Gyrotron Power Beams for Defence Applications

by
Professor Chris Chatwin,
Dr Rupert Young, Dr Phil Birch

IET Colloquium – Lecture Theatre AS3 – Richmond Building, University of Sussex

Brighton – 18th October 2016, 19:00 hrs
Summary

- Thermo-Mechanical Damage via Optical Power Beams
 i. *US Navy Laser system – NRL 33kW fibre laser*
 ii. *Lockheed Martin 30kW fibre laser*
- **A millimetre approach and target vulnerabilities**
- A Simple Gyrotron
- Some Gyrotron achievements
- Applications
- Conclusions
The Electromagnetic Spectrum

<table>
<thead>
<tr>
<th>AM Radio</th>
<th>Short wave radio</th>
<th>Television FM radio</th>
<th>Microwaves radar</th>
<th>Millimeter waves, telemetry</th>
<th>Infrared</th>
<th>Visible light</th>
<th>Ultraviolet</th>
<th>X-rays</th>
<th>Gamma rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low frequency</td>
<td>Low wavelength</td>
<td>High frequency</td>
<td>Short wavelength</td>
<td>High quantum energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hz:
- Low frequency: 10
- High frequency: 18
- Long wavelength: 10
- Short wavelength: 10
- Low quantum energy: 10
- High quantum energy: 10
Thermal Mechanical Damage with Optical Beams

- In a previous presentation [1], I assessed Laser beam weapons that operate at optical frequencies.
- There are two systems of note that can be used to damage and destroy a range of targets:
 1. **US Navy Laser Weapon System (LaWS) - NRL**
 2. **Lockheed Martin 30 kW system using Spectral beam combining**
- To blast a hole through the external skin of a target is hard work although damage to sensors and optics is effective.
The US Navy’s Laser Weapon System (LaWS) contains six individual fiber lasers with their beams incoherently combined into a single 33 kW output. (Courtesy of US Navy)

Lockheed Martin 30 kW system using Spectral beam combining
BETHESDA, Md., March 3, 2015 – Lockheed Martin’s [NYSE: LMT] 30-kW fiber laser system successfully disabled the engine of a small truck during a recent field test, demonstrating the rapidly evolving precision capability to protect military forces and critical infrastructure.

http://www.sme.org/MEMagazine/Article.aspx?id=84571&taxid=3440#sthash.gn1DnEoL.dpuf
An alternative approach is to try to damage or destroy the targets’ electronics or control systems

Moving into the microwave part of the electromagnetic spectrum offers this opportunity

Pulses of electromagnetic energy can produce large transient voltages on exposed electrical conductors, such as: wires, conductive tracks on electronic circuit boards, conductors in integrated electronics, semiconductor devices…
CMOS micro camera module (IR) & some circuit boards
DRAM circuitry

Capacitor Over Bitline (COB) structural shift for embedded DRAM

Paradigm shift

Scaling

Rigid Low-k

SiO2

Bypass contact

MIM

BL

40 nm-node

28 nm-node
Coupling into electronic structures

- Transient voltages may destroy or wound electronics, which will then perform erratically.
- Semiconductor components using CMOS, RF Bipolar, RF GaAs, NMOS DRAM processes are destroyed by exposure to volts to tens of volts of electrical voltage.
- Intermittent functionality can be more damaging than complete destruction.
- Equipment with antenna’s designed to conduct power into or out of a device are particularly vulnerable; this is called front door coupling.
Coupling is greatest when the wavelength of the pulse is close to the wavelength of the antenna or a multiple of the antenna’s length.

UHF and VHF radio receivers, televisions and cell phones are all vulnerable to front door coupling.

Radar systems (destroys RF semiconductor devices) and measurement instrumentation used for control of target machines, GPS receivers are all vulnerable.
Antenna animation, **front door coupling** (Courtesy Chetvorno CC)

Animated diagram of a half-wave dipole antenna receiving energy from a radio wave. Each rod is one quarter of the wavelength long. Black arrows are the electrons moving back and forth in the rods, this excites standing waves of voltage shown in red.
Radar-frequency bands according to IEEE standard

<table>
<thead>
<tr>
<th>Band designation</th>
<th>Frequency range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>0.003 to 0.03 GHz</td>
<td>High Frequency[^7]</td>
</tr>
<tr>
<td>VHF</td>
<td>0.03 to 0.3 GHz</td>
<td>Very High Frequency[^7]</td>
</tr>
<tr>
<td>UHF</td>
<td>0.3 to 1 GHz</td>
<td>Ultra High Frequency[^7]</td>
</tr>
<tr>
<td>L</td>
<td>1 to 2 GHz</td>
<td>Long wave</td>
</tr>
<tr>
<td>S</td>
<td>2 to 4 GHz</td>
<td>Short wave</td>
</tr>
<tr>
<td>C</td>
<td>4 to 8 GHz</td>
<td>Compromise between S and X</td>
</tr>
<tr>
<td>X</td>
<td>8 to 12 GHz</td>
<td>Used in WW II for fire control, X for cross (as in crosshair). Exotic.[^8]</td>
</tr>
<tr>
<td>Ku</td>
<td>12 to 18 GHz</td>
<td>Kurz-under</td>
</tr>
<tr>
<td>K</td>
<td>18 to 27 GHz</td>
<td>German Kurz (short)</td>
</tr>
<tr>
<td>Ka</td>
<td>27 to 40 GHz</td>
<td>Kurz-above</td>
</tr>
<tr>
<td>V</td>
<td>40 to 75 GHz</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>75 to 110 GHz</td>
<td>W follows V in the alphabet</td>
</tr>
<tr>
<td>mm or G</td>
<td>110 to 300 GHz[^note 1]</td>
<td>Millimeter[^6]</td>
</tr>
</tbody>
</table>
UHF and VHF radio relay links, a C-band line-of-sight data link which has a range of 150nm and UHF and Ku-band satellite data links.

The vehicle carries electro-optical and infrared cameras and a synthetic aperture radar.

The two-colour DLTV television is equipped with a variable zoom and 955mm Spotter. The high resolution FLIR has six fields of view, 19mm to 560mm.
Global Hawk High-Altitude, Long-Endurance, Unmanned Reconnaissance Aircraft, USA – Many Front Door access points

Performance:
- Maximum Endurance: 42 hours
- Loiter Velocity = 343kt
- Maximum Altitude: 65,000ft

Communications:
- Satellite Comms Datalink
 - 1.5Mbps, 8.67Mbps, 20Mbps, 30Mbps, 40Mbps, 47.9Mbps
- Line of Sight (LOS) Datalink
 - 137Mbps

Synthetic Aperture Radar (SAR) - 1m/0.3m resolution (WAS / Spot)
Moving Target Indicator - 4kt minimum detectable velocity
Electro-Optical - NIIRS 5.5 / 6.5 (WAS/Spot)
Infrared - NIIRS 5.0 / 6.0 (WAS/Spot)
Gyrotrons offer an important defensive opportunity

- Gyrotrons can be deployed for significant defence applications.
- Gyrotrons offer an efficient low cost source of extremely high power millimetre electromagnetic radiation
- The first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.
The diagram illustrates how radio transmitters can interfere with electronic systems, and how electronic systems can interfere with radio reception. For damage you just need to make the interference very large.
Synchrotron radiation

The acceleration of ultra-relativistic charged particles through magnetic fields results in synchrotron radiation

\[(a \perp v)\]
According to the definition given in [21], gyrotrons are *cyclotron resonance masers* (CRMs) in which the interaction of helical electron beams with electromagnetic waves takes place in nearly uniform waveguides near their cut-off frequencies, where the ‘B’ field is a maximum.

See Figure (1) opposite, the simplest gyrotron is known as a *gyromonotron* (it is a vacuum electronic tube).
Single Cavity Gyrotron

- A hollow electron beam is emitted from the cathode ring of the magnetron injection gun in the DC electric field caused by the voltage applied between the cathode and the anode.

- The electrons move towards the cavity in the increasing magnetic field ‘B’, thus experiencing an adiabatic compression which increases their transverse (orbital) momentum ‘p’ in accordance with the conservation law $p^2 / B = \text{const.}$

- The axial magnetic field ‘B’ causes the electrons to rotate in a tight helical trajectory around the field lines.
In the cavity, electrons gyrating with the cyclotron frequency \(\Omega = \frac{eB}{m_0\gamma} \) interact with the electromagnetic field (EM), under the cyclotron resonance condition (1), where \(e \) is the elementary charge, ‘B’ is the magnetic field, \(m_0 \) electron rest mass, \(\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} \)

\[
\omega - k_z v_z \approx s\Omega \tag{1}
\]

\(\omega \) and \(k_z \) are the EM wave angular frequency and axial wavenumber, \(v_z \) is the electron axial velocity and \(s \) is the cyclotron resonance harmonic number (\(s=1, 2, \ldots \)).
Single Cavity Gyrotron

- The spent electron beam moves in the decreasing magnetic field experiencing adiabatic decompression and reaches the collector.
- The EM field excited in the cavity radiates through an open end into an up-tapered output waveguide and propagates through the output window.
- The frequency of the output can be controlled by the strength of the magnetic field ‘B’.

![Diagram of a single-cavity gyrotron](image)
Results of the first experiments with this device (6 W of the CW power at the fundamental cyclotron resonance in the X-band) were reported at the All-Union Electronics Conference in Moscow (1964)
Gyrotron Schematic (fast wave device)

1. cathode with filament,
2. resonance cavity,
3. collector,
4. microwave mirror,
5. synthetic diamond vacuum window,
6. electron beam,
7. microwave beam,
8. magnet coils,
9. magnetic field,
10. high voltage power supply,
11. filament power supply,
12. cooling water connections,
13. electrical insulator,
14. high-voltage terminals,
15. magnet (possibly superconducting)
Dual-frequency Gyrotron [25]

(1) Selection of two frequencies and window thickness (d_{win}) to suppress reflection at the output window

\[d_{\text{win}} = n \times \lambda/2 \]

n: integer, λ: wavelength

d_{win} (2.3 mm)
\[\div 4 \times \lambda/2 (110 \text{ GHz}) \]
\[\div 5 \times \lambda/2 (138 \text{ GHz}) \]

- Microwave (to be transmitted to the target)

(2) Design of cavity resonator shape and microwave profiles for high efficiency microwave generation at two frequencies

(3) Design of the low loss mode converter for two frequencies

Triode-type electron gun enabling optimization of the gyration energy of electrons
Gyrotron Power Beams

- Gyrotrons – are capable of producing extremely high power beams of pulsed and CW electromagnetic radiation in the GHz and THz part of the spectrum. (2 GHz to 1.3 THz)
- They are actively being developed for fusion reactors. In Germany they are developing a 2MW, 170 GHz facility.
State of the Art Gyrotrons

- Present state-of-the-art gyrotrons are used for controlled thermonuclear fusion plasma applications.
- They are mainly used as high power millimeter wave sources for:
 1. *electron cyclotron resonance heating (ECRH)*,
 2. *electron cyclotron current drive (ECCD)*,
 3. *stability control and diagnostics of magnetically confined plasmas for generation of energy*
State of the Art Gyrotrons for fusion plasma applications

- Industrial megawatt-class CW gyrotrons that operate at 77 GHz (LHD), 110 GHz and 138 GHz (DIII-D, JT-60SA), 140 GHz (W7-X), 154 GHz (LHD), and 170 GHz (ITER) for fusion plasma applications are available in Japan, USA, EU and Russia.

- The maximum pulse length of the 140 GHz, megawatt-class gyrotrons is 30 minutes.

- The world record parameters of the European 140 GHz gyrotron are: 0.92 MW output power in 30 min. pulses, 97.5% Gaussian mode purity and 44% efficiency.
Gyrotron achievements

- A maximum output power of 1.5 MW in 4.0s pulses at 45% efficiency was generated with the JAEA-TOSHIBA 110 GHz gyrotron.
- The Japanese 170 GHz ITER gyrotron achieved 1 MW, 800s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW.
- The Russian 170GHz ITER gyrotron delivers 1 MW in 1000s pulses with 55% efficiency.
Megawatt-class long-pulse cylindrical cavity gyrotrons for ITER (170 GHz) and W7-X (140 GHz) [20]
Iter Tokamak – plasma by 2025

ITER ("The Way" in Latin)
Possible designs for defence

- A system based on frequency step-tunable sources with frequency steps of 2-3 GHz could be used together with simple, fixed launcher structures without loss of performance. [20]

- Gyrotrons with ultra-broadband CVD-diamond windows and fast-tunable superconducting gyrotron magnets (sweeping speed 0.2 T/5s corresponding to 1GHz/s) would allow stepwise frequency tuning in the seconds time-scale in the full D-band (110-170 GHz)
Design considerations

- For the defence application short pulses are desirable, so design optimisation should aim at short high power pulses
- Chirping allows coupling into any in-band resonances
- Circular polarisation of antenna allows coupling with any aperture orientation
Mil Mi-24 (Russian: Миль Ми-24; NATO reporting name: Hind)
The RS-24 Yars is an upgraded Russian intercontinental ballistic missile
Battle EMP generator Satchel-E (Russia)

Output pulse duration of 10-20 ns in the centimeter wavelength range exceeding 500 MW.

It will strike guidance systems and electronic precision-guided munitions and missiles at a distance of 10 km in a 60-degree sector, also UAV’s.

Serious disruption of navigation systems that threaten the performance of combat missions, can be observed at a distance of 40 kilometers.
The system creates on the surface of the target kV/m, which causes breakouts, disabling the electronics.
RANETS-E (Russia)
“Instead of using rounds of bullets or shells to destroy enemy targets, this new weapon, which can be seen in this video, will use directed microwave energy. This terrifying footage shows what Russia is claiming is the world’s first weapon to use microwave energy ‘death-rays’ to target military drones.”

http://www.mirror.co.uk/tech/russia-unveils-worlds-first-death-9043360
Igor Korotchenko, a chief officer in the National Defence, said: "We are talking about a prototype." He said that the weapon can aim "microwave pulses at powerful enemy targets with the aim of disabling their electronic equipment, which leads to a complete loss of functionality. "The most promising one for combat use can be disabling enemy tactical drones directly over the battlefield."
500 Megawatt Gyrotron devices could be deployed in LEO satellites

- Space Based Infrared Systems (SBIRS)
- Defense Support Program (DSP)
- Space Tracking and Surveillance System (STSS)
500 MW Pulsed, Chirped, Circular Polarisation, Gyrotrons in action, 60% energy efficiency
Some Conclusions

- Gyrotrons are capable of producing Megawatt power radiation at millimeter and submillimeter wavelengths
- **Gyrotrons are very efficient, circa 60%**
- Gryratrons can be made to chirp over wide frequency ranges
- **Gryratrons offer a very effective means of defence against advanced weaponry that relies on embedded electronics and multiple communication systems**
- Electronics, sensors and communication systems can be damaged from a distance of 40 kM
- **The ability to deliver directed beams is straightforward**
- Russia already has this technology to target Drones
References

1) Chris Chatwin, Rupert Young, Phil Birch, (2015), High Power Lasers & Systems, IET communities colloquium
2) "BBC NEWS – Science/Nature – ‘Laser jumbo’ testing moves ahead", bbc.co.uk.
3) PHILLIP SPRANGLE, BAHMAN HAFIZI,* ANTONIO TING, AND RICHARD FISCHER, High-power lasers for directed-energy Applications, Vol. 54, No. 31 / November 1 2015 / Applied Optics
4) V. Gapontsev, “2 kW CW Yb-doped fiber laser with record diffraction limited brightness,” in The European Conference on Lasers and Electro-Optics (CLEO Europe), Munich, Germany, 2005, paper CJ1-1-THU.
18) PM Birch, D Budgett, R Young, C Chatwin - Optical Engineering, 2002, Optical and electronic design of a hybrid digital-optical correlator system
The End
Gyrotron Schematics

1 - Cathode
2 - Gun coil magnets
3 - Electron beam
4 - Main magnet
5 - Cavity region
6 - Mode converter
7 - Collector
8 - Window
9 - THz radiation