University of Sussex
Browse
10-1088-0004-6256-150-6-172.pdf.pdf (3.16 MB)

The difference imaging pipeline for the transient search in the Dark Energy Survey

Download (3.16 MB)
journal contribution
posted on 2023-06-09, 01:54 authored by Kathy RomerKathy Romer, et al The DES Collaboration
We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ˜130 detections per deg2 per observation in each band, of which only ˜25% are artifacts. Of the ˜7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ˜30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. The DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 ``shallow'' fields with single-epoch 50% completeness depth ˜23.5, the SN Ia efficiency falls to 1/2 at redshift z ˜ 0.7; in our 2 ``deep'' fields with mag-depth ˜24.5, the efficiency falls to 1/2 at z ˜ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.

Funding

Astrophysics and Cosmology - Sussex Consolidated Grant; G1291; STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCIL; ST/L000652/1

History

Publication status

  • Published

File Version

  • Published version

Journal

Astronomical Journal

ISSN

0004-6256

Publisher

American Astronomical Society

Issue

172

Volume

150

Department affiliated with

  • Physics and Astronomy Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2016-06-27

First Open Access (FOA) Date

2016-06-27

First Compliant Deposit (FCD) Date

2016-06-27

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC