Heightened impulsivity: associated with family history of alcohol misuse, and a consequence of alcohol intake

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/63267/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Heightened impulsivity: associated with family history of alcohol misuse, and a consequence of alcohol intake

Sandra Sanchez-Roige1, 2, David N. Stephens1 and Theodora Duka1

1School of Psychology, University of Sussex, Falmer, Brighton BN1 9QG, UK
2Current address: Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States

Corresponding Author:
Sandra Sanchez-Roige, Ph.D.
Department of Psychiatry
University of California San Diego
La Jolla, CA 92093
United States

Telephone: (619) 874-1426
E-mail: s5sanchezroige@ucsd.edu

Title: 109 characters (with spaces)
Abstract: 244 words
Text: 4884 words
No Tables: 3
No Figures: 4
References: 50
Supporting Information: Table S1-S5; Figure S1-S3; Supporting Materials and Methods; Results; References

Running title: Impulsivity, Family History and Acute Alcohol
Abstract

Background: Youths with Family History of alcoholism are at greater risk of developing Alcohol Use Disorder (AUD); heightened impulsive behaviour may underlie such increased vulnerability. Here we studied waiting impulsivity (previously suggested to predispose to alcohol drinking) in young moderate-to-heavy social drinkers (18-33 years old) characterised as family history-positive (FHP) and -negative (FHN) following an alcoholic or non-alcoholic (placebo) drink. Methods: Two groups of young male and female social drinkers (n=64) were administered an acute dose of alcohol (0.8g/kg) or placebo. One group (FHP; n= 24) had first-degree relatives with problems of alcohol misuse; the other group did not (FHN). Participants completed four variants of the Five-Choice Serial Reaction Time task, a task measuring waiting impulsivity. In addition, other types of impulsive behaviour were tested (by means of the Stop Signal Reaction Time, SST; Information Sampling Task, IST; Delay Discounting Questionnaire, DDQ, Two-Choice Impulsivity Paradigm, TCIP; and Time Estimation, TET). Results: Young FHP adults showed more premature responding than FHN when evaluated under increased attentional load (high waiting impulsivity), whilst, in contrast, they presented a more conservative strategy on the IST (less impulsive behaviour), compared to FHN. Acute alcohol impaired inhibitory control on the SST in all participants, and induced a marginal increase of premature responses, but did not affect other measures of impulsivity. Conclusions: Assessing for exaggerated waiting impulsivity may provide a potential endophenotype associated with risk for the development of alcohol addiction (i.e. offspring of alcoholics).

Key Words: impulsivity, family history of alcoholism, alcohol, binge drinking, social drinkers.
Impulsivity, a predisposition towards risky and premature responding, is potentially a maladaptive trait influencing excessive alcohol drinking and leading to alcohol use disorder (AUD). Different forms of impulsive behaviour are recognised (Evenden, 1999), which depend on different neural networks (Dalley et al., 2011). In the current report, we concentrate on “waiting” impulsivity, characterized in both rodents (Robbins, 2002, Sanchez-Roige et al., 2012) and humans (Voon, 2014, Sanchez-Roige et al., 2014a), as a tendency to premature responding in a reward-related task. Mouse strains predisposed to excessive alcohol consumption (compared to strains which are not) show heightened waiting impulsivity in the 5-choice serial reaction time task (5CSRTT) (Sanchez-Roige et al., 2014a). These findings lead to the suggestion that waiting impulsivity may predispose to poor control over alcohol drinking. In rodent models, exaggerated waiting impulsivity may also result from acute alcohol ingestion, or following long-term alcohol exposure: both acute doses of ethanol (Sanchez-Roige et al., 2014b, Oliver et al., 2009) and exposure of adolescent mice to binge-patterns of alcohol lead to increased impulsivity (Sanchez-Roige et al., 2014b).

Links between heightened impulsivity and excessive alcohol use have also been established in humans. However, with no comparable methods between the species for characterising impulsivity, it is unclear that data obtained from animals correspond to aspects of impulsivity of relevance to human alcohol abuse. The use of a human homologue of the mouse 5CSRTT (Sx-5CSRTT) has shown that among heavy social alcohol drinkers, binge-drinkers (compared to non-binge drinkers) are impaired in the human version of a task (Sanchez-Roige et al., 2014a). We now extend the mouse-human comparison to explore the effects of acute alcohol
on waiting impulsivity in humans at risk for alcohol misuse (FHP vs. FHN), with the aim of further understanding the role of “waiting” impulsivity in predisposing to AUD.

Positive family history is a consistent risk factor for AUD (for a review: Schuckit 2009), with heritability estimates ranging from 45-65%. FHP individuals are likely to initiate alcohol use earlier, and are at greater risk for AUD (e.g. Lieb et al., 2002). It is hypothesized that heightened individual risk for AUD, both familial and non-familial, may be mediated by impulsivity (Sher et al., 1991).

Impulsivity deficits may hence be present prior to initiation of alcohol abuse. Evidence from prospective studies shows that pre-existing levels of high-impulsivity in childhood are associated with early alcohol use, and alcohol misuse (Kirisci et al., 2006). Moreover, compared to FHN youth, the offspring of alcoholics tend to show greater impulsive behaviour: they are more likely to make impulsive errors, and show decision-making biases (for a review see: Salvatore et al., 2015). Behavioural deficits in FHP are associated with disruptions in frontostriatal circuitry (reviewed by Cservenka, 2015), systems necessary for efficient inhibitory control. Premorbid behavioural (impulsive) phenotypes in FHP youth may contribute to the heritable aspects of AUD.

We were therefore interested to study whether familial influences on alcoholism may be mediated by impulsivity traits. We addressed this question by assessing a number of impulsivity forms in individuals with and without a family history of alcoholism. If FHP individuals show higher impulsivity, even if they have not themselves developed alcohol problems, this may indicate premorbid behavioural phenotypes in FHP youth (‘impulsive endophenotype’) (Gottesman and Gould, 2003) associated with vulnerability to future alcoholism (Sher et al., 1991). Some forms of impulsivity have already been proposed as a behavioural endophenotype (produced reliable genetic associations; e.g. increased in siblings...
of drug abusers) mediating risk for other substance use disorders (stimulants), which may be
exacerbated by chronic drug exposure (Ersche et al., 2012). Data indicating that impulsivity is
highly heritable (e.g. VanderBroek et al., 2015) lends further support to the idea of impulsivity
as an intermediate phenotype for AUD (Peña-Oliver et al., 2016). However, the role of waiting
impulsivity as a premorbid factor for alcohol abuse, and its modification by acute alcohol in
the absence of AUD, remain unexplored.

As in the mouse, alcohol can trigger and exacerbate impulsive tendencies in humans (e.g.
Marczinski et al., 2005, Loeber and Duka, 2009), with decreased activity in frontal regions
explaining the alcohol-induced deficits (e.g. Nikolaou et al., 2013). Here we examined
impulsivity changes in individuals at risk for AUD (FHP), in the presence or absence of acute
binge alcohol exposure, compared to individuals not at familial risk (FHN).

To this aim, two groups, FHP and FHN young social drinkers participated in a single session
where they received 0.8g/kg of alcohol, or placebo, before performing the Sx-5CSRTT, to
assess anticipatory behaviour (premature responding), a measure of waiting impulsivity.
Participants were also characterized in four additional measures of impulsivity, based on
different operational definitions of the construct (Caswell et al., 2015). The Stop Signal Task,
used to assess ability to inhibit a prepotent response (“can’t stop”) (Logan, 1994), served as
an additional measure of ‘motor impulsivity’ (Dalley et al., 2011). Reflection Impulsivity
(inadequate information sampled before executing a response) was measured by the
Information Sampling Task (IST; Clark et al., 2006), and temporal impulsivity (preference for
immediate small over delayed large rewards) was measured by the Delay Discounting
Questionnaire (DDQ) (Richards et al., 1999) and the Two Choice Impulsivity paradigm (TCI)
(Dougherty et al., 2005). Finally, the Time Estimation Task (TET) was used to establish
relationships between impulsive behavioural tendencies and time perception. Impulsive personality traits of participants were evaluated by the Barratt Impulsivity scale (BIS).

Based on our previous findings (Sanchez-Roige et al., 2014a) we predicted familial risk for AUD would be reflected in increased “waiting” impulsivity, suggesting a potential endophenotype. We further predicted increased impulsive responding after acute doses of alcohol; compared to FHN subjects, we anticipated elevated impulsive responding in FHP subjects in the context of alcohol.

MATERIAL AND METHODS

Recruitment and Procedure

64 participants (30 male; age 18-35 years, M= 21.98, SD= 3.22) were recruited from the University of Sussex subject pool. Participants were assigned to FHP (24 participants) or FHN groups using scores from the Family Tree Questionnaire (Mann et al., 1985). Alcohol drinking patterns were calculated based on the Alcohol Use Questionnaire (Mehrabian and Russell, 1978): all participants were healthy moderate-to-heavy social drinkers (see Supplementary Material for further details of inclusion criteria), drinking 10-60 units of alcohol per week (one unit = 8 g of alcohol in UK). Participants were required not to be heavy smokers (<10 cigarettes/day): 18.3% had never smoked cigarettes, 11% were occasional smokers (1-5/day), 8% were moderate smokers (4-10/day); 68.8% had never used illicit recreational drugs, 26.6% indicated occasional use of cannabis (less than once per week).

Upon arrival at the laboratory, subjects were breathalysed (Lion Alcolmeter SD-400; Lion Laboratories, Barry, UK) to ensure zero breath alcohol levels (%BACw/v; BAC). Participants then completed:
a) *Personal Details Questionnaire* (age, date of birth, smoking status, current medication);

b) *Barratt Impulsiveness Scale*, version 11 (BIS-11; Patton et al 1995), a 30-item checklist that gives a total impulsivity score and three sub-scores of attentional, motor, and non-planning impulsiveness;

c) *Alcohol Use Questionnaire* (Mehrabian and Russell, 1978), *Alcohol Use Disorder Identification Test* (AUDIT; Saunders et al 1993), and *Structured Interview Questionnaire* (Duka et al. 2002, interview adapted for social drinkers: see Supplementary), to evaluate heavy drinking and/or active alcohol abuse or dependence;

d) *Drug Use Questionnaire* (Townshend and Duka, 2005), which provides information on duration of use, time since last use, and how often used for all the main drug categories. On the basis of the later, a drug use pattern is evaluated as follows: “no drug use”, “occasional cannabis use”, “regular cannabis use” (at least once a week), and “recent use of more than one type of illegal drug”.

e) *Family History Assessment*: Positive score: one or more first-degree relatives with alcohol-misuse history (as per Family Tree Questionnaire [Mann et al. 1985]; see Supplementary for further details);

f) *Beck Depression Inventory II* (BDI; Beck et al., 1996), a 21-item multiple choice checklist measuring severity of depression;

f) *Rey Auditory Verbal Learning Test* (RAVLT, Rey, A. (1941), list of 15 items that the participant must remember and recall, to measure short-term memory capacity;
and g) Alcohol visual analogue scale (VAS; Duka et al., 1998), a set of 90mm visual analogue scales to measure how much a mood state (contented, lightheaded and relaxed) applies to participants at that moment.

Prior to drink consumption, the participant’s body weight/height was recorded, and the Body Mass Index (BMI=(weight[lb]/height2 [in])*703) was calculated. Participants were administered a 0.8g/kg alcohol dose or placebo, according to a between-subjects randomized double-blind placebo-controlled design (see Loeber and Duka, 2009, for details). After a 10-minute break (post-drink), a further BAC was recorded and participants completed the VAS. Following instruction and practice trials, participants were presented with six computerised tasks (see below; Sx-5CSRTT, SST, IST, TCIP – random order; DDQ and TET - at the end of the experiment). At the end of the session (90 minutes), participants were again breathalysed, and completed the VAS. Participants were then informed of their breath alcohol levels and were required to remain in the laboratory until their BAC fell to below half the UK legal driving limit (.17 %BAC w/v). All participants gave informed consent to take part in the study, which was approved by the University of Sussex ethics committee. Participants were paid £15 (£2 for each additional hour).

Behavioural Measures of Impulsivity

The Sussex Five Choice Serial Reaction Time Task (Sx-5CSRTT) was administered using an iPad (iOS 8 operating system; Apple Inc; see Sanchez-Roige, 2014a for a detailed description). Participants were required to detect and respond to the brief (0.5s) highlighting of one of five moving visual stimuli. Responding before stimulus onset was considered a measure of poor inhibitory control, recorded as a premature response and followed by a 5s time-out period.
Following practice trials in which the stimulus was presented every 5s (ITI 5-s) participants performed four task variants: a fixed (fITI) and a variable (vITI) session under simple task conditions; and, in order to increase the attentional load, a fITI and vITI session in combination with a dual task (Hogarth et al., 2008) in which subjects were also required to respond to a 659 Hz tone by performing a key press with the non-dominant hand. Main outcome variables were ‘percentage of premature responding’ and ‘total number of premature responses’.

The Stop Signal task (SST; Logan, 1994) to test response inhibition; the Information Sampling Task (IST; Clark et al., 2006), to evaluate ‘reflection’ impulsivity by measuring how much information participant’s gather prior making a decision; a delay discounting questionnaire (DDQ; Richards et al., 1999); and Two Choice Impulsivity paradigm (TCIP; Dougherty et al., 2005), to assess preference for a small immediate over a large delayed reward; and the Time Estimation Task (TET) to evaluate the subject’s time perception were added. Main outcome variables included the calculated Stop Signal Reaction Time (‘SSRTi’) from SST; ‘number of boxes opened’ and ‘number of errors’ (fixed- and decreased-win conditions) from IST; the discounting curve (k parameter) from DDQ, and ‘proportion of immediate choices’ from the TCIP; and the subject’s ‘accuracy of performance’ in TET. See Supplementary material for details of the tasks and analysis of main variables.

Statistical analysis

Statistical analyses were performed using the “Statistical Package for Social Sciences” (SPSS, version 20.0). Baseline demographics and trait measurements were analysed with independent t tests. Breath alcohol concentrations (BAC) were analysed pre-cognitive tasks using univariate analysis; gender was subsequently included as a factor, to check that male and female BACs did not differ. Repeated measures ANOVA was used to compare BAC levels
and VAS scores across time (pre-, post-drink) as within-subject factors and FH and alcohol condition as between factors.

Following three-way ANOVA with FH (2 levels: FHP, FHN), alcohol condition (2 levels: alcohol, placebo) and gender (2 levels) as between factors, the effects of FH and alcohol dose on impulsivity were explored using a two-way ANOVA (as there were no gender differences, this factor was excluded from the analysis). Two-way analyses of covariance were run with both ‘Binge Drinking Score’ and ‘Age’ as covariates, as they represent important factors associated with impulsivity (e.g. Smith et al., 2015). In addition, a separate two-way analysis of covariance was run with ‘Total-BIS’, to ensure that the group differences in self-reported BIS were not influencing behavioural measures of impulsivity (see Supplementary). ‘BIS-attentional subscale’, ‘AUDIT’ scores were square-root transformed, ‘Binge score’, ‘AUQ’, ‘k’, ‘BDI’, ‘boxes opened’ (fixed win), ‘percentage of premature responses’ (4 sessions) were log_10 transformed, and ‘time estimation accuracy’ was arcsine transformed \(x' = 2 \text{arcsine} \left(\frac{V(x)}{100} \right) \) to obtain homogeneity of variance (Levene’s test), though untransformed means are shown throughout. If the assumptions of normality were violated, non-parametric statistics were used: ‘age’, ‘Daily cigarette use’, ‘RAVLT’, items from the semi-structured interview and from the Drug Use Questionnaire were analysed by Mann-Whitney U tests. Significance was set at \(\alpha = 0.05 \). Effect sizes are reported using eta values (\(\eta^2 \)) or \(r \).

Results

Baseline group demographics, trait measurements and drug use patterns

Participants were randomly allocated to the alcohol or placebo groups. The four groups were matched for age, gender and short-term memory capacity (see Table 1). Patterns of drinking
(units/week, binge scores, AUQ scores; AUDIT scores; $F < 0.498$, $p > .05$, $\eta^2 < .008$) or drug use
(cannabis, other illegal drugs; $U(64) < 368.50$, $p > .05$, $r = 0.21$) were similar between groups.
However, participants in the placebo group showed higher self-reported impulsiveness (total-
BIS; $F(1,63) = 6.980$, $p = .011$, $\eta^2 = .101$) than subjects in the alcohol group.
Group characteristics for the FHP and FHN groups are given in Table S1. Groups were matched
for age, gender and short-term memory capacity (RAVLT). FHP subjects did not differ from
FHN in measures of self-reported BIS-impulsivity, BDI scores, alcohol drinking patterns or
AUDIT scores ($t(62) < 0.519$, $p > .05$, $d = .12$, $r = .06$). However, in a structured interview 43.5%
of FHP subjects reported occasionally feeling guilty after drinking (vs. 10.3% in FHN groups;
$U(62) = 310.0$, $p = .010$, $r = 0.33$), and 21.7% drink to get high (vs. 5.1%, FHN; $U(62) = 374.0$, $p =$
.048, $r = 0.25$); 43.5% reported a tendency to occasionally drink without breaks (vs. 23.1%,
FHN; $U(62) = 357.0$, $p = .095$, $r = 0.21$).

Breath alcohol levels

As expected, BAC levels prior to testing in the cognitive tasks differed across alcohol conditions
(alcohol: $F(1,59) = 345.080$, $p = .001$, $\eta^2 = .787$; Table 1). Following task completion, BAC levels
were lower (time: $F(1,59) = 5.639$, $p = .021$, $\eta^2 = .080$); and again, as anticipated, differed across
treatment groups (alcohol: $F(1,59) = 738.870$, $p = .001$, $\eta^2 = .923$). No other effects or
interactions were found ($F < 0.123$, $p > .05$, $\eta^2 < .001$).

FHP’s performance on The Sussex-Five Choice Serial Reaction Time Task

Sx-5CSRTT performance of FHP and FHN subjects, with matching alcohol and placebo groups,
is illustrated in Fig. 1.
When the task was performed under single task conditions, no FH differences were found on premature responding, either during the fITI or vITI sessions (FH: \(F_s < 0.130, p_s > .05, \eta^2 < .002; \) with ‘Binge Drinking’ plus ‘Age’ included as covariates: \(F_s < 0.150, p_s > .05, \eta^2 < .003; \) Fig. 1A). Alcohol ingestion showed a tendency to increase premature responding during the first fITI session (alcohol: \(F(1,58) = 3.675, p = .06, \eta^2 = .063; \) Binge Drinking/Age: \(F(1,58) = 3.300, p = .075, \eta^2 = .056), \) but not the second vITI session (alcohol: \(F(1,58) = 1.129, p = .293, \eta^2 = .020; \) Binge Drinking/Age: \(F(1,58) = .439, p = .510, \eta^2 = .007). \)

When the task was performed under dual task conditions, again, no effects of FH or alcohol ingestion were detected for premature responding during the fITI session (FH or alcohol: \(F_s < 1.293, p_s > .05, \eta^2 = .023; \) Binge Drinking/Age: \(F_s < 1.349, p_s > .05, \eta^2 < .023; \) Fig. 1B). However, FH group differences emerged during the vITI-dual task session: FHP subjects showing a high percentage of premature responses (FH: \(F(1,58) = 4.291, p = .043, \eta^2 = .067; \) Binge Drinking/Age: \(F(1, 58) = 5.298, p = .025, \eta^2 = .078; \) Fig. 1B). Although alcohol did not increase premature responding in the vITI-dual task session (alcohol: \(F(1,58) = 1.310, p = .257, \eta^2 = .023; \) Binge Drinking/Age: \(F(1,58) = 0.986, p = .325, \eta^2 = .015; \) Fig. 1B), alcohol ingestion marginally increased the total number of premature responses across the four sessions (alcohol: \(F(1,58) = 3.761, p = .058, \eta^2 = .063; \) Binge Drinking/Age: \(F(1, 58) = 2.929, p = .093, \eta^2 = .048; \) Table 3). For any of the challenges, no FH by alcohol interactions appeared in the analysis (\(F(1,58) = 2.232, p = .141; \eta^2 = .035; \) Binge Drinking/Age: \(F(1,58) = 2.063, p = .157, \eta^2 = .031). \)

Both FH groups performed the dual task similarly (FH: \(F < 0.430, p_s > .05, \eta^2 = .006; \) Table 3), but alcohol ingestion decreased accuracy in detecting high tones (alcohol: fITI, \(F(1,59) = 16.840, p = .001, \eta^2 = .228; \) vITI, \(F(1,59) = 19.839, p = .001, \eta^2 = .260), \) with a tendency to be more acute in FHP participants (FH x alcohol: fITI: \(F(1,59) = 3.021, p = .088, \eta^2 = .041). \)
FHP’s performance on additional behavioural measures of Impulsivity

There were no FH differences during the SST task (FH: $F(1,59)= 0.742, p= .393, \eta^2 = .010$; Binge Drinking/Age: $F(1,58)= 0.747, p= .391, \eta^2 = .022$; Fig. 2), but alcohol increased SSRTi (alcohol: $F(1,59)= 15.193, p= .001, \eta^2 = .209$; Binge Drinking/Age: $F(1,58)= 13.652, p= .001, \eta^2 = .188$). In contrast, an effect of FH emerged in the IST, or ‘reflection’ impulsivity: compared to FHN, FHP subjects opened more boxes and made fewer errors (FH: $F(1,63)= 6.896, p= .011, \eta^2 = .101$, $F(1,63)= 5.590, p= .021, \eta^2 = .080$, respectively; Binge Drinking/Age: $F(1,58)= 6.751, p= .012, \eta^2 = .086$; $F(1,58)= 7.121, p= .010, \eta^2 = .093$) when the amount of win was fixed (Fig. 3A-B).

Under a decreased-win condition, FH groups performed similarly (FH: $Fs<3.547, ps > .05, \eta^2 = .054$; Binge Drinking/Age: $Fs<3.267, ps > .05, \eta^2 < .043$; Fig. 3C-D).

With regards to DDQ ‘temporal’ impulsivity, FH effects did not appear: all groups showed a similar linear decrease of indifference point as a function of increased delay (although a tendency for lower impulsivity was observed in FHP participants: $F(1, 61)= 3.085, p= .084, \eta^2 = .048$; Binge Drinking/Age: $F(1, 61)= 2.913, p= .093, \eta^2 = .047$; see Table 4 for k values, R^2 values >0.97). In addition, no effects of FH were detected on the accuracy of time estimation (FH: $F(1, 62)= 0.293, p= .590, \eta^2 = .005$; Binge Drinking/Age: $F(1, 61)= .391, p= .619, \eta^2 = .004$; Table 3). Alcohol did not disrupt performance in any of these tasks (alcohol: DDQ, IST, DDQ, TCIP, TET; $Fs<2.124, ps > .05, \eta^2 < .030$; Binge Drinking/Age: $Fs<1.441, ps > .05, \eta^2 < .019$), and other FH or alcohol by FH interactions were not detected ($F<2.096, ps > .05, \eta^2 < .032$; Binge Drinking/Age: $Fs<2.530, ps > .05, \eta^2 < .034$).

Mood changes

There were no significant baseline (pre-drink) group differences in VAS mood ratings (FH or alcohol effects: $F<2.116, ps > .05$). Following the drinking protocol, lightheaded ratings
changed (time: $F(1,60)= 68.948$, $p = .001$, $\eta^2 = .432$; see Table 2), and a significant time by alcohol condition interaction emerged ($F(1,60)= 27.983$, $p = .001$, $\eta^2 = .176$); lightheaded scores post- drink were higher in all participants compared to pre- drink ratings, and participants in the alcohol condition feeling more lightheaded than those in the placebo group. Ratings of relaxedness did not vary over time (time: $F(1,60)= 1.383$, $p = .244$, $\eta^2 = .020$), but a time by FH interaction revealed decreased relaxedness in FHP participants (Time x FH: $F(1,60)= 5.443$, $p = .023$, $\eta^2 = .079$). At the end of the drinking protocol, all participants were feeling more contented (time: $F(1,60)= 5.276$, $p = .025$, $\eta^2 = .076$; yet this effect was less apparent for FHP in the placebo condition, revealed by a marginal time by FH interaction: $F(1,60)= 2.963$, $p = .090$, $\eta^2 = .042$).

DISCUSSION

We set out to examine waiting impulsivity using the 5-CSRTT in young FHP adults in comparison to FHN individuals, following alcohol or placebo treatment. We also extend our observations to other types of impulsivity using a battery of impulsivity tasks. We found greater waiting impulsivity in FHP individuals when performing the task under a vITI in parallel with the dual task, irrespective of alcohol intoxication, suggesting a pre-existing vulnerability factor. Contrary to our expectation, we did not find evidence of increased impulsivity in FHP subjects following acute alcohol ingestion, although we did observe greater attentional impairments (a tendency for more omission errors [see Supplementary], and impaired high-tone detection in the Sx-5CSRTT) compared to FHN. Unexpectedly, FHP participants displayed a more cautious strategy during the IST revealing a dissociation of FH-effects. Personality traits of impulsivity were similar in FH groups. Although the groups did not differ in their alcohol drinking history, FHP reported more “drinking to get intoxicated”, and “feelings of guilt”
following consumption. Moreover, we found that alcohol exposure elevated impulsive
behaviour (inability to wait, or cancel a response), but, in contrast, did not affect reflection or
choice impulsivity.

FHP and ‘motor’ impulsivity: heightened ‘waiting’ impulsivity under challenging conditions
Heightened waiting impulsivity is a robust predictor of high drug taking in animal models
(Dalley et al., 2011). The introduction of parallel tests in rodents and humans showing that
premature responding was enhanced both in alcohol-naïve, high ethanol-consuming mouse
strains, and human binge drinkers (Sanchez-Roige et al., 2014a) suggests that this may also be
true for humans. We extended those findings by demonstrating here elevated ‘waiting’
impulsivity in FHP, suggesting further that reduced ability to wait may contribute to a pre-
existing vulnerability for high alcohol drinking. Recent data showing waiting impulsivity to be
impaired in binge drinkers and AUD individuals compared to control (Morris et al., 2015)
further supports our hypothesis. The finding that premature responding was associated with
lower connectivity in regions of the frontostriatal circuitry (Morris et al., 2015), regions also
implicated from rodent lesion studies (Dalley et al., 2011), indicates that the behavioural
deficit observed in FHP may be coupled with reduced function in frontostriatal networks.
Together, behavioural and neural correlates of premature responding may be
endophenotypic markers of AUD (Salvatore et al., 2015).

In another form of impulsive behaviour, impulsivity occurs as a failure to cancel actions when
a ‘stop’ signal is presented. Action cancellation in a SST task has been proposed as a ‘SSRT
endophenotype’ for stimulant dependence (Ersche et al., 2012). In the present study, SSRT
was not greater in FHP individuals. This finding confirms that impulsivity subtypes (waiting,
stopping) may occur independently of one another (Caswell et al., 2015), in keeping with them being governed by distinct neural networks (Morris et al., 2015).

Double dissociation of FH backgrounds on motor vs. reflection/choice impulsivity

The inability to weigh evidence, or ‘reflection’ impulsivity, is also critical to behavioural regulation. Binge drinkers (Townshend et al., 2014) and AUD participants (in abstinence) (Lawrence et al., 2009) have previously been shown to make decisions at higher levels of uncertainty, with a greater number of errors. And yet, in the current study, FHP individuals accumulated more evidence (opened more boxes) before making a decision, thus making fewer errors. This finding was unexpected; it suggests that FHP participants tolerated a smaller degree of uncertainty, and were more cautious in integrating the information gathered. Some participants in the present study (both FHP and FHN), although classified as moderate-to-heavy binge drinkers (Sanchez-Roige et al., 2014a), may be considered as heavy drinkers and potentially suffering from AUD, though no formal diagnosis was made; therefore, it seems possible that their heightened reflection impulsivity results from alcohol abuse, while FHP individuals may be more prone to greater risk aversion, as previously suggested (Banca et al., 2015).

Concerning the delayed discounting measures in which reward is devalued as a function of time, the findings are unclear. We (Sanchez-Roige et al. 2014a), and others (Banca et al., 2015), did not find differences in binge drinkers; nor was performance in this measure predictive of high alcohol drinking (Whelan et al., 2014). In FH related studies, the literature presents mixed results, but FHP individuals generally display biases towards immediate gratification (Dougherty et al., 2014, Smith et al., 2015). DD may thus be an intermediate phenotype for AUD, with a heritable component (VanderBroek et al., 2015).
In the present study, however, FHP, were marginally less prone to choose immediate rewards. Slower discounting may be accounted for by factors other than impulsivity, such as decreased sensitivity to rewards or risk aversion. However the effect was marginal. Other studies have failed to find differences in delay discounting (e.g. Herting et al., 2010, Petry et al., 2002). We suggest that the inconsistent findings in DDQ in FHP may be related to differences in the groups of participants (adolescence (Dougherty et al., 2015, Smith et al., 2015) vs. young adults) or in methods used to classify FH (well-characterised sample (Dougherty et al., 2014) vs. self-reports).

We further extended DDQ findings to TCIP performance, since both measures fall within the domains of ‘choice’ impulsivity, but TCIP uses real-time rather than imaginary delays. FHP did not differ from FHN subjects in this task, consistent with other reports (Acheson et al., 2011).

Acute ethanol effects

The present study confirmed previous data that alcohol reduces the ability to cancel pre-potent actions in humans (e.g. Caswell et al., 2013, Loeber and Duka, 2009). Regarding waiting impulsivity, in mice, ethanol administration increased premature responding in the 5-CSRTT (Sanchez-Roige et al., 2014b, Oliver et al., 2009). Here alcohol also increased the total number of premature responses in all participants, but this effect was marginal (potentially as a result of our relatively low sample size). Alcohol disrupted attentional performance, increasing the percentage of omitted trials, as observed in mice (Sanchez-Roige et al., 2014b). Those effects may result from a general reduction in the vigour of responding, or sedation under ethanol, consistent with the increased time to make a response and the decreases in speed to collect the points (see Supplementary). We did observe, however, enhanced Sx5CSRTT omissions in intoxicated FHP subjects (see...
Supplementary), suggesting that FHP are more vulnerable to the alcohol-induced attentional deficits, consistent with reduced electrophysiological responses to unexpected stimuli (Salvatore et al., 2015). Such an effect of alcohol may contribute in FHP to drinking without attending to cues in the environment that signal the need to stop drinking further.

With regards to ‘reflection’ impulsivity, alcohol ingestion did not alter performance on the IST task. This observation appears at first sight to be inconsistent with findings showing that alcohol impaired performance in a planning task (Weissenborn and Duka, 2003), or increased difficulty in error-monitoring during naturalistic conditions (real money in a gambling task) (Lyvers et al., 2015). However, IST does not challenge problem-solving in the same manner as the above-mentioned tasks, and may be a truer measure of reflection impulsivity (information gathering before a response).

There was no main effect of alcohol on DD, in line with several other studies (Caswell et al., 2013, Dougherty et al., 2008, Richards et al., 1999). It is possible that DD may be impaired only at high BACs (Ortner et al., 2003), since in the current study, participants were on the descending curve of BAC at time of testing; or due to the use of hypothetical delays (ethanol generally impairs DD in rodents, where real-time delays are used (e.g. Olmstead et al., 2006). However, there were also no effects of alcohol on TCI P, where the delays in reward delivery are not hypothetical. Collectively, the effects of alcohol on impulsivity are dissociable (‘motor’ but less solid evidence for ‘reflection’ or ‘choice’ impulsivity).

The lack of a greater effect of acute alcohol on impulsivity measures in FHP individuals may be contrasted with our previous report that a (small) 0.5g/kg alcohol dose induced premature responding to a greater extent in high-impulsive, ethanol preferring mice (vs. low impulsive, non-ethanol preferring mice (Sanchez-Roige et al., 2014b), suggesting that familial predisposition to alcoholism does not correspond in a simple fashion to mouse genetic
Regarding SST (‘motor’ impulsivity subtype), alcohol did not induce greater impairments in FHP subjects, although others have shown less impairment in FHP than FHN subjects (Kareken et al., 2013). Similarly, measures of reflection or choice impulsivity were not affected by alcohol and FH, suggesting that impulsivity deficits in FHP subjects may (more likely) be premorbid, and not merely a consequence of alcohol abuse.

Individuals vary widely in their subjective experience (stimulant, sedative) of the pharmacological and neurobehavioral effects of alcohol. When they were assessed at the end of testing, FHP individuals in the alcohol condition experienced reduced relaxation relative to FHN, similar to previous reports indicating fewer sedative effects as BAC level declines (Ray et al., 2010). This is important, as less sedation may elevate future alcohol consumption (King et al., 2014).

We recognize study limitations. The role of premorbid impulsivity as a predictor of high alcohol drinking cannot be easily disentangled from the consequences of drinking history, as impulsivity measures are almost inevitably assessed after a period of alcohol use. However, in our sample participants were all moderate-to-heavy-alcohol social drinkers, with FHP and FHN reporting drinking similar quantities of alcohol. Moreover, we demonstrated that the prevalence of high impulsivity in FHP subjects was still observed after controlling for the potential effects of ‘binge drinking scores’ and ‘age’ (possibly associated with extended alcohol use). Secondly, FH assessment relies on self-report data, which are susceptible to retrospective biases. For instance, participants might be unaware of parental AUD (particularly if their parents recovered before the participants were aware of their condition).

Future research may benefit from more fully structured diagnostic interviews. Additionally, FHP group required alcohol-related problems in at least one biological parent or sibling, which may have resulted in heterogeneous FH backgrounds; on the other hand, mothers were not
excluded, possibly allowing individuals with fetal alcohol exposure to be included in the group.

Lastly, as a consequence of randomisation, alcohol/placebo groups were not well matched with regard to BIS-impulsivity trait (subjects in the placebo group scored higher). However, these baseline differences do not seem to explain the alcohol-induced effects (covariate analysis). Nonetheless, using a within-group design in future studies may reduce variance and clarify the effects of acute alcohol.

Clinical implications and concluding remarks

FHP individuals exhibited a different pattern of impulsive behaviour from FHN; FHP showed greater waiting impulsivity, but less reflection impulsivity. Impaired performance in waiting impulsivity may offer a measure of impulsivity that represents a premorbid risk factor for heavy drinking (Voon, 2014; and the present report), and one that may be modified by acute alcohol intake. Importantly acute alcohol induced attentional deficits (increase in omissions) in FHP individuals, possibly facilitating deficits leading to alcohol abuse. Deficits in ‘stopping’ are evident following acute doses of alcohol, but its role as a premorbid factor is less clear.

That our findings were not consistent across impulsivity subclasses (and that the measures were not correlated [Supplementary]) may suggest that different types of impulsivity contribute to different aspects of alcohol misuse and indicate the importance of employing a broad range of impulsivity measures rather than a single test. Disentangling the biology of high waiting impulsivity (‘endophenotype’) may increase the power to detect the biological factors underlying the risk for AUD.

Acknowledgements
Study supported by the University of Sussex. We thank Ms. Kate Doran and Ms. Georgina Smalldridge for help in preparing the beverages. Adhering with the journal guidelines (reference number limitations), we apologize to many colleagues for being unable to cite their work.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.
506 References
507
508 Acheson A, Richard DM, Mathias CW, Dougherty DM (2011) Adults with a family history of
509 alcohol related problems are more impulsive on measures of response initiation and
511
513 Reflection impulsivity in binge drinking: behavioural and volumetric correlates. Addict
515
518
520 of impulsivity. Personality and individual differences 76:68-74.
521
522 Caswell AJ, Morgan MJ, Duka T (2013) Acute alcohol effects on subtypes of impulsivity and the
524
527
530
531 Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive
533
535 discounting differentiates pre-adolescents at high and low risk for substance use
536 disorders based on family history. Drug Alcohol Depend 143:105-111.
537
539 Behavioral Impulsivity and Risk-Taking Trajectories Across Early Adolescence in Youths
With and Without Family Histories of Alcohol and Other Drug Use Disorders. Alcoholism, clinical and experimental research 39:1501-1509.

FIGURE LEGENDS

Fig. 1. Five-Choice Serial reaction time task performance (mean ± SEM) by family history status (FH) and alcohol; ‘waiting’ impulsivity levels during the simple task (A) and in combination with the dual task (B). Alcohol ingestion marginally increased premature responses during the first challenge ($p = .058$; A). Under the vITI dual condition, FHP participants had more premature responses than FHN ($p = .043$; B), suggesting greater waiting impulsivity, irrespective of the acute effects of alcohol.

Fig. 2. Stop Signal Reaction Times (milliseconds; mean ± SEM) on the Stop Signal task for placebo and acute alcohol, with matching FH positive and negative groups. Alcohol elevated SSRTi scores ($p = .001$; a higher SSRT indicates greater motor impulsivity). (#) $p = .059$, # $p < .05$ alcohol vs. placebo (same FH group).

Fig. 3. Information Sampling Task performance (mean ± SEM): number of boxes opened (A-C) and errors (B-D). Alcohol did not disrupt performance on this task ($ps > .05$). FHP subjects were more cautious than FHN: they opened more boxes ($p = .011$) and made fewer errors ($p = .021$) when the amount of win was fixed (A-B). When the challenge increased (decreased win for every box opened, C-D), all groups performed similarly. * $p < .05$ ** $p < .01$ FHP vs. FHN.

Fig. 4. Two choice Impulsivity paradigm performance: immediate choices and maximum number of consecutive delayed choices (mean ± SEM). Although visual inspection of the graph suggests greater tendencies to choose risky (immediate) choices under the effects of acute alcohol, alcohol did not significantly disrupt performance on this task. FHP and FHN participants performed similarly ($ps > .05$).
LIST OF FIGURES

Figure 1

A

B
Figure 3

Simple Task

- Premature responses (%)
- Placebo
- Alcohol

Dual Task

- *p < 0.05

B

- Omissions (%)

A

- FHN
- FHP

A

- FHN
- FHP
Figure 4

![Graph showing SSRT and % Correct Go for FHN and FHP under Placebo and Alcohol conditions.](image)

- SSRT: Placebo vs. Alcohol
- % Correct Go: Placebo vs. Alcohol

- FHN: Placebo vs. Alcohol
- FHP: Placebo vs. Alcohol

[Significance marks: #]
TABLE 1. Group characteristics (age, vocabulary, alcohol use, smoking) and trait measurements (self-reported impulsivity ratings) at baseline for placebo and alcohol dose (0.8 g/kg) groups

<table>
<thead>
<tr>
<th></th>
<th>FHN Placebo</th>
<th>FHN Alcohol</th>
<th>FHP Placebo</th>
<th>FHP Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>19 (8m, 11f)</td>
<td>21 (10m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 6f)</td>
</tr>
<tr>
<td>Age °</td>
<td>21.95 ± 3.22</td>
<td>21.714 ± 3.26</td>
<td>22.50 ± 3.50</td>
<td>22.00 ± 3.28</td>
</tr>
<tr>
<td>Cigarette per day (N)</td>
<td>1.42 ± 3.01 (S)</td>
<td>0.76 ± 2.07 (3)</td>
<td>0.33 ± 0.88 (2)</td>
<td>0.33 ± 0.88 (2)</td>
</tr>
<tr>
<td>RAVLT *</td>
<td>9.42 ± 1.98</td>
<td>8.95 ± 1.56</td>
<td>9.33 ± 2.64</td>
<td>8.92 ± 1.83</td>
</tr>
<tr>
<td>Total Score</td>
<td>66.89 ± 11.02</td>
<td>59.67 ± 7.75 (bb)</td>
<td>66.08 ± 8.04</td>
<td>60.92 ± 9.05 (bb)</td>
</tr>
<tr>
<td>Attentional subscale ¥</td>
<td>18.11 ± 3.54</td>
<td>15.57 ± 3.64 (b)</td>
<td>17.42 ± 3.85</td>
<td>16.67 ± 3.92 (b)</td>
</tr>
<tr>
<td>Motor subscale</td>
<td>24.11 ± 4.67</td>
<td>22.48 ± 4.38 (b)</td>
<td>24.50 ± 4.08</td>
<td>21.75 ± 3.67 (b)</td>
</tr>
<tr>
<td>Non-planning subscale</td>
<td>24.68 ± 5.27</td>
<td>21.61 ± 3.64 (b)</td>
<td>24.17 ± 4.01</td>
<td>22.5 ± 4.36 (b)</td>
</tr>
</tbody>
</table>

Alcohol Use Questionnaire

Units* of alcohol per week §	19.28 ± 7.99	20.03 ± 11.01	22.76 ± 14.94	20.17 ± 8.64
Binge score §	26.74 ± 18.97	28.84 ± 24.14	22.50 ± 12.97	27.50 ± 15.94
Alcohol Use score	46.02 ± 24.17	48.42 ± 30.97	45.26 ± 25.79	46.74 ± 16.86
Alcohol Age onset	15.42 ± 1.89	16.14 ± 1.59	15.75 ± 1.48	14.50 ± 2.07 (c)
AUDIT ¥	10.68 ± 5.25	9.14 ± 3.79	10.17 ± 4.37	10.00 ± 4.57

Drug Use Questionnaire (% | N)°

No drug use	47.40 (9)	66.70 (14)	41.70 (5)	33.30 (4)
Occasional cannabis use	31.60 (6)	19.0 (4)	33.30 (4)	25.0 (3)
Regular cannabis use	21.10 (4)	14.30 (3)	25.0 (3)	41.70 (5)
BDI §	5.68 ± 6.07	5.05 ± 4.72	4.83 ± 4.49	7.41 ± 5.35
BAC pre	0	1.04 ± 0.20	0	0.95 ± 0.40
BAC post	0	0.91 ± 0.14	0	0.83 ± 0.19

Abbreviations: ° non-parametric; RAVLT, Rey Auditory Verbal Learning Test; ¥ SQRT transformed; * One alcohol unit = 8h of alcohol; § log_10 transformed; BDI, Beck Depression Inventory; BAC, breath alcohol concentration. (°) p = .06, (b) p < .05, (bb) p < .01, Alcohol effects; (c) p < .05, FH x Alcohol interaction. Values are expressed as mean ± SD.
<table>
<thead>
<tr>
<th>VAS</th>
<th></th>
<th>FHN</th>
<th>Placebo</th>
<th>Alcohol</th>
<th>Placebo</th>
<th>Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>Lightheaded</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Relaxed</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contented</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.74 ± 3.72</td>
<td>15.95 ± 4.67</td>
<td>11.62 ± 3.97</td>
<td>23.67 ± 7.06</td>
<td>9.17 ± 3.72</td>
<td>23.67 ± 7.06</td>
</tr>
<tr>
<td>66.63 ± 4.02</td>
<td>73.58 ± 3.85</td>
<td>55.47 ± 3.92</td>
<td>66.47 ± 4.79</td>
<td>69.67 ± 4.75</td>
<td>62.17 ± 5.4</td>
<td></td>
</tr>
<tr>
<td>59.47 ± 5.04</td>
<td>68.05 ± 4.81</td>
<td>53.95 ± 4.21</td>
<td>63.28 ± 4.55</td>
<td>66.33 ± 5.06</td>
<td>60.67 ± 5.44</td>
<td></td>
</tr>
</tbody>
</table>

* p< .05, *** p< .001 time effect; a a a p< .001 time * alcohol interaction; b p< .05 time * FH interaction.

Values are expressed as mean ± SD.
TABLE 3. Additional impulsivity measures for family history and alcohol groups.

<table>
<thead>
<tr>
<th></th>
<th>FHN Placebo</th>
<th>FHN Alcohol</th>
<th>FHP Placebo</th>
<th>FHP Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Estimation, N</td>
<td>19 (8m, 11f)</td>
<td>21 (9m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 6f)</td>
</tr>
<tr>
<td>Accuracy #</td>
<td>85.65 ± 11.59</td>
<td>81.68 ± 13.48</td>
<td>84.06 ± 12.08</td>
<td>86.28 ± 11.66</td>
</tr>
<tr>
<td>Stop Signal Task, N</td>
<td>19 (8m, 10f)</td>
<td>21 (9m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 4f)</td>
</tr>
<tr>
<td>Go Reaction time</td>
<td>563.40 ± 112.66</td>
<td>575.39 ± 113.99</td>
<td>493.39 ± 116.81</td>
<td>552.74 ± 77.95</td>
</tr>
<tr>
<td>Delay Discounting, N</td>
<td>19 (8m, 11f)</td>
<td>21 (9m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 5f)</td>
</tr>
<tr>
<td>k value §</td>
<td>0.006 ± 0.12</td>
<td>0.041 ± 0.11 (a)</td>
<td>0.004 ± 0.01</td>
<td>0.002 ± 0.01</td>
</tr>
<tr>
<td>5CSRTT, N</td>
<td>19 (8m, 11f)</td>
<td>21 (9m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 5f)</td>
</tr>
<tr>
<td>Premature responses total</td>
<td>6.53 ± 3.61</td>
<td>10.32 ± 9.68 (b)</td>
<td>8.41 ± 7.40</td>
<td>12.50 ± 10.0</td>
</tr>
<tr>
<td>Dual Task, N</td>
<td>19 (8m, 11f)</td>
<td>21 (9m, 11f)</td>
<td>12 (6m, 6f)</td>
<td>12 (6m, 6f)</td>
</tr>
<tr>
<td>Accuracy Responding fITI</td>
<td>86.58 ± 3.52</td>
<td>80.25 ± 3.98 (bb)</td>
<td>89.83 ± 4.12</td>
<td>71.33 ± 4.03</td>
</tr>
<tr>
<td>Accuracy Responding vITI</td>
<td>90.94 ± 2.11</td>
<td>73.95 ± 5.25 (bb)</td>
<td>91.46 ± 3.73</td>
<td>68.08 ± 4.79</td>
</tr>
</tbody>
</table>

Abbreviations: # arsine transformed, § log_10 transformed. (a) \(p=0.084 \), FH effects; (b) \(p=0.058 \), \(p<0.05 \), \(p<0.001 \); (c) \(p=0.088 \), FH x Alcohol interaction. Values are expressed as mean ± SEM.