Tetranuclear Zn2Ln2 coordination clusters as catalysts in Petasis borono-Mannich multicomponent reaction

Kumar, Prashant, Griffiths, Kieran, Lymeroupolou, Smaragda and Kostakis, George E (2016) Tetranuclear Zn2Ln2 coordination clusters as catalysts in Petasis borono-Mannich multicomponent reaction. RSC Advances, 6 (82). pp. 79180-79184. ISSN 2046-2069

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/62364/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Tetraneuclear Zn₂Ln₂ Coordination Clusters as catalysts in Petasis Borono-Mannich Multicomponent Reaction

Prashant Kumar, a Kieran Griffiths, a Smaragda Lymperopoulou, a George E. Kostakis a

We report herein for the first time the efficiency of heteronuclear Zn/Ln coordination clusters (CCs) as catalysts for the multicomponent Mannich-type condensation that involves amines, aldehydes and boronic acids, known as Petasis borono-Mannich (PBR) reaction. The reaction proceeds in very good to excellent yields (84-98%, 17 products) at room temperature with catalyst loadings as low as 1.0 mol%.

Introduction

The coordination chemistry of 3d and 4f polynuclear coordination clusters (CCs) offers many opportunities to connect Chemistry and Materials Science. The possibility of combining the properties of 3d as well 4f elements within one molecule has received tremendous attention because it as Petasis borono-Mannich (PBR) reaction has received attention due to the fascinating structures as well 4f elements within one molecule has received tremendous attention. Materials Science. The possibility of combining the properties of 3d materials, in fewer steps, and in a shorter time when the reactions are carried out in a combinatorial way.

Multicomponent reactions (MCRs) dominate synthetic chemistry for the following reasons; they yield products from simple starting materials, in fewer steps, and in a shorter time when the reactions are carried out in a combinatorial way. Among these transformations the Mannich-type condensation that involves amines, aldehydes and boronic acids, developed by Petasis, known as Petasis borono-Mannich (PBR) reaction has received considerable attention because it produces skeletons that can easily converted to amino acids, heterocycles and alkylaminophenols.

More specific, the reaction shown in Scheme 1 in which boronic acids react with amines and salicylaldehydes yield in a single step novel aminophenol derivatives which are suitable for the preparation of dihydro-1,3-oxazines, triarylmethanes, and polycyclic N,O-acetals. It is worth noting that aldehydes lacking an OH group in position 2 failed to deliver the desired product, showcasing the importance of the hydroxyl group in the aldehyde to activate the boronic acid. The first report for the specific transformation shown in Scheme 1 incorporated a reaction at 90°C, in dioxane as solvent, in 16 hours and in absence of catalyst in very good yields. In 2004, Tye et al developed a rapid, microwave assisted protocol for carrying this reaction that required a 10 min reaction time. In 2009, Gois et al, reported the synthesis of several alkylaminophenols in moderate to good yields, in water, at 80°C, in absence of catalyst. Recently, an effective and rapid synthesis was carried out using protonated trititanate (H₃TiO₃) nanotubes as a heterogeneous solid–acid catalyst. However, these methods suffer from a number of disadvantages such as high temperatures, high catalyst loadings (10%) and long-time reactions.

We recently started to study the catalytic properties of 3d/4f CCs stabilized by the Schiff base organic ligand [(E)-2- hydroxy-3-methoxybenzylidene- amino)phenol], H₂L. These CCs are very easily accessible in two steps. The first step involves the synthesis of the CC in high yields (>80%) from cheap and commercially available materials (o-vanillin and 2-aminophenol) and the second step involves the synthesis of the CC in high yields (>80%) at ambient conditions. We showed that compounds [Zn₄-II₃-Ln(NO₃)₂(DMF)₆] [5] (Figure 1) where Ln is Y (5Y), Nd (5Nd), Gd (5Gd), Dy (5Dy), Tb (5Tb) and Yb (5Yb) retain their core intact in solution as confirmed by ESI-MS, EPR and NMR and are highly efficient catalysts in two...
Friedel-Crafts type reactions of indole; with aldehydes15 and with substituted nitro-styrenes.16 In both cases, the reactions proceed smoothly with as low as 1 mol\% catalyst loadings, in environmentally friendly solvents, with excellent yields (80-100\%) and with wide substrate scope. Having in mind that the Zn-Y/Ln metals are very close (~ 3.3\SI{Å}) in this specific topology and observing a chelation preference of aldehydes17 to Y/Ln metals in 5, we envisioned that these catalysts would be an ideal synergistic template for the MCR reaction shown in Scheme 1. Therefore, we employed compounds 5 as catalysts in the title reaction (Scheme 1) and the results of this study are presented herein.

Experimental section

General Methods

All chemicals and solvents were purchased from Sigma Aldrich, S. D. Fine Chemicals, and commercial suppliers. The progress of the reaction was monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates. Products were purified by column chromatography on silica gel (60–120 mesh). NMR spectra were collected using a Bruker Advance III HD 500 MHz Spectrometer. The 1H and 13C NMR spectroscopic data were analysed with a 500 MHz spectrometer in either CDCl\textsubscript{3}. Chemical shifts are reported in parts per million (\SI{}{ppm}) relative to tetramethylsilane as the internal standard. The coupling constants (J) are reported in Hz, and the splitting patterns of the proton signals are described as s (singlet), d (doublet), t (triplet), and m (multiplet).

Synthesis of complexes

All CCs were synthesised according to the literature.15

General Procedure for the Multicomponent Reaction

All experiments were carried out in the open atmosphere and on a mmol scale. A 10 ml round bottom flask was charged with catalyst (0.50 mmol), 5 mL solvent, 1.0 mol % 5Dy catalyst, room temperature. We then decided to identify the influence of the temperature on the catalytic performance. The reactions were carried out at various temperatures ranging from room temperature to 120°C (Table 3, entries 1–6). At room temperature (Table 3), the yield of 4aaa was 96\%, but 0% at 0°C. Lower yields were obtained at 60, 80, 100 and 120°C (Table 3, entries 3–6), therefore the following reactions were performed at temperature.

We then decided to identify the influence of the temperature on the catalytic performance. The reactions were carried out at various temperatures ranging from room temperature to 120°C (Table 3, entries 1–6). At room temperature (Table 3), the yield of 4aaa was 96\%, but 0% at 0°C. Lower yields were obtained at 60, 80, 100 and 120°C (Table 3, entries 3–6), therefore the following reactions were performed at temperature.
After optimizing the reaction conditions, we varied the loadings of catalyst 5Dy (Table 4). It was sufficient to use a catalyst loading of 1.0 mol% to obtain a yield up to 96% (Table 4, entry 3). An increase of the catalyst loading from 1.0 mol% to 5 mol% led to remarkable decrease in the yield of the desired product 4aaa (Table 4, entries 3-6).

Table 3. Influence of the temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature [°C]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>room temperature</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>62</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1a (0.50 mmol), 2a (0.50 mmol), 3a (0.50 mmol), 5 mL solvent, 1.0 mol % 5Dy catalyst, room temperature. *b Isolated yield by column chromatography.

Further, a decrease in the catalyst loading to 0.5 mol% also showed lower yield of desired product 4aaa (Table 4, entry 2). In absence of catalyst a 40% conversion is observed (Table 4, entry 1). Finally, we determined that the use of 1.0 mol % 5Dy, in DME and at room temperature were the optimal conditions to further explore the scope of the MCR.

Table 4. Catalyst 5Dy loading

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst loading [5Dy mol%]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>24</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1a (0.50 mmol), 2a (0.50 mmol), 3a (0.50 mmol), 5 mL solvent, 1.0 mol % 5Dy catalyst, room temperature. *b Isolated yield by column chromatography.

To demonstrate the applicability of the optimised reaction conditions, different secondary amines, aldehydes and boronic acids were employed in this MCR, using 5Dy as catalyst (Table 5). The reaction proceeds in very good to excellent yields (84-98%, 17 products) at room temperature with catalyst loading 1.0 mol%. Compound 4aba was characterized via single crystal X-Ray crystallography (see Figure S1). Very good yields were obtained for the reaction involving indoline as secondary amine (Table 5), whereas the reaction with N-methylaniline, and N-benzylmethylamine, gave very good yields, 94 and 93%, respectively (Table 5). The presence of an electron donating group in the para position of boronic acid gives the multicomponent product in very good yields, whereas the nature of secondary amine influences the total yield (Table 5). Compounds 4cab, 4cea, 4cab and 4ceb (allyl functional group) were isolated in moderate yields. Moreover, the MCRs between salicylic aldehyde or o-vanillin, secondary amines and benzene 1, 4-diboronic acid afforded products 4aac, 4bac, 4aec and 4bec in very good yields (Table 5). To the best of our knowledge, this is the first time that benzene 1, 4-diboronic acid is successfully involved in the titled reaction. It is worth mentioning that the reaction does not proceed with the use of primary amines or benzaldehyde indicating the importance of the hydroxyl group in the aldehyde to activate the boronic acid.

Table 5. 5Dy catalysed MCR of aldehydes, amines and boronic acids.

![Chemical structures](image1)

*a Reaction conditions; aldehyde, 0.5 mmol; substituted indole, 1 mmol; EtOH/H$_2$O (2:1) 10mL; room temperature; 12h. 2.5% Loading of 5Dy.

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3
Notwithstanding, the MCR with 2-methoxy-benzaldehyde, indole and boronic acid yields the desired product (as shown by the presence of a peak in the region of 5.30 ppm in the 1H NMR spectra, corresponding to the tetra substituted carbon atom), however all efforts to purify it by column chromatography were not successful.

Altering the 4f centres without changing the core topology in 5Ln, allows the use of a pallet of techniques [NMR (for 5Y), EPR (for 5Gd), UV-Vis] to study in situ a catalytic reaction. In the present case, to gain further information on the plausible mechanism we attempted to monitor the reaction by NMR and UV-Vis. Efforts to monitor the catalytic cycle by NMR, using the diamagnetic 5Y as catalyst, were not successful due to solubility issues. Saliylic aldehyde shows a broad peak in the UV region prohibiting thus a complete study, however according to our previous UV-Vis binding studies, aldehydes prefer coordination to Ln over Zn. Having all these in mind, we envision the plausible mechanism shown in Scheme 2. The first step of the cycle involves the coordination of aldehyde to Ln metal and secondary amine to Zn metal centres and giving rise to N-substituted Zn-complex in step 2. Then, the reaction of the boronic acid with N-substituted Zn-complex (step 2) affords the desired final compounds with the release of boronic acid (steps 3 – 5) with the formation of transition state in step 5.

![Scheme 2. Proposed reaction mechanism](image)

Conclusions

Compound 5Dy was successfully employed for the first time as catalyst in the PBR MCR (Scheme 1) exhibiting excellent efficacy at room temperature, in short time, with 1% loading and excellent yields. The present successful paradigm adds value on the usefulness of 5Ln CCs as catalysts. These species can efficiently catalyse at room temperature and low loadings, two different type of transformations, Friedel-Crafts alkylation and the present MCR, thus opening new directions in 3d/4f coordination chemistry. We currently exploring the catalytic efficiency of 5Ln to other MCRs and organic transformations as well to domino reactions. Involvement of chiral ligands for the synthesis of 3d/4f CCs to achieve enantioselectivity and immobilization of 5Ln are also currently under investigation in our laboratory.

Acknowledgements

We thank the EPSRC (UK) for funding (grant number EP/M023834/1, PDRA position for P.K.) and the University of Sussex for offering PhD position to K.G.

References

40. YIII is not a lanthanide, but has similar ionic radii to HoIII and catalytic behaviour to DyIII. Furthermore, the Y derivatives can be studied by 89Y-NMR.