NOTATING THE NON-NOTATEABLE: DIGITAL NOTATION OF TXALAPARTA PRACTICE

Enrike Hurtado
Department of Art and Technology
Universidad del País Vasco / Euskal Herriko Unibertsitatea
Bilbao, Spain
enrique.hurtado@ehu.es

Thor Magnusson
Department of Music
School of Media, Film and Music
University of Sussex,
Brighton, UK
t.magnusson@sussex.ac.uk

ABSTRACT

This paper explores notation practices related to the ancient Basque musical tradition of the txalaparta. It will firstly present the txalaparta practice, introduce the improvisational rules of txalaparta playing, and discuss attempts in creating notation systems for the instrument. Due to the nature of txalaparta playing, Common Western Notation is not a suitable notation, and we will present the notation system we have developed as part of the Digital Txalaparta project. This system captures the key parts of playing and serves for both playback and a rich documentation of what players actually perform.

1. INTRODUCTION

The txalaparta is an ancient musical percussion tradition deriving from rural areas of the Basque Country. The instrument belongs to the category of struck idiophones and consists of a variable number of thick wooden planks placed horizontally on two trestles with soft material in between. The planks are struck vertically with heavy wooden batons. The wooden planks typically emit inharmonic sounds, not of any particular pitch, but certain strands in recent developments of txalaparta practice have begun to tune the planks. In txalaparta playing, two or more performers improvise, alternating their beats, through a call-and-response pattern that usually becomes increasingly complex as the performance progresses [1, 2]. The txalaparta is never played by a solo performer: the virtuosity of playing the instrument equally involves the technical skills of the performers as well as the communication established between them, see Figure 1.

The txalaparta is a centuries old tradition, although it lost popularity in the early 20th century, almost disappearing during Franco’s dictatorship. However, during the 1960s there was a renewed interest in the tradition, which related to a renewed interest in folk music, diverse projects of preserving Basque culture, and a strong influence of European and American experimental music and avant-garde in the arts, which lead to an fruitful meeting of the ancient tradition and radical modernity. This relates to developments in American minimalism, some of whose key protagonists were influenced by the txalaparta [3, 4, 5]. Topics of improvisation, process-based music and algorithmic rules in composition had become frequent, and ideas of using open scores without a fixed results became increasingly popular from the mid-20th century, where an obvious case study would be Terry Riley’s In C. from 1964. Many of the key elements of txalaparta practice suited this approach to composition, and the reinvigorated interest in the txalaparta in the 1960s can also be traced to inspiration by developments in experimental and avant-garde music.

Figure 1. A typical txalaparta performance setting.

Although the topic of some discussion, there is a widespread opinion that the term “txalaparta” refers to the rules, performance style, and the rhythm generated, as well as the physical instrument itself [1, 2]. The argument is that the txalaparta can be played on any material substance, but it has to be an improvisation with two or more performers, following the specific rules of the practice. This division between the rules and the instrument was very helpful when we designed a digital version of the txalaparta, which generates musical events using generative algorithms, since the rules could easily be represented in a digital system, something the material instrument cannot. The digital txalaparta project is therefore the result of a translation, rather than a qualitative transduction into the digital domain.

2. NOTATING THE TXALAPARTA

Like many musical cultures that are primarily improvisational (e.g., jazz, Indian music, gamelan, or flamenco), the practice of notating the txalaparta serves a very different purpose to that of, for example, Western classical music.
music. The notation is descriptive: it represents patterns and relationships, and the primary purpose is that of explanation, preservation, and communication between performers. This can be seen in contrast to prescriptive notation, where the purpose of the score is to prescribe the musician’s actions, as a set of instructions to be followed typically in a strongly linear manner. These categories do not map perfectly to txalaparta notations, as the txalaparta is historically an un-pitched instrument (the wooden planks are not of defined musical notes), where the notation describes actions-in-time, not pitch-in-time, like we find in most descriptive notations. In traditional txalaparta the rhythm is non-metric and fluid, and it does not follow bar lines or standard time signatures. It can be defined as additive rhythm as opposed to divisive rhythm. In terms of its fluid nature, performers often play around the beat, exploring elements of rhythmic tension through early, delayed, or silent strokes. This is not mere swing timing, as the divergence from what might be considered a regular meter is quite distinctive. Furthermore, instead of emphasizing pitch during playing, the focus is on timbre, where the location of the plank, the force of the mallet, the way the mallet is held, all affect the timbre.

2.1 Scoring the Tradition

There are no notational conventions for the txalaparta. Diverse schools of txalaparta playing have dialects with special symbols and systems to express different characteristics such as which plank to hit. Dynamics are often denoted by the length of the vertical line, and the two players tend to be represented by the respective sides of the line. This type of notation focuses primarily on rhythm and the player relationships, but not on the instrument itself: for example, they do not specify which plank to play or the intended pitch or timbre.

![Figure 2. A simple example of Beltran’s system of txalaparta notation.](image)

An exemplary system for scoring on the txalaparta is the tablature notation developed by Juan Mari Beltrán in the late 1980s (Figure 2). The use of this system resulted in compositions being written for the instrument, for example by Eneko Abad, Sergio Lamuedra, Jaione Galdos, and Sendoa Gomez, and the system is widely used in teaching at many schools of txalaparta. Here, time is represented with a horizontal line. The two players’ events are drawn on each side of the line, since the players are typically facing each other. The strokes are represented by vertical lines, whilst time is represented by white space. This means that ‘|’ represents two close strokes, where ‘|’ is the same, but more separated in time. Silent hits are often represented by the ‘.’ symbol.

Later efforts in quantizing the txalaparta resulted in a different approach to notation where the tempo becomes grid-based, although this grid can be stretched and compressed. Example of this are seen in Figure 3.

![Figure 3. A stretchable grid-notation by Eneko Abad Inglés. Here the numbers represent the planks, and the dot symbol are silent hits.](image)

2.2 Rationalization of Instruments and Scores

During the 1990s, txalaparta practice diversified and reached new audiences. Practitioners started experimenting with pitched wood and certain rhythms became popular. With the pitched txalaparta came the requirement for pitch representation in notation. Some practitioners began drawing scores on paper, using a time-based grid where thick lines on the grid signify strokes, and the pitch is typically represented by a number, or the name of the note the plank is tuned to. This development can be seen as a form of rationalization of this musical practice, a parallel we find in dance music through the use of quantization in music software. Here the un-pitched and metrically free txalaparta becomes pitched, and divisive metric structures are divided into clear units of time. This shift in the nature of the txalaparta from purely percussive towards melody and straight timing is a process Euba has called xylophonisation. [6]

2.3 A Survey with Performers

We conducted a survey with txalaparta performers, the first of a kind, and also conducted interviews. The aim was to collect qualitative data from the personal experience of txalaparta players. The survey was distributed on online social media groups for txalaparta players, consisting of 280 members. We had 31 responses to the questions, which considered txalaparta practice in general.

The findings will be published at a later time, but on the topic of txalaparta notation, it was clear that the lack of a standardized format allowed interpreters to freely adapt conventions of notation to their needs. It is therefore difficult to find any two practitioners using score systems that are the same. This is also due to the fact that people’s needs with regards to notation are very different: some might simply need to make a small drawing that roughly represents the rhythm, whilst others are interested in writing a more complex composition. Many respondents said they used notation for teaching and a discursive analysis of the musical events. In terms of cognitive load, is clear that the spatial nature of the score can illustrate patterns that are harder to demonstrate in time.
However, for all the practitioners who use notation, there is always a space given for improvisation. Txalaparta players do see their tradition as an improvisational tradition and the use of notation is therefore very different from that of Western classical music.

A key purpose of the survey was to probe reactions to the digital txalaparta – whether the idea of this practice on the digital computer makes sense to practitioners. We were surprised by the general positivity, and we relate that to the fact that the txalaparta is not just an instrument but the rules of its playing. Participants in the survey reported that they found the questions of the nature of the txalaparta introduced by this research interesting, as the practice had not been studied from this perspective before. Many were also intrigued by the novelty of not having to improvise with another human, but with a computer. Some mention that the playing with a computer made them more self-aware but also made them play different to accommodate their play to the computer. One of the players said he started feeling like a machine himself, as he realized he and the computational algorithm were, in essence, performing the same process.

3. THE DIGITAL TXALAPARTRA

We present a software system called Digital Txalaparta, designed for both performance and analysis of txalaparta. It is a well known fact to software developers that to be able to formalize a practice, a system, or a tool (for example a hospital system, a traffic controller, or an image editor), the developer has to build a representation of the field and be able to categorize it through an ontological process [7]. By so doing, they formalize, make abstractions, and thus have to decide which things to leave out and which to include.

![Figure 4. A screenshot of the Digital Txalaparta.](image)

For us, the process of designing software encapsulating the rules and playing of the txalaparta is a method of attempting to understand the practice. In order to program the rules, they have to be made explicit and formalized. This is less problematic in the case of the txalaparta as it is typically defined as a system of rules as well as a physical instrument. Some software applications based on the txalaparta have been developed, but most of them have been playful apps, games or educational tools.

The system’s primary function is to serve as an accommodation for a performer playing a physical instrument. There are two modes: autotxalaparta and interactive txalaparta. The first one plays rhythmic parts, either using generative algorithms or using playback of known forms. It generates either one or both parts of the txalaparta rhythm and its development allowed us to understand better the options the interpreters face when they play. The software provides control over the parameters used by the generative algorithms. The interactive mode uses machine listening to analyze and respond to the human performance. The system uses sample banks of txalaparta sounds for playback with filters applied to simulate location on the wood and velocity. Users can calibrate the system to accommodate to the player’s style and they can sample the sound of their own txalaparta in order to get a more realistic timbral response.

![Figure 5. The bar is represented as a circle, with the red dots being projected strokes ahead of time. The two vertical bars represent the batons, simulating the movement when raising the stick and stroking.](image)

A key problem in for users to understand algorithmic processes is the lack of visual representation [8]. Our user tests corroborated these findings in that visual feedback (even just in peripheral vision) proved to be crucial. Interpreters playing a physical txalaparta in tandem with the autotxalaparta or the interactive txalaparta initially found it problematic that they were not able to see the moving body of their partner. These movements are crucial for txalaparta players to anticipate their partner’s actions. To overcome this problem we implemented a graphical representation of the algorithmic process. Two vertical sliders are used to as ‘virtual’ batons in the computer’s performance. This is illustrated in figure 5.

Furthermore, a circular representation of the rhythm is used to show the ‘thoughts’ of the system, predicting

1. The Technotxalaparta (txalapartapp.com) was able to listen and respond to the human interpreter adjusting its tempo in real-time through keyboard keystrokes; the computer output was MIDI. Ixí audio
ahead of time what the computer is going to do – what it
will play or how it will respond. This is inspired by a
diagram Sánchez uses to represent the txalaparta rhythm
[10]. This visualizes the relationship between the differ-
ent strokes of the same phrase, as well as the relationship
between each phrase and the main tempo. In this system,
time is represented as a circular flow with no beginning
and no end, visualizing the bar in real time. The circle
represents the length of the bar split in two by a vertical
line that signals where the phrases should of each inter-
preter should be aligned in the case of the tempo being
accurate. In this case the first hit of each phrase is located
at the vertical line whereas in the case of any deviation
this is shown by their position in relation to the vertical
line.

4. THE TXALAPARTA SCORE SYSTEM

As part of our work on the digital txalaparta implemented
a data format for recording txalaparta performances. This
was necessary for the machine learning and creativity
part of the project, but it is also a format of descriptive
notation. Through embedding the txalaparta with contact
microphones, and accelerometers on the players’ batons,
we are able to describe precisely which performer is
striking which plank where, with which baton, at what
velocity, at the exact moment. This data is stored in a
time-based file format that can be exported to MIDI or
MusicXML. We implemented a corresponding notation
system that visually represents the actions of each player.
Since txalaparta playing is typically a turn-taking perfor-
mance, we also represent the phrases of each player.

Txalaparta performances are always improvised, so the
idea of writing prescriptive scores for linear performan-
ces does not appeal to many practitioners. People might
question the purpose of creating a sophisticated notation
system for this reason. However, the fact is that a descrip-
tive notation can be useful in understanding performan-
ces, for musicological analysis and for players to study and
analyse their playing, even with statistical methods.

Figure 6. A screenshot of the txalascore. The horizontal
lines represent the planks of the txalaparta, whilst the
red and blue boxes are musical events of each player.
Dynamics are the length of the line. (A better picture
will be here in the camera-ready version of the paper).

A study by Euba that analyzed different methods of trans-
scribing txalaparta performances (unpublished PhD)
concludes that it is practically impossible to transcribe
perfectly the actions of two performers: even when using
a video recording of the performance, the two players can
be playing so fast that it can be very difficult to detect
whose stick hit which plank at any event. With a descrip-
tive notation system that picks up amplitude, timbre,
location and more, txalaparta performances can be ana-
yzed at a much deeper level, for example analysing the
relationship between performers, comparing the play of a
performer over a longer period of time, comparing differ-
ent performers’ playing, studying the difference between
human-human and human-machine relationships and
many more. There is clearly value in precise numerical
data here!

The txalascore is a representation of the play as it hap-
pens in real-time. Events are written into the score direct-
ly as they happen. The score is interactive, so events can
be added or moved around on the timeline. The score is
reminiscent to a piano-roll where the events the system
detects and the system’s answers flow across: new events
appear on the right and move towards the left. Users can
zoom into a longer or shorter time spans, ranging be-
tween one and twenty seconds. Each plank is represented
in a different horizontal line but a color mark differenti-
ates the hits by each player, which can be displayed both
on top of the line, or each of them on different sides of
the line. This method is closer to the one used by the
Takun sequencer. Furthermore, in order to visualize
which strokes belong to the same temporal phrase, these
have been grouped with a green transparent field.

5. CONCLUSION

Software development in the domain of music is a highly
effective research method for both music and musicolo-
gy. By having to formalize the rules of the txalaparta in
order to create a digital version of it, we had to analyze
the play, understand the general practice and the player
communication. We had to think about ergonomics, hu-
man-machine relationships, and the quality of sound.
Reciprocally, when we had early versions of the system
running, the computer helped us to better understand the
rules that govern the playing of the txalaparta.

Through the software development we have become
acquainted with different levels of rule sets: on a lower
level there are rules that determine the musical material
e.g., how many subdivisions are in the phrase, how to
construct the computer response) and on a higher level
there are rules that define how the interpreters interact
each other during the play to construct long term struc-
tures. We have seen that some characteristics of the tx-
laparta are easy to translate to the digital domain (rhyth-
mical characteristics) while others are more difficult
timbre). Writing software that effectively implements all
those rules requires generative algorithmic systems to get
closer to the way the txalaparta interpreters interact with
each other during the play.

Considering the historical evolution of the txalaparta –
in particular the current ‘xylophonisation’ process where
pitch has been added and the rhythm becomes quantized
– it is interesting that the digital txalaparta, where the
practice is translated into the digital domain, is closer to
the origins of the txalaparta in operating with fluid
rhythms and non-metric bars, both in its internal algo-
rithms and graphical notation.
The digital txalaparta is work-in-progress. Future plans include improving the machine listening algorithms in order to make the response system richer and more engaging. We are interested in the cultural reception of the digital txalaparta and studies will be conducted in that area. Finally, since some of the key limitations of improvising with a computer derive from the fact that physical presence is limited and response tends to be audiovisual, we are exploring robotics for both the usability and the cultural studies purpose.

Acknowledgments

This research has been greatly supported by a community of txalaparta players on various social media groups, who have engaged in a dialogue and sent materials that are part of this paper. We would also like to acknowledge the generous support and discussions with Euba, whose extensive research into the history of the txalaparta greatly benefitted this research.

6. REFERENCES

