Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/62053/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Title: Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment

Authors: Tim Newbold1,2,*, Lawrence N. Hudson3, Andrew P. Arnell1, Sara Contu3, Adriana De Palma3,4, Simon Ferrier5, Samantha L. L. Hill1,3, Andrew J. Hoskins5, Igor Lysenko4, Helen R. P. Phillips3,4, Victoria J. Burton3, Charlotte W.T. Chng3, Susan Emerson3, Di Gao3, Gwilym Pask-Hale3, Jon Hutton1,6, Martin Jung7,8, Katia Sanchez-Ortiz3, Benno I. Simmons3,4, Sarah Whitmee2, Hanbin Zhang3, Jörn P.W. Scharlemann8,1, Andy Purvis3,4

Affiliations:
1United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK.
2Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
4Department of Life Sciences, Imperial College London, Silwood Park, London SL5 7PY, UK.
5CSIRO Land and Water Flagship, Canberra, Australian Capital Territory 2601, Australia.
6Luc Hoffmann Institute, WWF International, 1196 Gland, Switzerland.
7Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
8School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.

*Corresponding author. E-mail: t.newbold@ucl.ac.uk.

One Sentence Summary: Land use has reduced biosphere intactness below safe limits across most of the terrestrial surface, especially in grassland biomes.

Abstract: Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary (‘safe limit’). We estimate that land use and related pressures have already reduced local biodiversity intactness – the average proportion of natural biodiversity remaining in local ecosystems – beyond its recently-proposed planetary boundary across 58.1% of the world’s land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas, is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts towards long-term sustainable development.

Main Text:
Land use and related pressures have been the main drivers of terrestrial biodiversity change (1) and are increasing (2). Biodiversity has already experienced widespread large net losses (3),...
potentially compromising its contribution to resilient provision of ecosystem functions and services, such as biomass production and pollination, that underpin human wellbeing (4–7). Species-removal experiments suggest that loss of ecosystem function accelerates with ongoing species loss (5), implying there may be thresholds beyond which human intervention is needed to ensure adequate local ecosystem function (8, 9). The loss of 20% of species – which affects ecosystem productivity as strongly as other direct drivers (5) – is one possible threshold, but it is unclear by which mechanism species richness affects ecosystem function, and whether there are direct effects or only effects on resilience of function (6, 7). Whereas this proposed safe limit comes from studies of local ecosystem health, the Planetary Boundaries framework (8, 9) considers longer-term maintenance of function over much larger (biome to global) scales. At these temporal and spatial scales, the maintenance of function depends on functional diversity – the ranges and abundances of the functional traits of the species present (8, 10). As direct functional trait data are lacking, the Biodiversity Intactness Index (BII: the average abundance of originally present species across a broad range of species, relative to abundance in undisturbed habitat; (11)) is suggested as the best metric (8, 9). The safe limit is placed at a precautionary 10% reduction in BII, but it might be as high as a 70% reduction (9).

A key uncertainty when estimating safe limits concerns the value of species not present in the undisturbed ecosystem. Such species could benefit ecosystem functioning, have no effect (as assumed by the BII), or even impair it (12–15). Most models estimating net human impacts on biodiversity (3, 16) treat novel and originally-present species as functionally equivalent, whereas experimental studies manipulate species originally present (17).

Given the possibly severe consequences of transgressing safe biodiversity limits, global assessments of relevant metrics are needed urgently. Data limitations have hampered efforts to date: BII has so far only been estimated, from expert opinion, for seven southern African countries (11). More recently, we combined global models linking land-use pressures to local biodiversity with global land-use maps. We estimated that net reductions in local species richness exceeded 20% across 28% of the world’s land surface by 2005, while 48.7% of land had seen net reductions in total abundance of ≥ 10% (3). However, our projections of net effects did not account for any reductions of originally-present diversity that were offset by influx of novel species (18), as well as being at too coarse a scale (~50 km²) to be relevant for local ecosystem functioning and decision making. Furthermore, we did not analyze the spatial distribution of the transgression of proposed safe limits.

Here we present fine-scale (~1 km²) global estimates of how land-use pressures have affected the numbers of species and individuals found in samples from local terrestrial ecological assemblages (19). To explore different assumptions about novel species, we estimate both overall net change (correct if novel species contribute fully to ecosystems) and – using estimates of species turnover among land uses to exclude novel species – change in species originally present (correct if novel species play no role). We ask how much of the Earth’s land surface is already ‘biotically compromised’ (i.e. exceeds the boundaries of 10% loss of abundance or 20% loss of species). We focus on results for the relative abundance of originally-present species (BII), because this is the measure suggested in the Planetary Boundaries framework (9). We estimate average losses per biome, because of the suggested importance of biomes for the functioning of the whole Earth System (8, 9), and to assess possible consequences for people – assuming that many biodiversity-regulated ecosystem services operate locally – we quantify the geographical congruence between biodiversity reduction and human population. We also assess the biotic integrity of areas identified as particularly important for conservation (although the
proposed planetary boundary in terms of BII may not always be relevant for areas much smaller than biomes, and probably needs to vary depending on the sensitivity of the biota). First, Conservation International’s ‘Biodiversity Hotspots’ – areas rich in endemic species but with high levels of habitat loss – have been suggested as urgent conservation priorities (20). Because these areas were identified reactively (20) with a criterion of 70% loss of primary vegetation, we expect them to have lower biodiversity intactness than average. For comparison, we also estimate the biodiversity intactness of Conservation International’s High Biodiversity Wilderness Areas, which also meet the criterion of high species endemism, but which retain 70% of their natural habitat and so present more opportunity for proactive conservation (20).

We modelled how sampled richness and abundance respond to land-use pressures using data from the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) database (21). These data consisted of 2,382,624 records (Fig. S1; nearly twice as many as our earlier, coarser-scale analyses (3)) of the abundance (1,888,784 records) or else occurrence of 39,123 species at 18,659 sites. The hierarchical mixed-effects models we used considered four pressure variables – land use, land-use intensity, human population density and proximity to the nearest road – as fixed effects (Figs. S2-3), while random effects accounted for among-study differences in sampling (methods, effort and focal taxonomic groups) and for the spatial arrangement of sampled sites within studies (see Supplementary Methods). We had insufficient data to fit separate models for each biome or clade. Responses may vary taxonomically or geographically, although our earlier analyses (3) showed no significant differences among plants, invertebrates and vertebrates, and suggested limited variation among biomes. As more data become available, future analyses will be better able to reflect any differences in response. We combined the models of species richness and total abundance with models of species turnover among land uses (based on 24, but adapted to reflect asymmetric differences among land uses), to discount the fraction of species absent in non-primary habitat (see Methods for details). To map modelled responses, we used global pressure data for the year 2005 at a resolution of 30 arc seconds (approximately 1 km^2). We used land-use estimates for 2005 (25), and estimated land-use intensity as in (3); human population (for the year 2000) came from (22) and proximity to nearest road from (23). Values of the response variables are always expressed relative to an intact assemblage undisturbed by humans, so do not rely on estimates of absolute abundance or species richness, which vary widely among biomes and taxa.

Our map of terrestrial BII (Fig. 1A; Fig. S4) suggests that the average local abundance of originally present species (11) globally has fallen to 84.6% (95% confidence interval: 82.2-91.6%) of its value in the absence of human land-use effects, probably below the value (90%) proposed as a safe limit (9). Considering net changes in abundance, as in (3), assuming that novel species contribute fully to ecosystem function, global average abundance has fallen to 88.0% (95% CI: 83.5-94.8%) of its value before human effects.

Assuming that only originally present species contribute to ecosystem function, most of the world’s land surface is biotically compromised in terms of BII (58.1% of terrestrial area; 95% CI: 40.4-70.2%; Fig. 1A) and within-sample richness of originally present species (62.4%; 95% CI: 20.0-72.7%; Fig. 1B). If the proposed boundaries are broadly correct, ongoing human intervention may be needed to ensure delivery of ecosystem functions across most of the world (5). The proposed planetary boundary for BII (9) had uncertainty ranging from 30% to 90%; the proportion of the land surface exceeding the boundary varies widely across this range (Fig. S5), highlighting the urgent need for better understanding of how BII relates to Earth-system functioning (9). Assuming that novel species contribute as much to ecosystems as originally
present species we estimate the safe limit for total abundance to have been crossed in 48.4%
(95% CI: 30.9-66.5%) of land (Fig. 1C) and that for within-sample species richness in 58.4%
(95% CI: 21.8-75.0%; Fig. 1D). Even assuming that novel species have no effect on ecosystem
function will be optimistic if they actually impair it, an important question to test in future. Most
people (71.4%) live in biotically compromised areas, as judged by BII (Fig. 2), although
uncertainty in this result was high (95% CI: 8.7-92.4%). There is growing evidence that access to
high-biodiversity areas benefits people’s physical and psychological wellbeing (26, 27), although
uncertainty remains over which aspects of biodiversity are important.

The biodiversity impact of land-use pressures varies among biomes (Fig. 3A; Table S2):
grasslands are most affected, and tundra and boreal forests least. Our BII estimates suggest 9 of
the 14 terrestrial biomes (95% CI: 4-12) have on average transgressed safe limits for biodiversity
(Fig. 3A), although this number drops to seven (95% CI: 1-12) if novel species are included. The
BII limit has been crossed in 22 of 34 terrestrial ‘Biodiversity Hotspots’ (28) (95% CI: 7-31; Fig.
3B; Table S3); this figure falls to 12 (95% CI: 5-32) if novel species are included, again
highlighting the need to understand their effects on ecosystem function. Given that Biodiversity
Hotspots were identified partly based on widespread historical habitat loss (20), their low
average BII is unsurprising, although our results suggest that at least some hotspots might stay
within safe ecological limits if future land conversion is reduced. In contrast, three out of the five
High Biodiversity Wilderness Areas, which were identified for conservation proactively because
the habitat is still relatively intact (20), have not experienced average losses of local biodiversity
(BII) that cross the planetary boundaries (95% CI: 2-4; Fig. 3C; Table S4; four out of five if
novel species are included; 95% CI: 2-5). Results concerning which areas have crossed proposed
planetary boundaries were generally consistent between the richness- and abundance-based
biodiversity measures (Figure 3; Tables S2-4).

Our models suggest generally smaller impacts of land use on BII than a previous study
(11). This might reflect differences in taxonomic coverage, but there are also two reasons why
our results may overestimate BII. First, we ignore lagged responses. Second, our models use sites
in primary vegetation as a baseline, because historical data are so rare (3, 11); these sites will
often have experienced some human impact. Nevertheless, it is important to note that since our
models are global, their baseline is not biome- or region-specific, and they do not rely on data
from minimally impacted land use from heavily modified landscapes, where such conditions do
not exist. Our data have good coverage of taxa and biomes (Fig. S1), but the density of sampling
is inevitably uneven. Biomes that are particularly underrepresented, relative to their global
ecosystem productivity, are boreal forests, tundra, flooded grasslands and savannas and
mangroves (Fig. S1), meaning that less confidence can be placed in the results for these biomes.
The data probably also under-represent soil and canopy species. The estimate of land area
biotically compromised in terms of species richness is much higher than our previous assessment
(58.4 vs. 28.4%, although the confidence intervals overlap), but the estimates based on total
abundance are almost identical (48.4% vs. 48.7%; 3). The discrepancy for species richness is
because of a stronger modelled interaction here between land use and human population density
(Fig. S3), and because we include the effect of roads and the interaction between roads and land
use, which were omitted from the projections in (3).

The Sustainable Development Goals adopted in September 2015 (29) aim to improve
human wellbeing while protecting, restoring and sustainably using terrestrial ecosystems. Our
results highlight the magnitude of the challenge. Exploitation of terrestrial systems has been vital
for human development throughout history (30), but the cost to biosphere integrity has been
high. Slowing or reversing the global loss of local biodiversity will require preserving the remaining areas of natural (primary) vegetation and, so far as possible, restoring human-used lands to natural (secondary) vegetation. Such an outcome would be beneficial for biodiversity, ecosystems and – at least in the long term – human wellbeing.

References and Notes:

19. Materials and methods are available as supplementary materials on Science Online.
23. CIESIN, ITOS, University of Georgia, Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA SEDAC, Palisades, NY, United States, 2013; http://dx.doi.org/10.7927/H4VD6WCT).


169. S. Giordano et al., Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol. 170, 1–14 (2004).


236. V. Lehouck et al., Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118, 1023–1034 (2009).


274. J. C. Milder et al., Effects of farm and landscape management on bird and butterfly conservation in western Honduras. Ecosphere 1, art2 (2010).


292. N. Noreika, D. J. Kotze, Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. J. Insect Conserv. 16, 867–881 (2012).


299. N. M. Nöske et al., Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 9, 4–12 (2008).


331. V. M. Proença, H. M. Pereira, J. Guilherme, L. Vicente, Plant and bird diversity in
natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica 36,
333. C. Quintero, C. L. Morales, M. A. Aizen, Effects of anthropogenic habitat disturbance on
local pollinator diversity and species turnover across a precipitation gradient. Biodivers.
intensification: pollinator community disassembly is non-random and alters functional
335. J. Ranganathan, K. M. A. Chan, G. C. Daily, Satellite detection of bird communities in
336. J. Ranganathan, R. J. R. Daniels, M. D. S. Chandran, P. R. Ehrlich, G. C. Daily,
337. F. Raub, H. Hoefer, L. Scheuermann, R. Brandl, The conservation value of secondary
forests in the southern Brazilian Mata Atlantica from a spider perspective. J. Arachnol. 42,
52–73 (2014).
338. N. Redpath, L. M. Osgathorpe, K. Park, D. Goulson, Crofting and bumblebee
conservation: The impact of land management practices on bumblebee populations in
339. J. L. Reid, J. B. C. Harris, R. A. Zahawi, Avian habitat preference in tropical forest
340. Y. T. Reis, E. M. Cancelllo, Termite (Insecta, Isoptera) richness in primary and secondary
restoration in Mediterranean abandoned cropland by secondary succession and pine
342. C. Reynolds, C. T. Symes, Grassland bird response to vegetation structural heterogeneity
344. B. A. Richardson, M. J. Richardson, F. N. Soto-Adames, Separating the effects of forest
type and elevation on the diversity of litter invertebrate communities in a humid tropical
345. C. A. Robles, C. C. Carmaran, S. E. Lopez, Screening of xylophagous fungi associated
with Platanus acerifolia in urban landscapes: Biodiversity and potential biodeterioration.
346. M. M. Rodrigues, M. A. Uchoa, S. Ide, Dung beetles (Coleoptera: Scarabaeoidea) in
three landscapes in Mato Grosso do Sul, Brazil. Brazilian J. Biol. 73, 211–220 (2013).
347. J. Römbke, P. Schmidt, H. Höfer, The earthworm fauna of regenerating forests and
anthropogenic habitats in the coastal region of Paraná. Pesqui. Agropecu. Bras. 44, 1040–
1049 (2009).


doi:10.1371/journal.pone.0020543.

383. L. Ström, K. Hylander, M. Dynesius, Different long-term and short-term responses of
land snails to clear-cutting of boreal stream-side forests. Biol. Conserv. 142, 1580–1587
(2009).


385. Z. M. Su, R. Z. Zhang, J. X. Qiu, Decline in the diversity of willow trunk-dwelling
weevils (Coleoptera: Curculionoidea) as a result of urban expansion in Beijing, China. J.

386. M. Suarez-Rubio, J. R. Thomlinson, Landscape and patch-level factors influence bird

387. S. Sugiura, T. Tsuru, Y. Yamaura, H. Makihara, Small off-shore islands can serve as

388. K. S. Summerville, Managing the forest for more than the trees: effects of experimental

389. K. S. Summerville, C. J. Conoan, R. M. Steichen, Species traits as predictors of
lepidopteran composition in restored and remnant tallgrass prairies. Ecol. Appl. 16, 891–900

390. K. S. Summerville, T. O. Crist, Effects of timber harvest on forest Lepidoptera:

391. Y. H. Sung, N. E. Karraker, B. C. H. Hau, Terrestrial herpetofaunal assemblages in
secondary forests and exotic Lophostemon confertus plantations in South China. For. Ecol.

392. C. G. Threlfall, B. Law, P. B. Banks, Sensitivity of insectivorous bats to urbanization:

393. R. Tonietto, J. Fant, J. Ascher, K. Ellis, D. Larkin, A comparison of bee communities of

394. I. Torre, V. Bros, X. Santos, Assessing the impact of reforestation on the diversity of

395. E. C. Turner, W. A. Foster, The impact of forest conversion to oil palm on arthropod

396. J. M. Tylianakis, A.-M. Klein, T. Tscharntke, Spatiotemporal variation in the diversity of

397. M. Uehara-Prado, Effects of land use on ant species composition and diaspore removal in
exotic grasslands in the Brazilian Pantanal (Hymenoptera: Formicidae). Sociobiology 45,

398. M. Uehara-Prado, K. S. Brown, A. Victor, L. Freitas, Species richness, composition and
abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a

399. J. N. Urbina-Cardona, M. Olivares-Perez, V. H. Reynoso, Herpetofauna diversity and
microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest
fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol. Conserv. 132,

400. J. N. Urbina-Cardona, M. C. Londoño-Murcia, D. G. García-Ávila, Spatio-temporal
dynamics of snake diversity in four habitats with different degrees of anthropogenic
disturbance in the Gorgona Island National Natural Park in the Colombian Pacific. Caldasia

D. Vallan, Effects of anthropogenic environmental changes on amphibian diversity in the

A. J. Vanbergen, B. A. Woodcock, A. D. Watt, J. Niemela, Effect of land-use
heterogeneity on carabid communities at the landscape scale. Ecography 28, 3–16 (2005).

H. L. Vasconcelos et al., Dynamics of the leaf-litter arthropod fauna following fire in a

abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan

D. P. Vázquez, D. Simberloff, Ecological specialization and susceptibility to disturbance:

H. A. F. Verboven, R. Brys, M. Hermy, Sex in the city: Reproductive success of Digitalis

M. J. Verdasca et al., Forest fuel management as a conservation tool for early
successional species under agricultural abandonment: The case of Mediterranean butterflies.

J. R. Verdú et al., Grazing promotes dung beetle diversity in the xeric landscape of a

C. H. Vergara, E. I. Badano, Pollinator diversity increases fruit production in Mexican
coffee plantations: The importance of rustic management systems. Agric. Ecosyst. Environ.

P. M. Vergara, J. A. Simonetti, Avian responses to fragmentation of the Maulino Forest

M. Virgilio, T. Backeljau, R. Emeleme, J. L. Juakali, M. De Meyer, A quantitative
comparison of frugivorous tephritids (Diptera: Tephritidae) in tropical forests and rural areas

L. Van Vu, C. Q. Vu, Diversity pattern of butterfly communities (Lepidoptera,
Papilionoidea) in different habitat types in a tropical rain forest of Southern Vietnam. ISRN

E. M. Waite, G. Closs, Y. Van Heezik, C. Berry, K. Dickinson, Arboreal arthropod

E. Waite, G. P. Closs, Y. van Heezik, K. J. M. Dickinson, Resource availability and

S. Walker, D. J. Wilson, G. Norbury, A. Monks, A. J. Tanentzap, Complementarity of
indigenous flora in shrublands and grasslands in a New Zealand dryland landscape. N. Z. J.

T. R. Walker, P. D. Crittenden, S. D. Young, T. Prystina, An assessment of pollution
impacts due to the oil and gas industries in the Pechora Basin, north-eastern European

Y. Wang, Y. Bao, M. Yu, G. Xu, P. Ding, Nestedness for different reasons: the
distributions of birds, lizards and small mammals on islands of an inundated lake. Divers.
Distrib. 16, 862–873 (2010).

J. I. Watling, K. Gerow, M. A. Donnelly, Nested species subsets of amphibians and
Acknowledgments: We thank the hundreds of researchers who contributed their data to the PREDICTS project; and Georgina Mace and Neil Burgess for helpful comments on an earlier draft. This work was funded by the UK Natural Environment Research Council (NERC, grant numbers: NE/J011193/2 and NE/L002515/1), the Biotechnology and Biological Sciences Research Council (grant number: BB/F017324/1), a Hans Rausing PhD scholarship, and the United Nations Environment Programme World Conservation Monitoring Centre. This is a contribution from the Imperial College Grand Challenges in Ecosystem and the Environment Initiative, and the Sussex Sustainability Research Programme. PREDICTS is endorsed by the Group on Earth Observations Biodiversity Observation Network (GEO-BON). The underlying biodiversity data can be downloaded from the Natural History Museum’s Data Portal (doi: http://dx.doi.org/10.5519/0073893).
Fig. 1. Biodiversity intactness of ecological assemblages, in terms of (A) total abundance of species occurring in primary vegetation (i.e. BII), (B) richness of species occurring in primary vegetation. Panels C and D correspond to A and B, respectively, and have the same legend values, but including species not present in primary vegetation.
Fig. 2. Terrestrial area and human population at different levels of the Biodiversity Intactness Index (BII). Biodiversity intactness increases from bottom-left to top-right, and has the same colour scheme as Fig. 1. The dashed black line shows the position of the planetary boundary (9): only areas to the right and human population above this line (shaded green and blue) are within the proposed safe operating space. If human population were distributed randomly with respect to BII, the corners of the boxes would align with the dashed grey line; the extent to which the corners lie above this line indicates the strength of the bias in human populations toward less intact areas.
Fig. 3. Biodiversity intactness for biomes, Biodiversity Hotspots and High Biodiversity Wilderness Areas. Biodiversity intactness in terms of total abundance (BII; solid bars on left) and species richness (solid bars on right) in each of 14 terrestrial biomes (A), 34 Biodiversity Hotspots (B), and five High Biodiversity Wilderness Areas (C). Translucent bars show the corresponding relative biodiversity values if novel species are treated as equivalent to those originally present (these numbers can surpass 100% because gains may outnumber losses). Bars in (A) are coloured by major biome type (orange = grasslands, green = forests, purple = other), while bars in (B) and (C) are coloured according to whether they are in the temperate (blue) or tropical (red) realms.
Supplementary Materials:

Materials and Methods

Figures S1-S7

Tables S1-S7

References (31-457)