transitions, experimentation is a key theme, with experiments often seen as a way of establishing niches, i.e. fringe spaces for emerging technologies or alternatives to current methods of governance (e.g. Schot and Geels, 2008; Berkhout et al., 2010; Frantzeskaki et al., 2012).

Experiments have also received political attention. One example is the Finnish Government Programme of 2015 that aspires to create a ‘culture of experimentation’ to strengthen policy development with extensive trials and several smaller experiments, systematic experimentation and a legal basis to facilitate the arrangement of experiments (Government Programme, 2015). Another example is the current UK Cabinet Office which has organised an open “governance lab”. Previous UK governments have been keen on pilot projects and seen them as a way to engage in evidence based-policy making. Also urban living labs emphasising an experimental approach to governing cities (Voytenko et al., 2016) are increasingly popular. More generally, experiments have been advocated as a way to enhance the evidence basis underpinning policy interventions (e.g. Sanderson, 2002).

A particularly interesting context for experiments is climate governance. Experimentation is claimed to be better suited to address the multidimensional and complex nature of climate change than more traditional modes of governance (e.g. Castán Broto and Bulkeley, 2013; Bulkeley et al., 2014a). Literatures on urban experimentation (Bulkeley et al., 2014a) and polycentric governance (Jordan et al., 2015) acknowledge the restricted ability of national and transnational governance structures to address global problems, even post the Paris Climate Agreement. There has also been an increasing upsurge of experimental actions by cities, regions, businesses and civil society organisations (Chan et al., 2015) that can be subsumed under the scope of climate governance experimentation.

The concept of experiments is used in very different ways by academics and policy makers. To begin with, there is much variety in the understandings of what constitutes an experiment (particularly in governance) and what types of experiments exist. Some academic authors tend to emphasise (only) novelty when they use the term (Hoffman, 2011), whereas others suggest that it only applies when a test is performed (McFadgen and Huitema, in progress). Tassey (2014) sees experiments as offering some flexibility and the opportunity to test novel policy options on a limited scale and that the interventions are at least to some extent reversible. In turn, Sabel and Zeitlin (2012: 1) emphasise the repetitive nature of experimenting and define experimental governance as “a recursive process of provisional goal-setting and revision based on learning from the comparison of alternative approaches to advancing them in different contexts”.

Despite the centrality of experiments, De Bruijne et al. (2010, p. 276) have argued that the literature on sustainability transitions is “vague and ambiguous with regard to how experi-
ments should be set up and managed in practice to contribute to transitions”. This article argues that the inconsistent conceptualisation of experiments is inhibiting cumulative understanding across case studies. An additional problem is that normative values (what experiments should do) and positive analyses (of what they actually do) are often subtly interwoven in the writings on experimentation. Furthermore, Bos and Brown (2012) have stated that the transitions literature has paid disproportionate attention to technical experimentation, with a lacking focus on the dynamics of how governance experimentation unfolds. Kern and Howlett (2009) also point out that empirical studies of transition management have tended to focus on technically oriented experiments coupled with conservative funding criteria.

This article sets out to bring some order to the field by systematically exploring how the concept of experiments is used in the literature studied for this review. In this it also contributes to a call for more research on the outcomes of experiments (Bulkeley et al. 2014b on urban experiments; Verbong et al. 2010 on Indian biogas experiments, Nair and Howlett 2014 on policy experiments in the water sector). It does so by reviewing experiments that were either deliberately conducted as governance experiments (e.g., trials with new measures, institutions or principles in the form of policy experiments in public or private governance) or as research experiments with the aim to inform governance. The academic literature included in the systematic review is scrutinised as to what contexts experiments have been undertaken in, and what outputs and outcomes they are reported to have generated.

Throughout, the aim is to learn from previous, in particular empirical, research on experiments with a view to advance the study of this diverse phenomenon. The discussion is based on a systematic review (Petticrew and Roberts, 2006) of experiments reported in published peer-reviewed journal articles, as the authors were not aware of previous systematic reviews on the topic during the time of the study. One of the aims is to derive a typology of experiments. To this end, specific questions were formulated:

- What is the nature and focus of experiments that link sustainability transitions to climate governance?
- What kind of outputs and outcomes do these experiments generate? And what is their specific role in low carbon or climate resilience transitions?

Particular attention is devoted to identifying governance experiments that may contribute to transitions, as this angle is largely absent from the transition literature (e.g. Bos et al., 2013). Heilmann (2008, p.2) stresses that governance experimentation refers to interventions done in a deliberate way, allowing for systematic learning. The systematic review informing this article therefore took into account both systematic experiments that variegate with governance measures, institutions, or principles (based on Kooiman, 2003), and experiments that potentially challenge or question existing governance structures and practices.

Section 2 begins by discussing the literature on experiments. The research approach and the case survey method are explained in Section 3, and Section 4 presents the findings of the systematic review. Section 5 discusses the findings, and Section 6 provides conclusions.
2. Governance innovation and transition experiments: background and theory

This article focuses on experiments in climate governance with respect to sustainability transitions. Following Kooiman (1993) governance is understood here as “the patterns that emerge from the governing activities of social, political and administrative actors” (Kooiman, 1993: 2). (See also Kohler-Koch, 1999: 14). Lange et al. 2014 stress that governance includes articulations of policy, politics and polity. Policy has been defined as “a relatively stable, purposive course of action followed by an actor or a set of actors dealing with a problem or a matter of concern” (Anderson, 2006: p. 6). Because of the close links between governance and policy, many governance experiments are often – but not always - also policy experiments. Experiments that successfully challenge existing policies may result in policy innovations, when inventions in, for example, policy design or implementation are taken into use.

Experiments can contribute in important ways to governance. They can either constitute (de-liberate) interventions that aim at solving problems or developing new practices (as in pilots or demonstration projects), or they are conducted in order to learn about the effects of (limited) interventions for future (more large-scale) interventions. Their potential strength lies in the opportunity to tinker with new approaches, practices or institutions on a small scale and/or temporarily. They can circumvent or challenge dominant values and bring in new actors. Knowledge about how something (e.g. a technology, a service, a policy, etc.) ‘works in the real world’ is typically expected to be an output. This means that learning is an essential justification for experiments (cf. Kemp et al., 2007; Brown and Vergragt, 2008; Tassey, 2014). Experiments may also, for example, provide market impact data (Tassey, 2014), test and introduce a new technology or service (Brown and Vergragt, 2008), or identify governance problems and create cooperative networks or visions (Kemp et al., 2007). However, often experiments are also expected to create more long-term outcomes, for example, initiate a process of broader socio-technical change in markets or practices (e.g. Brown & Vergragt, 2008; Berkhout et al., 2010).

Linking experimentation to governance innovation is important, as governance choices (often embodied in public and private policies) are expected to affect behaviour, practices, investments and social and technological innovation to a large degree. Although they may not in the beginning impose significant changes in institutions, experiments – being more flexible and adaptive – do offer a way of dealing with uncertainty and variability, and, at the outset, have the potential to avoid the limiting influence of technological and institutional lock-ins that inhibit transitions.

Governance (and policy) innovation can, in line with Jordan and Huitema (2014) and Upham et al., 2014), be depicted as a broad concept referring to novelty in both processes (ways to govern and create outputs and outcomes) and their outputs (new goals, strategies, policy designs and instruments). This means that (1) innovation as a process change may, for example, increase flexibility for governance and policy, encouraging more experiments, or (2) governance experiments can lead to or refine governance innovations as an output. These outputs can be new goals, new instruments, or new types of leverage mechanisms or implementing organisations (Jordan and Huitema, 2014; Upham et al., 2014). For example, a series of experiments prepared the ground for adopting the European emission trading scheme
To qualify as an innovation, a novel governance process, goal, instrument or implementing organisation, needs to be taken into use and be its ‘first application’ (Jordan and Huitema 2014) typically in a given sector or country (e.g. Black 2005). Broader socio-technical outcomes are the wider consequences of the policy outputs.

The sustainability transitions literature deals with how socio-technical systems can transform over time to become more environmentally sustainable through radical changes not only in technology but also in institutions, practices and culture surrounding the previously dominant technology (e.g. Markard et al., 2012). In the transitions literature, experiments have been defined as:

- “planned initiatives that embody a highly novel socio-technical configuration likely to lead to substantial (environmental) sustainability gains” and “represent small initiatives in which the earliest stages of a process of socio-technical learning takes place… [and] typically bring together new networks of actors with knowledge, capabilities and resources, cooperating in a process of learning” (Berkhout et al., 2010, p.262)

In the literature, experimentation plays an important role in two different settings: (1) Experimentation as part of (bottom up) niche innovation, and (2) experimentation specifically initiated at a regime-level, which is considered the stable part of the socio-technical system (Geels, 2005, 2011). However, the literature often leaves the actual impact of experimentation in transitions implicit.

In the multilevel perspective (MLP) on transitions (e.g. Geels, 2005, 2011), innovation is considered to occur in protected niches through pursuing and testing radical novelties in real-world experimental projects (e.g. Schot and Geels, 2008). Facilitating and guiding such niche innovations towards sustainability is the objective of strategic niche management (SNM; e.g. Hoogma et al., 2002), a conceptualisation frequently associated with MLP. In SNM, niche experiments are expected to serve as “a compass for guiding future regime transitions in sustainable directions” (Smith, 2006). Upham et al. (2014, p. 779) argue that while many (sectoral) policy innovations occur at the regime level, “the niche level can be depicted as consisting of small platforms for [climate policy innovation], with new technologies and solutions making new policies possible through demonstrating or testing policy inventions and innovation at small scales…”

Experiments initiated at a regime level connect to a literature dealing with transition management (TM). TM is a particular normatively oriented strand of the transitions literature that proposes a ‘tool kit’ for governing transition to achieve radical change towards more sustainable systems of production and consumption. It differs from SNM by highlighting the importance of visioning before engaging in experimenting, thus, making experimenting more coordinated than SNM that emphasises unguided experimenting and the evolutionary nature of experimentation in providing variation of options (e.g. Schot and Geels, 2008). In TM, transition experiments “may be initiated by the transition arena network as an outcome of the transition agenda… [and] focus (among other things) on new institutional arrangements that can enable new pathways or innovations benefiting sustainability.” (Frantzeskaki et al., 2012, p.31).
Thus, operational-level experiments are recommended to follow after transition arenas have identified problems and created a vision forward (cf. Kemp et al., 2007), key focus being delivering on sustainability aims, connecting actors, and producing social learning (Grin et al., 2010).

The in-built reflexivity of TM is expected to create space for experiments that facilitate the transition (cf. Voss et al., 2009), even if transition arenas as such do not (necessarily) have the formal powers of (mainstream) policy developers (e.g. Franzeskaki et al., 2012). Transition experiments are expected to create outcomes through three different mechanisms: “deepening (learning as much as possible from the transition experiment), broadening (repeating an experiment in an adjusted form in a different context) and scaling-up (embedding an experiment in the existing structures of the incumbent regime)” (Grin et al., 2010, p.146). The extent to which experiments have empirically proved successful in these respects has, however, not received much explicit attention in the literature (Bos et al., 2013; Porter et al. 2015).

3. Methodological Approach

Our systematic review targeted scholarly articles identified through Scopus.¹ To capture the most recent debate the search focused on studies published in the period 2009-2015 in social sciences and humanities. For replicability and ease of access, conference papers and book chapters were excluded from the analysis. Other exclusion criteria concerned randomised control trials, as the focus was on qualitative descriptions of real-world experiments. The caveat of such studies lacking rigorous experimental design is susceptibility to bias (Pet- ticrew and Roberts, 2006) but their advantage is in providing narratives with insights into diverse experimental settings that for practical or political reasons cannot be carried out as a rigorous experiments.

“Experiment”* (with * indicating truncation to cover all variants) was used as a key search word, i.e. all articles that did not refer to experiment(s) or experimenting explicitly were excluded.² The other search words used were selected to link to climate change policy and governance with particular attention paid to energy and built environment transitions by including terms such as “energy efficiency”, “low energy”, “energy saving”, “renewable energy”, “mobility”, “transport”, “adaptation” and “transition” (see Appendix 1). The caveat of this study is that we did not use specific search words containing, for example, “agriculture”, “food”, “waste” or “water”, although articles in these domains were not excluded from the study, if they came up in the searches using more general search words. While the number of hits was 174 in total, based on twelve different search word combinations, the content

¹ Scopus is the largest abstract and citation database of peer-reviewed literature. It contains publications by Elsevier, Springer, Wiley-Blackwell, Taylor & Francis, Sage, Emerald, Oxford University Press and several other publishers.

² While the authors acknowledge that terms such as ‘pilots’, could be used to describe a similar phenomenon as experiments, the purpose here was specifically to review research on what has been designated as experiments.
analysis of abstracts revealed that a large number of articles dealt with experiment as research design and not as an empirical topic of inquiry. Such articles were excluded from further analysis.

Through content analysis of abstracts, in total 25 scientific articles were identified that merited full-paper content analysis. Of these, 18 articles contained qualitative descriptions of 29 experiments that were scrutinised in the review. In addition, seven articles were included that either did not contain an actual experiment or that presented aggregated results of such a large number of cases that a detailed analysis was impossible. These articles were reviewed more generally in terms of how they defined experiments and what literature and sectors they referred to.

The core papers were then explored using case survey (Lucas, 1974) and systematic review (Petticrew and Roberts, 2006). The case survey method allowed a systematic and structured synthesis of ‘previous case-based research, drawing on the richness of the case material, on different researchers and research designs…’ (Newig and Fritsch, 2009: 2). The risk of bias in summarising uncontrolled studies was recognised (cf. Petticrew and Roberts, 2006) and therefore no statistical analysis was attempted. The analysis was structured following the standard components of policy evaluation (i.e. inputs, outputs, outcomes, target group, process) (Vedung, 1997). Throughout, the unit of analysis was the experiment rather than the scholarly article, meaning that an article describing several experiments provided several units for the analysis.

A qualitative analysis was carried out to provide answers to pre-set categories that both described the nature of the experiment and evaluated it according to a number of criteria aiming for a large spread of categories (Table 1). The categories were selected on the basis of the authors’ previous knowledge of experiments and socio-technical transitions as well as on the policy evaluation literature (e.g. Vedung, 1997). New categories were added inductively, when the analysis of the articles revealed missing but possibly important categories. The article used componential analysis in the case survey, i.e. a systematic search for attributes (components of meaning) associated with the experiments (Onwuegbuzie et al., 2012). To achieve this matrices describing the experiments were constructed to identify the differences among the subcomponents of the categories (Table 1).
Table 1. Analytical categories that were used to analyse the experiment cases

<table>
<thead>
<tr>
<th>Main categories</th>
<th>Subcomponents</th>
</tr>
</thead>
</table>
| 1. General categories providing background information | 1.1 Definition of experiment used
| | 1.2 Related theory/literature
| | 1.3 Engagement of author with the experiment process |
| 2. Empirical detail on the experiments | 2.1 Type of experiment (as described by the authors of the case study articles)
| | 2.2 Objectives of the experiment
| | 2.3 Climate objective / sustainability objective (yes or no)
| | 2.4 Sector and focus of experiment
| | 2.5 Geographical location and scale
| | 2.6 Duration of the experiment
| | 2.7 Actors leading the experiment |
| 3. Categories based on evaluation research (Vedung, 1997) | 3.1 Inputs to the experiment (e.g. financial and human resources)
| | 3.2 Process (how experiment unfolds)
| | 3.3 Target actors of the experiment
| | 3.4 Outputs/outcomes (realised)
| | 3.5 Evaluation(s) carried out |
| 4. Governance elements of the experiment | 5.1 Link to governance (how presented in the article)
| | 5.2 Local/city government involved / national government involved (yes or no) |
| 5. Transition elements of the experiment | 5.1 Upscaling or transfer potential
| | 5.2 Learning processes
| | 5.3 Incremental vs. systemic change
| | 5.4 Drivers and triggering activities for initiating the experiment
| | 5.5 Reversibility and decision points after the experiment
| | 5.6 Level and nature of risk taking (financial and political) |
| 6. Outcomes of the experiments | 6.1 Policy and institutional change / new market or market change / new business practices / changed consumer or community practices / new technology / built environment and infrastructural change / changed discourse (yes or no)
| | 6.2 Innovation type: technological / social innovation / governance (as process or policy output) (yes or no) |

Subsequently, typologies based on repeated instances were identified in each category. In addition, the broader set of papers that did not include empirical descriptions of experiments was reviewed to place the findings in a wider context. Investigator triangulation was used in that 2-3 people coded each article independently, and subsequently the first author merged the results. Differences in initial coding was treated as a reflection of uncertainty in the findings.

4. Results

The beginning of this section provides an overview of the experiments included in the systematic review, and responds to the first research question of the nature and focus of experiments. Sections 4.1 and 4.2 address the second question about the outputs and outcomes of experiments.
Out of the 25 reviewed articles, 19 made some connection to socio-technical transitions theories. Out of 29 experiments, 22 were connected to transitions, five engaging particularly with TM and seven referring to socio-technical or sustainability experiments in the context of SNM (Figure 1). The non-transition experiments contained three strategic spatial planning experiments, and four experiments focusing on urban development. Of the more generic articles Deitchman (2014) focused on policy experiments, whereas Stewart (2012) mentioned experiments as a complementary form of governance to traditional regulatory and fiscal measures.

In terms of empirical content, the sectors covered the built environment, energy, transport, water, and community development (Figure 2). Some climate relevant sectors, such as agriculture and food, were absent. While they were not specifically searched for, they were neither excluded from the scope of the study. The built environment related experiments ranged from stimulating new housing and construction (e.g. Holm et al., 2011) to energy efficiency retrofits (Bulkeley et al., 2014c). Many cases spanned the built environment and energy sectors, or were even broader. Eighteen case studies were based in Europe (Belgium, Denmark, Netherlands, the UK, Finland, and Slovenia), six in Asia (India), two in Australia, two in Africa (South Africa) and one in South America (Brazil). Local government involvement was present in all but two cases, while the national government was involved in ten. There was a great variety in the leading actors behind the experiment, ranging from the public sector (municipalities, regional administration, and environmental ministry) to researchers, companies, entrepreneurs and independent groups. The cases analysed are summarised in Appendix 2.

Technological innovation was a topic in 11 cases, of which 10 cases include also social innovation. In total, an element of social innovation was present in most (19) experiments. While there were many similarities between the experiments, including a predominantly local or regional focus and the inclusion of elements towards social change, the experiments still presented a very wide range of processes. Their aims ranged from technology piloting and new
market creation to creating sustainable visions and community engagement. In two cases, aims to experiment in low carbon were also connected to social housing objectives.

4.1. Outputs and outcomes of experiments

In evaluating the experiments the study focused on seven types of outputs and outcomes; listed in Table 2 in the order of frequency of appearance. Besides the experiments generating learning about the experimental intervention and what works, three documented outputs and outcomes strongly focused on elements of learning: changed discourse, policy and institutional change, and changed consumer or citizen practices. In addition, four other types are examples of different substantive outputs and outcomes: new technology, built environment and infrastructure change, new business practices and new markets or market change. The occurrence of a particular output or outcome was evaluated as it was described in the source article(s) and the method of investigator triangulation revealed that there was some uncertainty in whether a particular output or outcome had been achieved or not.

Reflecting the uncertainty described above, 20-27 of the reviewed experiments were described to have resulted in changed discourses or created new visions. A changed discourse is here understood as a general change in how issues are presented and debated. In this category, learning extended from the creation of visions within experiments (output) to more profound changes in thinking and understanding as an outcome. It is not possible to determine the disruptive force of the changed discourses as the studies tend to cover too short time periods.

13-18 experiments involved policy and institutional change, as mostly direct outputs from the experiments rather than more long-term proven outcomes. Yet, those experiments that resulted in policy and institutional change appear to have been able to affect the regime to some degree. Changed consumer or citizen practices were evident in 8 or 9 experiment descriptions.
Table 2: Types of change that the experiments generated (n=29)

<table>
<thead>
<tr>
<th>Type of change</th>
<th>No. of cases observed</th>
<th>No. of cases with uncertain outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed discourse</td>
<td>20</td>
<td>7</td>
<td>Outputs: Often described at the production of a new vision or the integration of previously detached discourses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: Changes in the shared visions, new narratives with a more positive tone, internalisation of new ways of thinking; improved cognitive understanding.</td>
</tr>
<tr>
<td>New technology</td>
<td>17</td>
<td>4</td>
<td>Outputs: Practical applications of new energy technologies, including PV, solar water heating, various other building heating systems, biogas and ceiling insulation; creation of new technological solutions for building energy efficient and passive houses and sustainable roofs; a bicycle taxi and a metering device. (The case studies did not extend to outcomes related to technology diffusion beyond the experiment phase)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: Wider replication of 'successful' experiments in new energy technologies.</td>
</tr>
<tr>
<td>Built environment or infrastructure change</td>
<td>15</td>
<td>4</td>
<td>Outputs: Temporary changes in land use planning with respect to energy efficient housing and town planning, station proximity to services, and water management. Building of low carbon infrastructure. Often operating at the district level as a test case.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: Insights into how wider changes can be achieved.</td>
</tr>
<tr>
<td>Policy and institutional change</td>
<td>13</td>
<td>5</td>
<td>Outputs: Introduction of new spatial and district planning practices for enhancing eco-efficient and energy-efficient construction, renovation, transport, and water management; regionalisation of previously local policymaking; using local, outside actors in municipal or regional policymaking (often using the transition management approach), and the development of the role of the public actors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: "a new political space" and "new governance rules and practices".</td>
</tr>
<tr>
<td>New business practices</td>
<td>12</td>
<td>7</td>
<td>Outputs: Introduction of novel business models for transport and renewable energy, in the latter case often combining product and service (maintenance).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: Changing business practices for farmers to maintain local environmental conditions; ESCO-promoted businesses based on alternative technologies and infrastructure networks; increase in new jobs as a result of the carbon neutral municipalities’ network activities.</td>
</tr>
<tr>
<td>New market or market change</td>
<td>8</td>
<td>7</td>
<td>Outcomes: Emergence of markets for energy efficient social housing; maintenance and development of solar PV and biomass extraction markets.</td>
</tr>
<tr>
<td>New consumer/citizen practices</td>
<td>8</td>
<td>1</td>
<td>Outputs: Citizen engagement in local communities as operators and providers of solutions and services; alternative communities diverting from mainstream.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcomes: altered energy (technology) consumption practices; energy saving as a way to reduce economic hardship.</td>
</tr>
</tbody>
</table>

A number of experiments had resulted in substantive changes in technology, built environment, or business in an environmentally (or climate) friendly direction. New technology, and changed built environment and infrastructure were observed in more than half of the experiments. They were also fairly unambiguous, as the proportion of uncertain observations was small. Changed business practices and market creation were also observed, but one third of the observations were uncertain, suggesting that the interpretation of outcomes is more difficult than of the (typically intended) technological outputs of experiments. Although new business models were associated with new technologies, it was often too early to tell, whether the business model would lead to market disruption.
Table 2 shows that a selected number of outcomes link to the ideas deepening (shifts in ways of thinking and practices and organising physical, economic and institutional structures), broadening (repeating experiments in different contexts and linking to other domains) and scaling up (embedding an experiment in established ways of thinking, doing and organising) (Grin et al., 2010), scaling up appearing as the least clear outcome. This does not, however, mean that they succeeded in disrupting the existing regime. The impact appears in many cases to be modest or incremental, questioning the role of experiments as a disruptive force.

While most experiments appeared to have supported the wider objectives they were expected to advance, some showed the opposite effect. Some of the ‘experiments’ presented a return to more traditional policy approaches (that at least the authors viewed as negative) or experienced sub-optimal solutions or non-sustainably operated technology over the course of time, particularly evident in the Indian bioenergy heating experiments that had been followed up during several years after initiation.

For many experiments, the academic analysis had occurred so soon after that no definite results on the transformative effects were provided. This suggests more broadly the need for further studies what would empirically revisit these experiments after some time has elapsed. The renewable energy system experiments in India were exceptional in covering long periods of time – even over a decade (Romjin et al., 2010). Such long-term studies are important to demonstrate the fragility and evolution of experiments – in the Indian case many were halted due to intra-village conflicts over biomass resources and ownership. However, these combinations of partial ‘success’ and ‘failures’ can be important for diffusion as the lessons learned can benefit future governance interventions carried out subsequently in other locations (Romjin et al., 2010). This demonstrates the importance of learning in relation to substantive outcomes and also puts demands on the reporting; it is important to identify stumbling blocks and areas of progress.

The Parkstad Limburg transition arena in 2001 (van Buuren and Loorbach, 2009) has also led to the application of the same approach elsewhere (mainly in the Netherlands and Belgium) in several reported cases during 2007-2013 (Loorbach and Rotmans, 2010; Nevens and Roorda, 2014; Wittmayer et al., 2014), which can be subsumed under ‘broadening’. The experiment to set up Carbon Neutral Municipalities Network in Finland (Heiskanen et al., 2015) has through good experiences resulted in the expansion of the network as well as an emulation of the model to a network of resource efficient municipalities. These experiments have been close to piloting or prototyping of an idea to develop practice. They have included substantial elements of action research and their ability to influence policies and wider regimes depends crucially on successful duplication and also use as iconic examples in policy development.

What becomes clear from the analysis is that rather than upscaling many of the described experiments make connections between different experiments or duplicate successful experiments (broadening) to achieve wider system transitions. This emerging network of local level experiments could enable system transition, fitting the MLP heuristic of regime change based on the emergence of a new “dominant design.” At this point the experiments cease
and turn into a new form of governance. However, ‘successful’ experiments in district-level land use planning to support more eco- and energy-efficient buildings (e.g. Holm et al., 2011) also create at least potential – if not yet realised outcomes – of systemic change based on scaling up of local planning practices through regulatory change and improved building technology with global upscaling potential.

4.2 Governance innovation in the experiments

Elements of governance innovation were detected in 12 cases. Following Upham et al. (2014), governance innovations were considered to be the first practical application, in a given country, sector or context, of either a novel process to address a concern related to mitigating or adapting to climate change or a new type of goal, strategy or an instrument (either public, private or public-private). Only Bos et al. (2013) and Bos and Brown (2014) dealt with governance innovation by explicit recognition, whereas the other case studies in the sample described governance innovations, albeit not using explicit terminology. This suggests that the role of experiments in the governance innovation for societal transitions needs to be explored further.

Innovative governance processes were in three cases associated with transition management and in two other cases linked to land use planning, including an explorative planning process for an ecological and energy efficient residential area (Holm et al., 2011) and a novel kind of collaborative process in identifying priorities and solutions for urban water planning (Bos and Brown, 2012). Innovative governance ‘instruments’ included a strategic spatial planning framework (Olesen and Richardson, 2012), eco- and energy requirements for new buildings within a defined district (Holm et al., 2011), a public-private energy service company ESCO and the London Plan (Bulkeley et al., 2014b), and a network of smaller municipalities as change laboratories for mitigating climate change (Heiskanen et al., 2010).

In the Transition Arena Parkstad Limburg the process innovation was based the idea that actors outside the regular administrative network could form a social vision steering the new master plan for the region (van Buuren and Loorbach, 2009). This vision also had the potential to be an innovative output. Another case of process innovation reported by van Buuren and Loorbach (2009) was a pilot project, “an experiment garden” that similarly to the transition arena approach had a core group operating outside the administrative network but with frequent contacts to the administration in drafting an environmental impact statement for the municipality and developing practical innovations. Both of these can be seen as governance experiments for (local) engagement and empowerment that do not necessarily challenge existing regimes but may generate new learning.

In Finland, the bringing together of small municipalities outside the main cities to act as “change laboratories” became a governance experiment for new solutions to climate change mitigation with co-benefits such as job creation (Heiskanen et al. 2015). This can be seen as an experiment for local engagement and empowerment within the existing regime, and an innovative way to connect local activities, support small municipalities in climate governance, and transfer lessons learned (broadening). It included process innovation through a new way
to coordinate local climate activities and innovative outcome in the form of a new kind of network of municipalities expanding to new contexts.

The development of urban energy in London (Bulkeley et al., 2014b), built on the active involvement of the Mayor and the city administration in aligning institutions, techniques and artefacts around low-carbon and decentralised energy provision (process innovation), resulting in specific experiments with novel solutions such as energy service companies aiming for energy saving and production using photovoltaics (innovative outcome). The governance experiment tested new ways to set transformative economic processes in motion and could potentially lead to greater change.

Experiments that try out new ways to motivate the application of sustainable energy solutions can be interesting as innovations in governance outputs (e.g. policy instruments). For example, Stenløse Syd District Planning with Eco-requirements in Denmark focused on one district, experimenting how a set of advanced eco- and energy-requirements for new buildings within district area planning could influence the building sector and the market. By becoming a showcase for ‘conventional families’ of the potential in normal but sustainable dwellings (Holm et al., 2011), it could disrupt housing and housing policies in the long run. The State of Sao Paolo in Brazil experimented with introducing solar heated water systems in social housing by new contractual terms for reference and procurement, resulting in market creation for and diffusion of new technology (Bulkeley et al. 2014c). Yet another approach was to focus heavily on empowering. Municipalities around Sydney, Australia, experimented with household-targeting series of workshops as a policy measure that led to a range of new skills for inhabitants as well as a modest new “political space” among the participating municipalities (McGuirk et al., 2015).

5. Discussion
This section briefly discusses the nature and focus of experiments (first research question), and addresses their outputs and outcomes as well as how experiments connect to low carbon and climate resilience transition (second question). It starts off by proposing a new typology on governance-related experiments connecting the range of types, scales and purposes of climate change or socially oriented experimentation.

5.1. From an overview of the review to a new typology of governance-related experiments

As shown above, the reviewed experiments cover a range of issues. Most attention has been given to renewable energy and energy efficiency improvements in housing. A few cases address adaptation, for example, through water management. The search for cases did not reveal any studies of experiments targeting the reduction of energy demand regionally or, for example, in transport. Moreover, experimentation in other pertinent areas, such as agriculture and food did not appear within the general search terms used. This may be due to agricultural policies being negotiated in detail with strong stakeholders and, thus, not amenable to experimentation (Valipour et al., 2015), although the sector in general demonstrates continued activity in terms of innovations in technology and ways of organising (Klerkx et al., 2010). Also lifestyle choices more broadly – beyond energy use and transport – were seldom subject to reported experimentation. The above indicate, first, a certain bias in the empirical
topics of transitions research and, second, a focus within climate governance on certain do-

mains, with principally technological solutions in energy production and transport, and often

ignoring less technological areas and solutions.

In the literature on sustainability transitions, experiments with a strong governance, and par-
ticularly policy, dimension have not been extensively reported (Bos et al. 2013), which is

confirmed by the systematic review reported here. Rather, the studies typically focus on

technology experiments, e.g. in renewable energy (e.g. Romijn et al., 2010), or mixed experi-

ments which combine technology, service and policy components, for instance in an urban

context (e.g. Castan Broto and Bulkeley, 2013). This resonates with the typology emerging

from this study, where (often technological) niche creation or market creation experiments

are visible. Further connections could be made between behavioural experiments and transi-
tions for which studies appear non-existent or at most loosely connected with the transitions

debate (see Knobloch and Mercure, in press, for a recent example).

Due to the scope of the articles, many associated with sustainability transitions, experiments

were often perceived as a way to reconfigure existing socio-cultural, technological, regulative

and institutional elements of socio-technical systems (e.g. Berkhout et al., 2010; Bulkeley et

al., 2013, 2014b; Sengers and Raven, 2014). Their aim was to provide proofs of concept and

initiate learning. The activity of the experiment itself often occurred in niche spaces protected

from the mainstream environment and its “selection pressure”. Many were climate govern-

ance experiments aiming to reduce greenhouse gas emissions or adapt to the effects of cli-

mate change, while some were broader in scope and focused on “real-life problems, new

ways of doing things, new ways of thinking, and new ways of relating to one another and to

the world” (Wittmayer et al., 2014).

Despite the shared interest in socio-technical reconfiguration, the studies gave different la-

bels to experiments and showed different understandings of what constitutes an experiment.

Thus, there was no commonly agreed terminology. Seventeen of the 25 papers reviewed did

not advance or employ a specific definition of experiments. In fact their understanding of ’an

experiment’ had to be inferred from the cases described. In order to understand their nature

it is, therefore, useful to go beyond the authors’ descriptions of the experiments. Taking the

different forms of experiments as a starting point, a new typology was developed (Table 3).

At one end of the spectrum, there are the experiments that aim to test a particular technol-
yogy or service and create a new innovation niche around it. These fit the standard conceptu-
alisation of transition studies and can therefore be labelled as “niche creation experiments”.
They are well defined and easily recognisable as separate experiments that have a limited

duration and specific outputs. At the other end of the spectrum, experiments are oriented to-
wards larger scale problem solving or change processes typically through joint vision crea-
tion. These “societal problem solving or change experiments” frequently involve an element

of empowering citizens and the local community to take more ownership, either through

shared arrangement with the administration or as an alternative to it, sometimes associated

with novel governance or institutional arrangements. In these, the distinction between out-

puts and outcomes is blurred. They can also be seen to be related to ‘backcasting experi-

ments’ (Davies and Doyle 2015) where concrete activities are initiated by scenario work.
Intermediate types of experiments have a strategic objective to stimulate new markets or change the market conditions to favour more sustainable technologies, such as more energy efficient buildings or renewable energy technologies. The “market creation experiments” involve attempts to change market conditions. In one case an experiment encouraged the creation of practical examples of new buildings through consumer engagement and the expansion of an existing eco-label into the building sector. In another case, the aim was merely to maximise the region’s economic benefit, while it was hoped to result in some sustainability outputs, yet none were reported in the article. The fourth category that was identified, based on the cases, comprises “spatial development experiments” that aim towards long-term spatial development with sustainability benefits. They resemble the societal problems solving experiments, but are distinct in their focus on the spatial aspects of development.

Table 3: A typology of experiments that were derived from the case study survey

<table>
<thead>
<tr>
<th>Type of experiment</th>
<th>Spatial scale</th>
<th>Setting</th>
<th>Sector focus</th>
<th>Reversibility</th>
<th>Key actors</th>
<th>Number of cases in the review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niche creation</td>
<td>Initially local rural/urban but with an aim to expand</td>
<td>Protected niche</td>
<td>One or two sectors</td>
<td>Easy</td>
<td>Local, individual innovators</td>
<td>9-10</td>
</tr>
<tr>
<td>Market creation</td>
<td>Regional, national or broader</td>
<td>Several niches or policy</td>
<td>One sector</td>
<td>Initially relatively easy, becoming difficult when size grows</td>
<td>Innovators, marketers, procurement specialists, policy-makers</td>
<td>5-6</td>
</tr>
<tr>
<td>Spatial development</td>
<td>Local or regional</td>
<td>Concrete use of space and land</td>
<td>Cross-sectoral</td>
<td>Difficult, but slow development provides opportunities for realignment</td>
<td>Local/regional policy makers and stakeholders</td>
<td>10-11</td>
</tr>
<tr>
<td>Societal problem solving and change</td>
<td>Local, regional or national</td>
<td>Policy level</td>
<td>Cross-sectoral</td>
<td>Context dependent</td>
<td>Policy makers, change agents and stakeholders</td>
<td>15</td>
</tr>
</tbody>
</table>

3 The “Swan label” has so far been mainly used for consumer goods and small appliances http://www.nordic-ecolabel.org/criteria/product-groups/?p=3 [visited Nov 10 2015]
The typology points to different governance strategies regarding experiments. For example, niche creation experiments often focus on outputs and a limited set of technologies, while market creation or societal problems solving experiments are outcome oriented and likely to be more open to the idea of technology neutrality (cf. Azar and Sanden, 2012). A proposition is made that this typology can be used in thinking about experiments in the context of climate governance as well as guide further research on experiments in a more informed way of the plurality of experimentation.

In addition to the typology, a definition of experiments can guide future work on climate governance experiments. Tassey’s (2014) definition of policy experimentation can be used as a basis to define also broader governance experiments as ‘deliberate field-trials of innovations that operate in a temporary space and scale, are reversible during the trial period, and are designed to challenge and disrupt status quo policies and contribute to [social] learning on how to advance decarbonisation and climate transitions’ (as opposed to ‘pure’ advocacy of a particular solution). The application of this definition can be guided by the proposed typology that clarifies how experiments inform and contribute to transitions.

5.2. Outcomes of experiments

It is somewhat paradoxical that experiments are assumed to be a key part of the transition management approach, while the analyses of empirical experiments and the criteria by which they are set up are still poorly defined and explored (cf. Porter et al., 2015). One reason is that TM is itself at an experimental stage, which was initiated in the Netherlands (Dietz et al., 2008; Kern and Howlett, 2009). That said, when experiments are such a key explanatory concept, transitions scholars should be much more specific about their nature, characteristics and, particularly, their expected outcomes.

As shown above, outcomes are particularly pertinent in discussing the role of experiments in transitions. Whereas the underlying intention of transition experiments is to contest the existing socio-technical configurations (Bulkeley et al., 2014b) that in previous research has been identified as key contributor to high-carbon path dependence (e.g. Unruh, 2000; Pierson, 2004) visible empirical examples of this have been rare in the covered experiments literature. Due to the limited timeframe adopted in many case studies, the connection between experiments and institutional change is often left underexplored. The fragility of experiments (Romijn et al. 2010) combined with the path dependent nature of institutions (Unruh, 2000; Pierson, 2004) suggests that experiments seldom lead to major change of governance. The interesting question, thus far underexplored in the literature, is how experiments can lead to more permanent institutional changes.

The systematic review of experiments shows that changed discourse has been the most common outcome (Table 2). This can refer to anything from profound changes that occur when problems and possible solutions are reframed (e.g. Bos et al., 2013) to, at times, purely rhetorical changes (as in the case described by Evans and Karvonen, 2014). When becoming something more than rhetoric disguise (only presented in one of the cases), this is a valuable outcome of experimentation. For example, Scrase and Ockwell (2010) have
found that transitions in low-carbon energy systems demand a reframing of energy policy problems and solutions. This reframing in turn can act as a key entry point for governance innovation or other types of regime-level change (Upham et al., 2014). Moreover, Berkhout et al. (2004) have argued that 'social aspirations that are becoming embedded in an institutional order typically first need to engage at the macro-level of the landscape of general opinion, legislation and so on, before they can become effective in seeding transition'.

What is crucial for transitions is how the experiments expand to challenge existing unsustainable, high-carbon regimes (policies) and how broadening and upscaling happens. This review suggests that deepening is much more common that broadening, upscaling being the rarest outcome. While experiments may be politically less difficult than overturning high-carbon regimes through broad political decisions or legislation, they will remain "just" experiments with limited impact if they do not lead to learning and fail to generate commitment for future action.

Brown and Vergragt’s (2008, p. 113) define three criteria for successful experiments as (1) a functioning, socially-embedded new configuration or technology or service, (2) the occurrence of higher order learning among the participants, and (3) a change in the interpretive frames or problem definitions of future users and the participants to the experiments.

Many of the reviewed experiments provided proof (output) through piloting or prototyping that the new products or services work and that they can in principle be employed on a larger scale (for example disabled mobility in Cape Town, taxi metering system in Bangkok, photovoltaics in London and low energy housing in Ljubljana). These represent success at the level of the experiment besides the shifts in thinking and practices of the actors taking part (contextual learning through broadening, following Grin et al., 2010). Finding clear evidence of higher order learning from a particular set of experiments and transforming regimes is much harder. Some indications can be obtained, if the niches that the experiments reside in have a likelihood of continued existence, even after the direct support for the experiment has ended. However, this does not mean that the broader strategic goal of low-carbon or sustainability transition would have become any closer.

It has been claimed that the critical process is the (rapid) broadening or scaling up of the experiment, resulting in a new emerging dominant (technological, social, institutional) design challenging existing regimes and, as Grin et al. (2010) argue, a new constellation of culture, practices and structure gradually attaining higher influence and stability. Only weak signs of broadening were detected in most of the reviewed experiments and the transition arenas were mostly activities driven by dedicated researchers rather than activities rapidly adopted by all planners or community developers. There is, thus, a clear need to develop a tradition of critical evaluation of experiments. Without it there is a risk that experiments become a political Potemkin village that hides the need to change policies for real transitions.

5.3. Future research avenues

The pool of the reviewed experiments represent a range between niche and regime levels. However, there is generally a lack of information on the inputs, processes and configurations
that climate change experiments entail, which makes it difficult to connect them to the wider literature on policy experiments (e.g. Heilmann, 2002). Therefore, there is a need for more empirical accounts that examine governance and policy experiments from a transition perspective; how the experiments link to more long-term outcomes, and what is needed beyond and after the experiments.

To generate greater insights on climate governance, fruitful areas of future research include: (1) the successes and shortcomings of climate governance experiments with reference to the articulations of policy, politics and polity – where is the inertia that experiments have to overcome in order to become ‘contagious’? (2) the exploration of ‘accidental experiments’ or ‘quasi-experiments’ in governance and policy such as the differences in city level climate policy as well as the conditions under which these experimental activities emerge; and (3) long term aggregate evaluations of experiments - what happens after the experiment and how can societies reap the benefits of an ‘experimental society’ for sustainability transitions.

6. Conclusions

To conclude, this study finds that there is much diversity in the way that the term ‘experiment’ is used. This article seeks to portray a more coherent view of governance experiments in the context of climate change, whilst recognising the diversity of purposes of experimentation, and the outputs and outcomes they generate. The four identified categories (or purposes) of experiments – niche creation, market creation, societal problem solving and spatial planning – together with a new definition, can be used to guide academic enquiries and inform policy debates and their applicability should be tested in other governance contexts.

This article also reveals that different categories of experiments differ in their outputs and outcomes. Some experiments can have significant outcomes that change the discourse whereas others facilitate the emergence and diffusion of new technologies or direct changes in the built environment. Still others allow different types of governance innovation to be employed and tested, contributing to change in policy and institutions. Major societal transitions require changes that relate to governance encompassing policy, politics and polity. This suggests that regime changes towards low-carbon and climate-resilient societies require a systematic deliberate combination of different types of experiments, with each contributing slightly different aspects to the processes. The alignment to a new dominant design in the sense of the MLP is likely to require such width in experimentation.

There is a particularly urgent need to develop and conduct in-depth ex-post evaluations of experiments and clusters of experiments. Such studies can reveal unfounded hopes placed on experiments. More importantly, they can also teach us how to use experiments to highlight ways of overcoming political and institutional difficulties and barriers to low carbon transitions. Long-term research should study climate governance and policy experiments and consider their success factors and role in low-carbon or climate-resilience transitions. We would benefit from research that would revisit many of the experiments covered in this systematic review after some time has elapsed. There is also a need to be clear about what constitutes an experiment in a given context, be transparent about the purpose and parameters of experiments and the underlying interests, and be balanced in evaluating their outputs.
and outcomes. These are hugely important but very demanding analytical tasks, which re-
quire resources, patience and careful research designs. Otherwise, politicians and policy
makers risk basing future policy interventions on unrealistic and unfounded generalisations
from experiments.

Acknowledgements

We thank Visa Kivisaari for providing assistance in article coding and two anonymous re-
viewers of the SPRU working paper series and four journal reviewers. Previous versions
were presented at a COST funded INOGOV workshop in Helsinki 12-13 March 2014 and the
International Sustainability Transitions Conference in Brighton 25-29 August 2015. The work
was supported by the UK EPSRC through the Centre for Innovation and Energy Demand
(CIED; http://cied.ac.uk/; grant number EP/KO11790/1) and the Academy of Finland (grant
numbers 286230, 259929 and 293405). The systemic review used scholarly articles as sec-
ondary data, listed in Appendix 2 that can be accessed through their publishing journals.

References

Azar C, Sanden, B. 2012. The elusive quest for technology-neutral policies. Environmental
Innovation and Societal Transitions 1: 135-139.

ments in Asia: innovations shaping alternative development pathways? Environmental Sci-

Black J. 2005. What is regulatory innovation? In J. Black, M. Dodge, and M. Thatcher (eds.)

Bos J, Brown R. 2012. Governance experimentation and factors of success in socio-tech-
nical transitions in the urban water sector. Technological Forecasting and Social Change 79:
1340-1353.

change: The case of a zero-energy residential building. Technological Forecasting & Social
Change 75: 107–130.

perimentation and the Governing of Socio-Technical Transitions, Routledge, Oxon, UK.

Bulkeley H, Castan Broto V, Maassen A. 2014b. Low-carbon Transitions and the Reconfigu-

Bulkeley H, Luque-Ayala A., Silver J. 2014c. Housing and the (re)configuration of energy
provision in Cape Town and Sao Paolo: Making space for a progressive urban climate polit-
ics? Political Geography 40, 23-34.

Castan Broto V. 2012. Social housing and low carbon transitions in Ljubljana, Slovenia. En-
vironmental Innovation and Societal Transitions 2, 82-97.

Hoffman MJ. 2011. Climate governance at the crossroads: experimenting with a global re-

Holm J, Stauning I, Sondergård B. 2011. Local Climate Mitigation and Eco-efforts in Housing

Jordan A, Huitema D. 2014. Innovations in climate policy: the politics of invention, diffusion,
and evaluation. Environmental Politics 23/5: 715-734.

Jordan A, Huitema D, Hilden M, van Asselt H, Rayner T, Schoenefeld J, Tosun J, Forster J,
Nature Climate Change 5, 977-982.

processes of co-evolution towards sustainable development. International Journal of Sus-

Kern F, Howlett M. 2009. Implementing transition management as policy reforms: a case

Kivimaa P, Virkamaki V. 2014. Policy Mixes, Policy Interplay and Low Carbon Transitions:
The Case of Passenger Transport in Finland. Environmental Policy and Governance 24: 28-
41.

Klerkx L, Aarts N, Leeuwis C. 2010. Adaptive management in agricultural innovation sys-
tems: The interactions between innovation networks and their environment. Agricultural Sys-
tems 103: 390-400.

Knobloch F, Mercure J-F in press. The behavioural aspect of green technology investments:
A general positive model in the context of heterogeneous agents. Environmental Innovation
and Societal Transitions.

Loorbach D, Rotmans J. 2010. The practice of transition management: Examples and les-
sions from four distinct cases. Futures 42: 237-246.

Rand Corporation.

Markard J, Raven R, Truffer B. 2012. Sustainability transitions: An emerging field of research

McFadgen B, Huitema D, unpublished. Experimentation and learning. The design of policy
experiments and their learning effects, a conceptual framework and application to a case
study from the Netherlands.

Stewart F. Transformative innovation policy to meet the challenge of climate change: socio-technological networks aligned with consumption and end-use as new transition arena for a low-carbon society or green economy. Technology Analysis & Strategic Management 24: 331-343.

Appendix 1: Search string the study used for the case study review (years 2009-2014).

<table>
<thead>
<tr>
<th>Source</th>
<th>Search term</th>
<th>No. of hits / relevant papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scopus (articles, social sciences)</td>
<td>“strategic experiment*”</td>
<td>11 / 2</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>experiment* AND climate AND transition*</td>
<td>46 / 5</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>“policy experiment*” AND climate</td>
<td>6 / 2</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>experiment* AND “energy efficiency” AND transition*</td>
<td>11 / 1</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>experiment* AND “renewable energy” AND transition*</td>
<td>6 / 1</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>experiment* AND “mobility” AND transition*</td>
<td>26 / 4</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>experiment* AND “transport” AND transition*</td>
<td>20 / 1</td>
</tr>
<tr>
<td>Scopus (articles)</td>
<td>“governance experiment” AND “climate policy”</td>
<td>0</td>
</tr>
<tr>
<td>Scopus</td>
<td>experiment* AND energy efficiency AND policy</td>
<td>18 / 0</td>
</tr>
<tr>
<td>Scopus</td>
<td>experiment* AND “low energy” AND policy</td>
<td>4 / 0</td>
</tr>
<tr>
<td>Scopus</td>
<td>experiment* AND “energy saving” AND policy</td>
<td>7 / 0</td>
</tr>
<tr>
<td>Scopus</td>
<td>experiment* AND “climate policy”</td>
<td>19 / 5</td>
</tr>
<tr>
<td>Elsewhere identified source articles</td>
<td>No search word</td>
<td>- / 4</td>
</tr>
</tbody>
</table>
Appendix 2: Summary of the analysed experiments

<table>
<thead>
<tr>
<th>Experiment case</th>
<th>Source articles</th>
<th>Background literature</th>
<th>Sector & focus</th>
<th>Type of experiment</th>
<th>Technological (T), social (S), policy (P) innovation</th>
<th>Local / national government involved</th>
<th>Climate objective</th>
<th>Country, continent</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable mobility system in the suburban areas of Cape Town</td>
<td>Ceschin 2014</td>
<td>Transition studies, transition management, strategic niche management, design for sustainability</td>
<td>Transport</td>
<td>socio-technical experiment</td>
<td>T, S</td>
<td>local</td>
<td>no</td>
<td>South Africa, Africa</td>
<td>Local / suburban</td>
</tr>
<tr>
<td>ICT platform for metering motorcycle taxis in Bangkok</td>
<td>Sengers & Raven, 2014</td>
<td>Transition studies, process theory</td>
<td>Transport</td>
<td>technical mobility experiment</td>
<td>T, S</td>
<td>local</td>
<td>no</td>
<td>India, Asia</td>
<td>Local</td>
</tr>
<tr>
<td>Transition arena Parkstad Limburg</td>
<td>van Buuren & Loorbach 2009; Loorbach & Rotmans 2010</td>
<td>Transition management, governance of innovation</td>
<td>Regional development</td>
<td>vision-forming process based on transition management</td>
<td>S, P</td>
<td>local</td>
<td>no</td>
<td>Netherlands, Europe</td>
<td>Regional</td>
</tr>
<tr>
<td>Pilot project (experiment garden) Gouwe Wiericke West</td>
<td>van Buuren & Loorbach 2009</td>
<td>Transition management, governance of innovation</td>
<td>Land use planning; water management</td>
<td>Experiment garden</td>
<td>S, P</td>
<td>local</td>
<td>no</td>
<td>Netherlands, Europe</td>
<td>Local</td>
</tr>
<tr>
<td>Community arena building Rotterdam-Carnisse</td>
<td>Wittmayer et al. 2014</td>
<td>Transition studies; transition management</td>
<td>built environment, community development</td>
<td>community arena experiment based on transition management</td>
<td>S</td>
<td>national</td>
<td>no</td>
<td>Netherlands, Europe</td>
<td>Local / suburban</td>
</tr>
<tr>
<td>Finkenstein community arena building</td>
<td>Wittmayer et al. 2014</td>
<td>Transition studies; transition management</td>
<td>Community development</td>
<td>community arena experiment based on transition management</td>
<td>S</td>
<td>local</td>
<td>no</td>
<td>Netherlands, Europe</td>
<td>Local / district</td>
</tr>
<tr>
<td>Urban energy networks in London ESCO</td>
<td>Bulkeley et al. 2014</td>
<td>Transition studies, multilevel perspective, political economy</td>
<td>Energy, built environment</td>
<td>urban climate change experiment</td>
<td>S, P</td>
<td>local</td>
<td>yes</td>
<td>United Kingdom, Europe</td>
<td>Local</td>
</tr>
<tr>
<td>Urban energy networks in London photovoltaics</td>
<td>Bulkeley et al. 2014</td>
<td>Transition studies, multilevel perspective, political economy</td>
<td>Energy, built environment</td>
<td>urban climate change experiment</td>
<td>T, S, P</td>
<td>both</td>
<td>yes</td>
<td>United Kingdom, Europe</td>
<td>Local</td>
</tr>
<tr>
<td>Social housing and low carbon transitions in Ljubljana</td>
<td>Castán Broto 2012</td>
<td>Transition studies, multilevel perspective.</td>
<td>low carbon energy for housing experiment</td>
<td></td>
<td>T, S</td>
<td>local</td>
<td>yes</td>
<td>Slovenia, Europe</td>
<td>Local</td>
</tr>
<tr>
<td>Project Description</td>
<td>Year</td>
<td>Methodology</td>
<td>Experiment Type</td>
<td>Scale</td>
<td>Location</td>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>---------------------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford Road Corridor in Manchester</td>
<td>Evans & Karvonen 2014</td>
<td>urban experiments</td>
<td>built environment, urban laboratory</td>
<td>T, S</td>
<td>local</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herfølge – Eco Labelling and Experimenting for Opening the Market to Standard Single Houses</td>
<td>Holm et al. 2011</td>
<td>Transition studies</td>
<td>built environment, construction and market experiment</td>
<td>T, S</td>
<td>local</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenløse Syd – District Planning with Ecorequirements</td>
<td>Holm et al. 2011</td>
<td>Transition studies</td>
<td>built environment, planning and building experiment</td>
<td>T, S, P</td>
<td>local</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2-college in Herning – Passive House and Hydrogen Energy Technology</td>
<td>Holm et al. 2011</td>
<td>Transition studies</td>
<td>built environment, passive house experiment</td>
<td>T</td>
<td>local</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallingelie – Self-grown Radical Niche and Eco-village</td>
<td>Holm et al. 2011</td>
<td>Transition studies</td>
<td>built environment, eco-village experiment</td>
<td>T, S, P</td>
<td>local</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof transition - transition management for a firm</td>
<td>Loorbach & Rotmans 2010</td>
<td>transition management</td>
<td>built environment, transition arena</td>
<td>T, S</td>
<td>national</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghent as a transition management case</td>
<td>Nevens & Roorda 2014</td>
<td>transition management, urban transition labs</td>
<td>Multiple transition management experiment</td>
<td>P</td>
<td>local</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Jutland Region: Contested Planning Rationalities in Spatial Strategy Making</td>
<td>Olesen & Richardson 2012</td>
<td>Strategic spatial planning</td>
<td>Built environment, strategic planning experiment</td>
<td>both</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater Copenhagen Area - return to top-down state planning</td>
<td>Olesen & Richardson 2012</td>
<td>Strategic spatial planning</td>
<td>Built environment, strategic planning experiment</td>
<td>P</td>
<td>both</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region Zealand: Towards self-regulatory spatial strategy making</td>
<td>Olesen & Richardson 2012</td>
<td>Strategic spatial planning</td>
<td>Built environment, strategic planning experiment</td>
<td>P</td>
<td>both</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uttam Urja energy service initiative</td>
<td>Rehman et al. 2010</td>
<td>Transition studies, strategic niche management</td>
<td>Energy, sustainability experiment</td>
<td>S</td>
<td>national/both</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A producer biomass gasification system in Hosahalli</td>
<td>Romjin et al. 2010</td>
<td>Transition studies, strategic niche management</td>
<td>Energy, socio-techical experiment</td>
<td>T, S</td>
<td>both</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas system in Pura</td>
<td>Romjin et al. 2010</td>
<td>Transition studies, strategic niche management</td>
<td>Energy, socio-techical experiment</td>
<td>T, S</td>
<td>local</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas system in Mavinakere</td>
<td>Romjin et al. 2010</td>
<td>Transition studies, strategic niche management</td>
<td>Energy, socio-techical experiment</td>
<td>T, S</td>
<td>local</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable oil system in Kaggenahali</td>
<td>Romjin et al. 2010</td>
<td>Transition studies, strategic niche management</td>
<td>Energy, socio-techical experiment</td>
<td>T, S</td>
<td>both</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Methodology</td>
<td>Scale</td>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon neutral municipality in Mynämäki</td>
<td>Strategic niche management</td>
<td>P</td>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban water governance experiment in Cooks river catchment</td>
<td>Transition studies, socio-ecological systems, transition management</td>
<td>both</td>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydney-based governance experiment "Treading Lightly"</td>
<td>Urban experiments, carbon governance</td>
<td>S, P</td>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated ceiling retrofit in Cape Town</td>
<td>Social housing</td>
<td>local</td>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adoption of solar water heating in social housing of Sao Paolo</td>
<td>Social housing</td>
<td>yes</td>
<td>Local</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Methodology</th>
<th>Scale</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban water governance experiment in Cooks river catchment</td>
<td>Transition studies, socio-ecological systems, transition management</td>
<td>P</td>
<td>Finland</td>
</tr>
<tr>
<td>Sydney-based governance experiment "Treading Lightly"</td>
<td>Urban experiments, carbon governance</td>
<td>both</td>
<td>Australia</td>
</tr>
<tr>
<td>Insulated ceiling retrofit in Cape Town</td>
<td>Social housing</td>
<td>S, P</td>
<td>Regional</td>
</tr>
<tr>
<td>Adoption of solar water heating in social housing of Sao Paolo</td>
<td>Social housing</td>
<td>local</td>
<td>Local</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Methodology</th>
<th>Scale</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban water governance experiment in Cooks river catchment</td>
<td>Transition studies, socio-ecological systems, transition management</td>
<td>P</td>
<td>Finland</td>
</tr>
<tr>
<td>Sydney-based governance experiment "Treading Lightly"</td>
<td>Urban experiments, carbon governance</td>
<td>both</td>
<td>Australia</td>
</tr>
<tr>
<td>Insulated ceiling retrofit in Cape Town</td>
<td>Social housing</td>
<td>S, P</td>
<td>Regional</td>
</tr>
<tr>
<td>Adoption of solar water heating in social housing of Sao Paolo</td>
<td>Social housing</td>
<td>local</td>
<td>Local</td>
</tr>
</tbody>
</table>