Charged-particle distributions at low transverse momentum in $\sqrt{s}=13$ TeV pp interactions measured with the ATLAS detector at the LHC

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/64976/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Charged-particle distributions at low transverse momentum in \(\sqrt{s} = 13 \text{ TeV} \) \(pp \) interactions measured with the ATLAS detector at the LHC

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 6 June 2016 / Accepted: 23 August 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 \(\mu \text{b}^{-1} \). The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

1 Introduction

Measurements of charged-particle distributions in proton–proton (\(pp \)) collisions probe the strong interaction in the low-momentum transfer, non-perturbative region of quantum chromodynamics (QCD). In this region, charged-particle interactions are typically described by QCD-inspired models implemented in Monte Carlo (MC) event generators. Measurements are used to constrain the free parameters of these models. An accurate description of low-energy strong interaction processes is essential for simulating single \(pp \) interactions and the effects of multiple \(pp \) interactions in the same bunch crossing at high instantaneous luminosity in hadron colliders. Charged-particle distributions have been measured previously in hadronic collisions at various centre-of-mass energies [1–11].

The measurements presented in this paper use data from \(pp \) collisions at a centre-of-mass energy \(\sqrt{s} = 13 \text{ TeV} \) recorded by the ATLAS experiment [12] at the Large Hadron Collider (LHC) [13] in 2015, corresponding to an integrated luminosity of 151 \(\mu \text{b}^{-1} \). The data were recorded during special fills with low beam currents and reduced focusing to give a mean number of interactions per bunch crossing of 0.005. The same dataset and a similar analysis strategy were used to measure distributions of charged particles with transverse momentum \(p_T \) greater than 500 MeV [9]. This paper extends the measurements to the low-\(p_T \) regime of \(p_T > 100 \text{MeV} \). While this nearly doubles the overall number of particles in the kinematic acceptance, the measurements are rendered more difficult due to multiple scattering and imprecise knowledge of the material in the detector. Measurements in the low-momentum regime provide important information for the description of the strong interaction in the low-momentum-transfer, non-perturbative region of QCD.

These measurements use tracks from primary charged particles, corrected for detector effects to the particle level, and are presented as inclusive distributions in a fiducial phase space region. Primary charged particles are defined in the same way as in Refs. [2,9] as charged particles with a mean lifetime \(\tau > 300 \text{ps} \), either directly produced in \(pp \) interactions or from subsequent decays of directly produced particles with \(\tau < 30 \text{ps} \); particles produced from decays of particles with \(\tau > 30 \text{ps} \), denoted secondary particles, are excluded. Earlier analyses also included charged particles with a mean lifetime of \(30 < \tau < 300 \text{ps} \). These are charged strange baryons and have been removed for the present analysis due to their low reconstruction efficiency. For comparison to the earlier measurements, the measured multiplicity at \(\eta = 0 \) is extrapolated to include charged strange baryons. All primary charged particles are required to have a momentum component transverse to the beam direction \(p_T > 100 \text{ MeV} \) and absolute pseudorapidity \(\eta < 2.5 \) to be within the geo-

\[\eta = \frac{1}{2} \ln \left(\frac{E + p_T}{E - p_T} \right) \]

\[\eta = \frac{1}{2} \ln \left(\frac{E + p_T}{E - p_T} \right) \]

The ATLAS detector uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the
metrical acceptance of the tracking detector. Each event is required to have at least two primary charged particles. The following observables are measured:

$$\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}, \frac{1}{N_{ev}} \frac{1}{2\pi p_T} \frac{d^2N_{ch}}{dp_T^2}, \frac{1}{N_{ev}} \frac{dN_{ev}}{d\eta},$$

and $\langle p_T \rangle$ vs. n_{ch}.

Here n_{ch} is the number of primary charged particles within the kinematic acceptance in an event, N_{ev} is the number of events with $n_{ch} \geq 2$, and N_{ch} is the total number of primary charged particles in the kinematic acceptance.

The PYTHIA 8 [14], EPOS [15] and QGSJET- II [16] MC generators are used to correct the data for detector effects and to compare with particle-level corrected data. PYTHIA 8 and EPOS both model the effects of colour coherence, which is important in dense parton environments and effectively reduces the number of particles produced in multiple parton-parton interactions. In PYTHIA 8, the simulation is split into non-diffractive and diffractive processes, the former dominated by t-channel gluon exchange and amounting to approximately 80% of the selected events, and the latter described by a pomeron-based approach [17]. In contrast, EPOS implements a parton-based Gribov–Regge [18] theory, an effective field theory describing both hard and soft scattering at the same time. QGSJET- II is based upon the Reggeon field theory framework [19]. The latter two generators do not rely on parton distribution functions (PDFs), as used in PYTHIA 8. Different parameter settings in the models are used in the simulation to reproduce existing experimental data and are referred to as tunes. For PYTHIA 8, the A2 [20] tune is based on the MSTW2008LO PDF [21] while the MONASH [22] underlying-event tune uses the NNPDF2.3LO PDF [23] and incorporates updated fragmentation parameters, as well as SPS and Tevatron data to constrain the energy scaling. For EPOS, the LHC [24] tune is used, while for QGSJET- II the default settings of the generator are applied. Details of the MC generator versions and settings are shown in Table 1. Detector effects are simulated using the GEANT4-based [25] ATLAS simulation framework [26].

2 ATLAS detector

The ATLAS detector covers nearly the whole solid angle around the collision point and includes tracking detectors, calorimeters and muon chambers. This measurement uses information from the inner detector and the trigger system, relying on the minimum-bias trigger scintillators (MBTS).

The inner detector covers the full range in ϕ and $|\eta| < 2.5$. It consists of the silicon pixel detector (pixel), the silicon microstrip detector (SCT) and the transition radiation straw-tube tracker (TRT). These are located around the interaction point spanning radial distances of 33–150, 299–560 and 563–1066 mm respectively. The barrel (each end-cap) consists of four (three) pixel layers, four (nine) double-layers of silicon microstrips and 73 (160) layers of TRT straws. During the LHC long shutdown 2013–2014, a new innermost pixel layer, the insertable B-layer (IBL) [27,28], was installed around a new smaller beam-pipe. The smaller radius of 33 mm and the reduced pixel size of the IBL result in improvements of both the transverse and longitudinal impact parameter resolutions. Requirements on an innermost pixel-layer hit and on impact parameters strongly suppress the number of tracks from secondary particles. A track from a charged particle passing through the barrel typically has 12 measurement points (hits) in the pixel and SCT detectors. The inner detector is located within a solenoid that provides an axial 2 T magnetic field.

A two-stage trigger system is used: a hardware-based level-1 trigger (L1) and a software-based high-level trigger (HLT). The L1 decision provided by the MBTS detector is used for this measurement. The scintillators are installed on either side of the interaction point in front of the liquid-argon end-cap calorimeter cryostats at $z = \pm 3.56\text{ m}$ and segmented into two rings in pseudorapidity ($2.07 < |\eta| < 2.76$ and $2.76 < |\eta| < 3.86$). The inner (outer) ring consists of eight (four) azimuthal sectors, giving a total of 12 sectors on each side. The trigger used in this measurement requires at least one signal in a scintillator on one side to be above threshold.

3 Analysis

The analysis closely follows the strategy described in Ref. [9], but modifications for the low-p_T region are applied where relevant.

3.1 Event and track selection

Events are selected from colliding proton bunches using the MBTS trigger described above. Each event is required to contain a primary vertex [29], reconstructed from at least two tracks with a minimum p_T of 100 MeV. To reduce contamination from events with more than one interaction in a
besides lowering the most critical change with respect to the 500 MeV analysis \[100 \text{MeV and an absolute pseudorapidity less than 2.5. The purity is defined as the fraction of selected tracks that are also primary tracks with a transverse momentum of at least 100 \text{MeV} \] and an absolute pseudorapidity less than 2.5. The most critical change with respect to the 500 MeV analysis \[9\], besides lowering the \(p_T \) threshold to 100 MeV, is reducing the requirement on the minimum number of silicon hits from 7 to 5. All tracks, irrespective of their transverse momentum, are reconstructed in a single pass of the track reconstruction algorithm. Details of the performance of the track reconstruction in the 13 TeV data and its simulation can be found in Ref. \[32\]. Figure 1 shows the comparison between data and simulation in the distribution of the number of pixel hits associated with a track for the low-momentum region. Data and simulation agree reasonably well given the known imperfections in the simulation of inactive pixel modules. These differences are taken into account in the systematic uncertainty on the tracking efficiency by comparing the efficiency of the pixel hit requirements in data and simulation after applying all other track selection requirements.

Events are required to contain at least two selected tracks satisfying the following criteria: \(p_T > 100 \text{MeV} \) and \(|\eta| < 2.5 \); at least one pixel hit and an innermost pixel-layer hit if expected; \[2\] at least two, four or six SCT hits for \(p_T < 300 \text{MeV} \), \(<400 \text{MeV} \) or \(>400 \text{MeV} \) respectively, in order to account for the dependence of track length on \(p_T \); \(|\eta^\text{BL}| < 1.5 \text{ mm} \), where the transverse impact parameter \(d^\text{BL}_0 \) is calculated with respect to the measured beam line (BL); and \(|\eta^\text{BL} \times \sin \theta| < 1.5 \text{ mm} \), where \(d^\text{BL}_0 \) is the difference between the longitudinal position of the track along the beam line at the point where \(d^\text{BL}_0 \) is measured and the longitudinal position of the primary vertex and \(\theta \) is the polar angle of the track. High-momentum tracks with mismeasured \(p_T \) are removed by requiring the track-fit \(\chi^2 \) probability to be larger than 0.01 for tracks with \(p_T > 10 \text{ GeV} \). In total \(9.3 \times 10^8 \) events pass the selection, containing a total of \(3.2 \times 10^8 \) selected tracks.

3.2 Background estimation

Background contributions to the tracks from primary particles include fake tracks (those formed by a random combination of hits), strange baryons and secondary particles. These contributions are subtracted on a statistical basis from the number of reconstructed tracks before correcting for other detector effects. The contribution of fake tracks, estimated from simulation, is at most 1% for all \(p_T \) and \(\eta \) intervals with a relative uncertainty of \(\pm 50 \% \) determined from dedicated comparisons of data with simulation \[33\]. Charged strange baryons with a mean lifetime \(30 < \tau < 300 \text{ ps} \) are treated as background, because these particles and their decay products have a very low reconstruction efficiency. Their contribution is estimated from EPOS, where the best description of this strange baryon contribution is expected \[9\], to be below 0.01% on average, with the fraction increasing with track \(p_T \) to be \((3 \pm 1) \% \) above 20 GeV. The fraction is much smaller at low \(p_T \) due to the extremely low track reconstruction efficiency. The contribution from secondary particles is estimated by performing a template fit to the distribution of the track transverse impact parameter \(d^\text{BL}_0 \), using templates for primary and secondary particles created from PYTHIA 8 A2 simulation. All selection requirements are applied except that on the transverse impact parameter. The shape of the transverse impact parameter distribution differs for electron and non-electron secondary particles, as the \(d^\text{BL}_0 \) reflects the radial location at which the secondaries were produced. The processes for conversions and hadronic interactions are rather different, which leads to differences in the radial distributions. The electrons are more often produced from conversions in the beam pipe. Furthermore, the fraction of electrons increases as \(p_T \) decreases. Therefore, separate

Fig. 1 Comparison between data and PYTHIA 8 A2 simulation for the distribution of the number of pixel hits associated with a track. The distribution is shown before the requirement on the number of pixel hits is applied, for tracks with 100 < \(p_T < 500 \text{ MeV} \) and \(|\eta| < 2.5 \). The error bars on the points are the statistical uncertainties of the data. The lower panel shows the ratio of data to MC prediction.

2 A hit is expected if the extrapolated track crosses an known active region of a pixel module. If an innermost pixel-layer hit is not expected, a next-to-innermost pixel-layer hit is required if expected.
3.3 Trigger and vertex reconstruction efficiency

The trigger efficiency $\varepsilon_{\text{trig}}$ is measured in a data sample recorded using a control trigger which selected events randomly at L1 only requiring that the beams are colliding in the ATLAS detector. The events are then filtered at the HLT by requiring at least one reconstructed track with $p_T > 200$ MeV. The efficiency $\varepsilon_{\text{trig}}$ is defined as the ratio of events that are accepted by both the control and the MBTS trigger to all events accepted by the control trigger. It is measured as a function of the number of selected tracks with the requirement on the longitudinal impact parameter removed, $n_{\text{sel}}^\text{no z}$. The trigger efficiency increases from $96.5^{+0.4}_{-0.7}$ % for events with $n_{\text{sel}}^\text{no z} = 2$, to 99.3 ± 0.2 % for events with $n_{\text{sel}}^\text{no z} \geq 4$. The quoted uncertainties include statistical and systematic uncertainties. The systematic uncertainties are estimated from the difference between the trigger efficiencies measured on the two sides of the detector, and the impact of beam-induced background; the latter is estimated using events recorded when only one beam was present at the interaction point, as described in Ref. [9].

The vertex reconstruction efficiency ε_{vtx} is determined from data by calculating the ratio of the number of triggered events with a reconstructed vertex to the total number of all triggered events. The efficiency, measured as a function of $n_{\text{sel}}^\text{no z}$, is approximately 87 % for events with $n_{\text{sel}}^\text{no z} = 2$ and rapidly rises to 100 % for events with $n_{\text{sel}}^\text{no z} > 4$. For events with $n_{\text{sel}}^\text{no z} = 2$, the efficiency is also parameterised as a function of the difference between the longitudinal impact parameter of the two tracks (Δz^tracks). This efficiency decreases roughly linearly from 91 % at $\Delta z^\text{tracks} = 0$ mm to 32 % at $\Delta z^\text{tracks} = 10$ mm. The systematic uncertainty is estimated from the difference between the vertex reconstruction efficiency measured before and after beam-background removal and found to be negligible.

3.4 Track reconstruction efficiency

The primary-track reconstruction efficiency ε_{trk} is determined from simulation. The efficiency is parameterised in two-dimensional bins of p_T and η, and is defined as:

$$\varepsilon_{\text{trk}}(p_T, \eta) = \frac{N^\text{matched}(p_T, \eta)}{N^\text{gen}(p_T, \eta)},$$

where p_T and η are generated particle properties, $N^\text{matched}(p_T, \eta)$ is the number of reconstructed tracks matched to generated primary charged particles and $N^\text{gen}(p_T, \eta)$ is the number of generated primary charged particles in that kinematic region. A track is matched to a generated particle if the weighted fraction of track hits originating from that particle exceeds 50 %. The hits are weighted such that hits in all subdetectors have the same weight in the sum, based on the number of expected hits and the resolution of the individual.

templates are used for electrons and non-electron secondary particles in the region $p_T < 500$ MeV. The rate of secondary tracks is the sum of these two contributions and is measured with the fit. The background normalisation for fake tracks and strange baryons is determined from the prediction of the simulation. The fit is performed in nine p_T intervals, each of width 50 MeV, in the region $|d^{BL}_0| < 9.5$ mm. The fitted distribution for $100 < p_T < 150$ MeV is shown in Fig. 2. For this p_T interval, the fraction of secondary tracks within the region $|d^{BL}_0| < 1.5$ mm is measured to be (3.6 ± 0.7) %, equally distributed between electrons and non-electrons. For tracks with $p_T > 500$ MeV, the fraction of secondary particles is measured to be (2.3 ± 0.6) %; these are mostly non-electron secondary particles. The uncertainties are evaluated by using different generators to fit the interpolation from the fit region to $|d^{BL}_0| < 1.5$ mm, changing the fit range and checking the η dependence of the fraction of tracks originating from secondaries. This last study is performed by fitting integrated over different η ranges, because the η dependence could be different in data and simulation, as most of the secondary particles are produced in the material of the detector. The systematic uncertainties arising from imperfect knowledge of the passive material in the detector are also included; these are estimated using the same material variations as used in the estimation of the uncertainty on the tracking efficiency, described in Sect. 3.4.

Fig. 2 Comparison between data and PYTHIA 8 A2 simulation for the transverse impact parameter d^{BL}_0 distribution. The d^{BL}_0 distribution is shown for $100 < p_T < 150$ MeV without applying the cut on the transverse impact parameter. The position where the cut is applied is shown as dashed black lines at ± 1.5 mm. The simulated d^{BL}_0 distribution is normalised to the number of tracks in data and the separate contributions from primary, fake, electron and non-electron tracks are shown as lines using various combinations of dots and dashes. The secondary particles are scaled by the fitted fractions as described in the text. The error bars on the points are the statistical uncertainties of the data. The lower panel shows the ratio of data to MC prediction.
subdetector. For $100 < p_T < 125$ MeV and integrated over $|\eta|$, the primary-track reconstruction efficiency is 27.5\%. In the analysis using tracks with $p_T > 500$ MeV [9], a data-driven correction to the efficiency was evaluated in order to account for material effects in the $|\eta| > 1.5$ region. This correction to the efficiency is not applied in this analysis due to the large uncertainties of this method for low-momentum tracks, which are larger than the uncertainties in the material description.

The dominant uncertainty in the track reconstruction efficiency arises from imprecise knowledge of the passive material in the detector. This is estimated by evaluating the track reconstruction efficiency in dedicated simulation samples with increased detector material. The total uncertainty in the track reconstruction efficiency due to the amount of material is calculated as the linear sum of the contributions of 5\% additional material in the entire inner detector, 10\% additional material in the IBL and 50\% additional material in the pixel services region at $|\eta| > 1.5$. The sizes of the variations are estimated from studies of the rate of photon conversions, of hadronic interactions, and of tracks lost due to interactions in the pixel services [34]. The resulting uncertainty in the track reconstruction efficiency is 1\% at low $|\eta|$ and high p_T and up to 10\% for higher $|\eta|$ or for lower p_T. The systematic uncertainty arising from the track selection requirements is studied by comparing the efficiency of each requirement in data and simulation. This results in an uncertainty of 0.5\% for all p_T and η. The total uncertainty in the track reconstruction efficiency is obtained by adding all effects in quadrature. The track reconstruction efficiency is shown as function of p_T and η in Fig. 3, including all systematic uncertainties. The efficiency is calculated using the PYTHIA 8 A2 and single-particle simulation. The statistical uncertainties are shown as vertical bars, the sum in quadrature of statistical and systematic uncertainties as shaded areas.

3.5 Correction procedure and systematic uncertainties

The data are corrected to obtain inclusive spectra for primary charged particles satisfying the particle-level phase space requirement. The inefficiencies due to the trigger selection and vertex reconstruction are applied to all distributions as event weights:

$$w_{ev}(n_{sel}^{no-z}, \Delta z_{tracks}) = \frac{1}{\varepsilon_{trig}(n_{sel}^{no-z})} \cdot \frac{1}{\varepsilon_{vtx}(n_{sel}^{no-z}, \Delta z_{tracks})}.$$ (1)

Distributions of the selected tracks are corrected for inefficiencies in the track reconstruction with a track weight using the tracking efficiency (ε_{trk}) and after subtracting the fractions of fake tracks (f_{fake}), of strange baryons (f_{sb}), of secondary particles (f_{sec}) and of particles outside the kinematic range (f_{okr}):

$$w_{trk}(p_T, \eta) = \frac{1}{\varepsilon_{trk}(p_T, \eta)} [1 - f_{fake}(p_T, \eta) - f_{sb}(p_T, \eta) - f_{sec}(p_T, \eta) - f_{okr}(p_T, \eta)].$$ (2)

These distributions are estimated as described in Sect. 3.2 except that the fraction of particles outside the kinematic range whose reconstructed tracks enter the kinematic range is estimated from simulation. This fraction is largest at low p_T and high $|\eta|$. At $p_T = 100$ MeV and $|\eta| = 2.5$, 11\%
of the particles enter the kinematic range and are subtracted as described in Formula 2 with a relative uncertainty of ±4.5%.

The p_T and η distributions are corrected by the event and track weights, as discussed above. In order to correct for resolution effects, an iterative Bayesian unfolding [35] is additionally applied to the p_T distribution. The response matrix used to unfold the data is calculated from PYTHIA 8 A2 simulation, and six iterations are used; this is the smallest number of iterations after which the process is stable. The statistical uncertainty is obtained using pseudo-experiments. For the η distribution, the resolution is smaller than the bin width and an unfolding is therefore unnecessary. After applying the event weight, the Bayesian unfolding is applied to the multiplicity distribution in order to correct from the observed track multiplicity to the multiplicity of primary charged particles, and therefore the track reconstruction efficiency weight does not need to be applied. The total number of events, N_{ev}, is defined as the integral of the multiplicity distribution after all corrections are applied and is used to normalise the distributions. The dependence of $\langle p_T \rangle$ on n_{ch} is obtained by first separately correcting the total number of tracks and $\sum_i p_T(i)$ (the scalar sum of the track p_T of all tracks with $p_T > 100$ MeV in one event), both versus the number of primary charged particles. After applying the correction to all events using the event and track weights, both distributions are unfolded separately. The ratio of the two unfolded distributions gives the dependence of $\langle p_T \rangle$ on n_{ch}.

A summary of the systematic uncertainties is given in Table 2 for all observables. The dominant uncertainty is due to material effects on the track reconstruction efficiency. Uncertainties due to imperfect detector alignment are taken into account and are less than 5% at the highest track p_T values. In addition, resolution effects on the transverse momentum can result in low-p_T particles being reconstructed as high-p_T tracks. All these effects are considered as systematic uncertainty on the track reconstruction. The track background uncertainty is dominated by systematic effects in the estimation of the contribution from secondary particles. The track reconstruction efficiency determined in simulation can differ from the one in data if the p_T spectrum is different for data and simulation, as the efficiency depends strongly on the track p_T. This effect can alter the number of primary charged particles and is taken into account as a systematic uncertainty on the multiplicity distribution and $\langle p_T \rangle$ vs n_{ch}.

The non-closure systematic uncertainty is estimated from differences in the unfolding results using PYTHIA 8 A2 and EPOS simulations. For this, all combinations of these MC generators are used to simulate the distribution and the input to the unfolding.

4 Results

The measured charged-particle multiplicities in events containing at least two charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$ are shown in Fig. 4. The corrected data are compared to predictions from various generators. In general, the systematic uncertainties are larger than the statistical uncertainties.

Figure 4a shows the charged-particle multiplicity as a function of the pseudorapidity η. PYTHIA 8 MONASH, EPOS and QGSJET-II give a good description for $|\eta| < 1.5$. The prediction from PYTHIA 8 A2 has the same shape as predictions from the other generators, but lies below the data.

The charged-particle transverse momentum is shown in Fig. 4b. EPOS describes the data well for $p_T > 300$ MeV. For $p_T < 300$ MeV, the data are underestimated by up to 15%. The other generators show similar mismodelling at low momentum but with larger discrepancies up to 35% for QGSJET-II. In addition, they mostly overestimate the charged-particle multiplicity for $p_T > 400$ MeV; PYTHIA 8 A2 overestimates only in the intermediate p_T region and underestimates the data slightly for $p_T > 800$ MeV.

Figure 4c shows the charged-particle multiplicity. Overall, the form of the measured distribution is reproduced reasonably by all models. PYTHIA 8 A2 describes the data well for $30 < n_{ch} < 80$, but underestimates it for higher n_{ch}. For $30 < n_{ch} < 80$, PYTHIA 8 MONASH, EPOS and QGSJET-II underestimate the data by up to 20%. PYTHIA 8 MONASH and EPOS overestimate the data for $n_{ch} > 80$ and drop below the measurement in the high-n_{ch} region, starting from $n_{ch} > 130$ and $n_{ch} > 200$ respectively. QGSJET-II overestimates the data significantly for $n_{ch} > 100$.

The mean transverse momentum versus the primary charged-particle multiplicity is shown in Fig. 4d. It increases towards higher n_{ch}, as modelled by a colour reconnection.

Table 2 Summary of the systematic uncertainties in the η, p_T, n_{ch} and $\langle p_T \rangle$ vs n_{ch} observables. The uncertainties are given at the minimum and the maximum of the phase space.

| Distribution | $\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d|\eta|}$ | $\frac{1}{N_{ev}} \cdot \frac{d^2N_{ch}}{d|\eta|dE_{T}}$ | $\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{dp_T}$ | $\frac{1}{N_{ev}} \cdot \frac{d^2N_{ch}}{dp_T^2}$ | $\langle p_T \rangle$ vs n_{ch} |
|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Range | 0–2.5 | 0.1–50 GeV | 2–250 | 0–160 GeV | |
| Track | $1 \%–7 \%$ | $1 \%–6 \%$ | $0 \%–5.8 \%$ | $0 \%–0.7 \%$ | |
| Track | 0.5% | $0.5 \%–1 \%$ | $0 \%–1.7 \%$ | $0 \%–0.1 \%$ | |
| Non-closure | $0.4 \%–1 \%$ | $1 \%–3 \%$ | $0 \%–4 \%$ | $0.5 \%–2 \%$ | |

4 Results

The measured charged-particle multiplicities in events containing at least two charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$ are shown in Fig. 4. The corrected data are compared to predictions from various generators. In general, the systematic uncertainties are larger than the statistical uncertainties.

Figure 4a shows the charged-particle multiplicity as a function of the pseudorapidity η. PYTHIA 8 MONASH, EPOS and QGSJET-II give a good description for $|\eta| < 1.5$. The prediction from PYTHIA 8 A2 has the same shape as predictions from the other generators, but lies below the data.

The charged-particle transverse momentum is shown in Fig. 4b. EPOS describes the data well for $p_T > 300$ MeV. For $p_T < 300$ MeV, the data are underestimated by up to 15%. The other generators show similar mismodelling at low momentum but with larger discrepancies up to 35% for QGSJET-II. In addition, they mostly overestimate the charged-particle multiplicity for $p_T > 400$ MeV; PYTHIA 8 A2 overestimates only in the intermediate p_T region and underestimates the data slightly for $p_T > 800$ MeV.

Figure 4c shows the charged-particle multiplicity. Overall, the form of the measured distribution is reproduced reasonably by all models. PYTHIA 8 A2 describes the data well for $30 < n_{ch} < 80$, but underestimates it for higher n_{ch}. For $30 < n_{ch} < 80$, PYTHIA 8 MONASH, EPOS and QGSJET-II underestimate the data by up to 20%. PYTHIA 8 MONASH and EPOS overestimate the data for $n_{ch} > 80$ and drop below the measurement in the high-n_{ch} region, starting from $n_{ch} > 130$ and $n_{ch} > 200$ respectively. QGSJET-II overestimates the data significantly for $n_{ch} > 100$.

The mean transverse momentum versus the primary charged-particle multiplicity is shown in Fig. 4d. It increases towards higher n_{ch}, as modelled by a colour reconnection.
Fig. 4 Primary charged-particle multiplicities as a function of a pseudorapidity η and b transverse momentum p_T, c the primary charged-particle multiplicity n_{ch} and d the mean transverse momentum $\langle p_T \rangle$ versus n_{ch} for events with at least two primary charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$, each with a lifetime $\tau > 300$ ps. The black dots represent the data and the coloured curves the different MC model predictions. The vertical bars represent the statistical uncertainties, while the shaded areas show statistical and systematic uncertainties added in quadrature. The lower panel in each figure shows the ratio of the MC simulation to data. As the bin centroid is different for data and simulation, the values of the ratio correspond to the averages of the bin content.
mechanism in PYTHIA 8 and by the hydrodynamical evolution model in EPOS. The QGSJET-II generator, which has no model for colour coherence effects, describes the data poorly. For low n_{ch}, PYTHIA 8 A2 and EPOS underestimate the data, where PYTHIA 8 MONASH agrees within the uncertainties. For higher n_{ch} all generators overestimate the data, but for $n_{ch} > 40$, there is a constant offset for both PYTHIA 8 tunes, which describe the data to within 10%. EPOS describes the data reasonably well and to within 2%.

The mean number of primary charged particles per unit pseudorapidity in the central η region is measured to be 6.422 ± 0.096, by averaging over $|\eta| < 0.2$; the quoted error is the systematic uncertainty, the statistical uncertainty is negligible. In order to compare with other measurements, it is corrected for the contribution from strange baryons (and therefore extrapolated to primary charged particles with $\tau > 30$ ps) by a correction factor of 1.0121 \pm 0.0035. The central value is taken from EPOS; the systematic uncertainty is taken from the difference between EPOS and PYTHIA 8 A2 (the largest difference was observed between EPOS and PYTHIA 8 A2) and the statistical uncertainty is negligible. The mean number of primary charged particles after the correction is 6.500 ± 0.099. This result is compared to previous measurements [1, 2, 9] at different \sqrt{s} values in Fig. 5. The predictions from EPOS and PYTHIA 8 MONASH match the data well. For PYTHIA 8 A2, the match is not as good as was observed when measuring particles with $p_T > 500$ MeV [9].

5 Conclusion

Primary charged-particle multiplicity measurements with the ATLAS detector using proton–proton collisions delivered by the LHC at $\sqrt{s} = 13$ TeV are presented for events with at least two primary charged particles with $|\eta| < 2.5$ and $p_T > 100$ MeV using a specialised track reconstruction algorithm. A data sample corresponding to an integrated luminosity of 151 μb$^{-1}$ is analysed. The mean number of charged particles per unit pseudorapidity in the region $|\eta| < 0.2$ is measured to be 6.422 ± 0.096 with a negligible statistical uncertainty. Significant differences are observed between the measured distributions and the Monte Carlo predictions tested. Amongst the models considered, EPOS has the best overall description of the data as was seen in a previous ATLAS measurement at $\sqrt{s} = 13$ TeV using tracks with $p_T > 500$ MeV. PYTHIA 8 A2 and PYTHIA 8 MONASH provide a reasonable overall description, whereas QGSJET-II does not describe $\langle p_T \rangle$ vs. n_{ch} well but provides a reasonable level of agreement for other distributions.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MEYS, RIV, and FWF, Austria; ANAS, Azerbaijan; BMWFW and FWF, Austria; BLRF, Brazil; MES, Armenia; BSF, GIF and Minerva, Israel; BRF, Norway; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRN, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [36].

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
References

17. V.N. Gribov, A Reggeon diagram technique. JETP 26, 414 (1968)

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.
25 Department of Physics, Brandeis University, Waltham, MA, USA
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
28 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d) University Politehnica Bucharest, Bucharest, Romania; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidade de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, UK
31 Department of Physics, Carleton University, Ottawa, ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; (f) Physics Department, Tsinghua University, Beijing 100084, China
36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington, NY, USA
38 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
40 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
41 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
42 Physics Department, Southern Methodist University, Dallas, TX, USA
43 Physics Department, University of Texas at Dallas, Richardson, TX, USA
44 DESY, Hamburg and Zeuthen, Germany
45 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, NC, USA
48 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
91 Department of Physics and Astronomy, University of Michigan, Ann Arbor, MI, USA
92 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
93 (a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Università di Milano, Milan, Italy
94 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
95 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
96 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
97 P.N. Lebedev Physical Institute of the Russian, Academy of Sciences, Moscow, Russia
98 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
99 National Research Nuclear University MEPhI, Moscow, Russia
100 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
101 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
102 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
103 Nagasaki Institute of Applied Science, Nagasaki, Japan
104 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
105 (a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Università di Napoli, Naples, Italy
106 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
107 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
108 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
109 Department of Physics, Northern Illinois University, DeKalb, IL, USA
110 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, NY, USA
111 Ohio State University, Columbus, OH, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
114 Department of Physics, Oklahoma State University, Stillwater, OK, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
117 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, UK
121 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
123 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
126 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Física, Universidade do Minho, Braga, Portugal; (f)Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
128 Czech Technical University in Prague, Prague, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
132 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
133 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
134 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
138 Department of Physics, University of Washington, Seattle, WA, USA
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, USA

Springer
144 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of
Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of
Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South
Africa
146 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
149 Department of Physics and Astronomy, University of Sussex, Brighton, UK
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, ON, Canada
159 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering,
University of Tsukuba, Tsukuba, Japan
160 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
161 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
162 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica
Fisica e Ambiente, Università di Udine, Udine, Italy
163 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
164 Department of Physics, University of Illinois, Urbana, IL, USA
165 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atomica, Molecular y Nuclear and Departamento de
Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC,
Valencia, Spain
166 Department of Physics, University of British Columbia, Vancouver, BC, Canada
167 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
168 Department of Physics, University of Warwick, Coventry, UK
169 Waseda University, Tokyo, Japan
170 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
171 Department of Physics, University of Wisconsin, Madison, WI, USA
172 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
173 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal,
Germany
174 Department of Physics, Yale University, New Haven, CT, USA
175 Yerevan Physics Institute, Yerevan, Armenia
176 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
177 a Also at Department of Physics, King’s College London, London, UK
178 b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
179 c Also at Novosibirsk State University, Novosibirsk, Russia
180 d Also at TRIUMF, Vancouver BC, Canada
181 e Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
182 f Also at Department of Physics, California State University, Fresno, CA, USA
183 g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
184 h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
185 i Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
186 j Also at Tomsk State University, Tomsk, Russia
Also at Universita di Napoli Parthenope, Naples, Italy
Also at Institute of Particle Physics (IPP), Victoria, Canada
Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
Also at Louisiana Tech University, Ruston, LA, USA
Also at Institute of Particle Physics (IPP), Victoria, Canada
Also at Graduate School of Science, Osaka University, Osaka, Japan
Also at Department of Physics, National Tsing Hua University, Hsinchu City, Taiwan
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York, NY, USA
Also at Hellenic Open University, Patras, Greece
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at School of Physics, Shandong University, Shandong, China
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Eotvos Lorand University, Budapest, Hungary
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford, CA, USA
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Eotvos Lorand University, Budapest, Hungary
Also at Flensburg University of Applied Sciences, Flensburg, Germany
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Deceased