Measurement of the ZZ production cross section in pp collisions at $s\sqrt{s}=13$ TeV with the ATLAS detector

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/61598/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Measurement of the ZZ Production Cross Section in pp Collisions at √s = 13 TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 17 December 2015; published 10 March 2016)

The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb⁻¹ of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66–116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7 ± 1.5 (stat) ± 0.9 (syst) ± 1.2 (lumi) pb. The results agree with standard model predictions.

DOI: 10.1103/PhysRevLett.116.101801

Studying the production of pairs of Z bosons in proton-proton (pp) interactions at the Large Hadron Collider (LHC) tests the electroweak sector of the standard model (SM) at the highest available energies. In pp collisions at a center-of-mass energy of √s = 13 TeV, ZZ production is dominated by quark-antiquark (q̅q) interactions, with an O(10%) contribution from loop-induced gluon-gluon (gg) interactions [1,2]. The SM ZZ production can proceed via a Higgs boson propagator, although this contribution is suppressed in the region where both Z bosons are produced on-shell. As such, non-Higgs ZZ production is an important background in studies of the Higgs boson [3–5]. It is also a background in searches for new physics producing pairs of Z bosons at high invariant mass [6,7] and sensitive to triple neutral-gauge-boson couplings, which are not allowed in the SM [8].

This Letter presents the first measurement of the ZZ production cross section in pp interactions at √s = 13 TeV. Throughout it, “Z boson” refers to the superposition of a Z boson and virtual photon with mass in the range 66–116 GeV. The analyzed data correspond to an integrated luminosity of 3.2 ± 0.2 fb⁻¹, collected with the ATLAS detector [9]. The uncertainty of the integrated luminosity is derived, following a methodology similar to that detailed in Ref. [10], from a preliminary calibration of the luminosity scale using a pair of x-y beam-separation scans performed in June 2015. The ZZ production cross section was previously measured at √s = 7 and 8 TeV by the ATLAS and CMS Collaborations [11–13] and found to be consistent with SM predictions.

Candidate events are reconstructed in the fully leptonic ZZ → ℓ⁺ℓ⁻ℓ⁺ℓ⁻ decay channel where ℓ and ℓ' can be an electron or a muon. The cross section σfid ZZ→ℓ⁺ℓ⁻ℓ⁺ℓ⁻ is found by counting candidate events, subtracting the expected contribution from background events, correcting for detector effects, and dividing by the integrated luminosity. It is measured in a fiducial phase space that corresponds closely to the experimental acceptance. In addition, an extrapolation of the cross section to a total phase space for Z bosons, σtot ZZ, is performed. The presented cross-section measurements are inclusive with respect to additional jets. Small contributions from triboson production with two leptonically decaying Z bosons and a third hadronically decaying weak boson and contributions from double parton scattering are included in the measurement.

The fiducial phase space, which is designed to reflect the acceptance of the ATLAS detector (described below), is defined for simulated events by applying the following criteria to the final-state particle-level objects. Final-state electrons and muons are required to be prompt (i.e., to not originate from hadron or τ decay) and their kinematics are computed including the contributions from prompt photons with a distance in η-ϕ coordinates of ΔR_{ℓγ} = \sqrt{(Δη_{ℓγ})^2 + (Δϕ_{ℓγ})^2} < 0.1 between the charged lepton and the photon, as motivated in Ref. [14]. (ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. The x axis points to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln[tan(θ/2)].) The leptons are required to be well separated with ΔR_{ℓ,ℓ} > 0.2 between any two leptons. Each lepton must have a momentum component transverse to the beam direction p_T > 20 GeV and pseudorapidity |η| < 2.7. Events must have exactly four leptons satisfying the above conditions.
criteria forming two pairs of leptons of the same flavor and oppositely charged ($\mu^+\mu^-$ or e^+e^-). This gives rise to three signal channels: $4e$, 4μ, and $2e2\mu$. Each lepton pair must have an invariant mass in the range 66–116 GeV. In the $4e$ and 4μ channels, there are two possible ways to form same-flavor oppositely charged lepton pairs, the combination that minimizes $|m_{\ell\ell,a} - m_Z| + |m_{\ell\ell,b} - m_Z|$ is chosen, where $m_{\ell\ell,a}$ and $m_{\ell\ell,b}$ are the invariant masses of the lepton pairs and m_Z is the mass of the Z boson.

The ATLAS detector is a multipurpose particle detector with a cylindrical geometry. It consists of layers of inner tracking detectors, calorimeters, and muon chambers. The inner detector (ID) covers the pseudorapidity range $|\eta| < 2.5$. The calorimeter covers the pseudorapidity range $|\eta| < 4.9$. Within $|\eta| < 2.47$ the finely segmented electromagnetic calorimeter identifies electromagnetic showers and measures their energy and position, providing electron identification together with the ID. The muon spectrometer (MS) surrounds the calorimeters and provides muon identification and measurement in the region $|\eta| < 2.7$ and triggering in the region $|\eta| < 2.4$.

A muon is reconstructed by matching a track (or track segment) reconstructed in the MS to a track reconstructed in the ID. Its momentum is calculated by combining the information from the two systems and correcting for energy deposited in the calorimeters. In regions of limited coverage of the MS ($|\eta| < 0.1$) or outside the ID acceptance ($2.5 < |\eta| < 2.7$), muons can also be reconstructed by matching calorimeter signals consistent with muons to ID tracks (calorimeter-tagged muons) or standalone in the MS [15], respectively.

An electron is reconstructed from an energy deposit (cluster) in the electromagnetic calorimeter matched to a track in the ID. Its momentum is computed from the cluster energy and the direction of the track. Electrons are distinguished from other particles using several identification criteria that rely on the shapes of electromagnetic showers as well as tracking and track-to-cluster matching quantities. The output of a likelihood function taking these quantities as input, similar to that described in Ref. [16], is used to identify electrons. Electrons sharing an ID track with a selected muon are ignored.

The leptons are required to be isolated from other particles using ID track information, and for muons using calorimeter information also (since standalone muons are outside the ID acceptance). The exact requirements depend on the lepton p_T and η and are designed to give a uniform 99% efficiency.

Leptons are required to originate from the primary vertex, defined as the reconstructed vertex with the largest sum of the p_T^2 of the associated tracks. To this end, the longitudinal impact parameter of each lepton track, calculated with respect to the vertex and multiplied by $\sin \theta$ of the track, is required to be less than 0.5 mm. Furthermore, the significance of the transverse impact parameter calculated with respect to the beam line is required to be less than 3 (5) for muons (electrons). Standalone muons are exempt from both impact parameter requirements, as they do not have an ID track.

Candidate events are preselected by either a single-muon or dilepton trigger. As in the fiducial phase space described above, leptons must have $p_T > 20$ GeV. There are slight differences from the fiducial phase space: electrons must satisfy $|\eta| < 2.47$ due to the limited experimental acceptance, and at least one muon in the 4μ channel must satisfy $|\eta| < 2.4$, corresponding to the acceptance of the muon trigger. The other muons must satisfy $|\eta| < 2.7$. Events are ignored if more than one selected muon is calorimeter tagged or standalone. Apart from the above differences, reconstructed candidate events are selected using exactly the same criteria that define the fiducial phase space. A total of 63 events are observed, of which 15, 30, and 18 are in the $4e$, $2e2\mu$, and 4μ channels, respectively.

Monte Carlo (MC)-simulated event samples are used to obtain corrections for detector effects and to estimate background contributions. The principal signal sample is generated with the POWHEG method and framework [17–19], with a diboson event generator [20,21] used to simulate the ZZ production process at next-to-leading order (NLO). (Throughout this Letter, orders of calculations refer to perturbative expansions in the strong coupling constant α_s unless stated otherwise). The simulation of parton showering, of the underlying event, and of hadronization is performed with PYTHIA8 [22,23] using the AZNLO set of tuned parameters (tune) [24]. SHERPA [25–31] is used to generate a sample with the $q\bar{q}$-initiated process simulated at NLO for ZZ plus zero or one additional jet and at leading order (LO) for two or three additional jets, as well as a sample with the loop-induced gg-initiated process simulated at LO with zero or one additional jet. These are used to include the loop-induced gg-initiated production, which is not included in the POWHEG+PYTHIA8 sample, as well as to estimate, by comparison of the various samples, a systematic uncertainty due to the choice of event generator. The CT10 NLO [32] parton distribution functions (PDFs) are used in the event generation for all samples above. Additional samples are generated to estimate the contribution from background events. Triboson events are simulated with SHERPA, using CT10 PDFs, and $t\bar{t}Z$ events are simulated with MADGRAPH [33] interfaced with PYTHIA8 using the NNPDF 2.3 LO PDFs [34] and the A14 tune [35].

In all MC samples, additional pp interactions occurring in the same bunch crossing as the ZZ production, or in nearby ones, are simulated with PYTHIA8 with MSTW 2008 LO PDFs [36] and the A2 tune [37]. The samples are then passed through a simulation of the ATLAS detector [38] based on GEANT4 [39]. Scale factors are applied to the simulated events to correct for the small differences from data in the trigger, reconstruction, identification, isolation,
and impact parameter efficiencies for electrons and muons [15,16]. Furthermore, the lepton momentum scales and resolutions are adjusted to match the data.

Background events from processes with at least four prompt leptons in the final state are estimated with the MC samples described above, including uncertainties from the cross-section values, luminosity, and reconstruction effects. Contributions of 0.07 ± 0.02 events from ZZ processes where at least one Z boson decays to τ leptons, 0.17 ± 0.05 events from nonhadronic triboson processes, and 0.30 ± 0.09 events from all-leptonic ttZ processes are predicted. Events from processes with two or three prompt leptons, e.g., Z, WW, WZ, t¯t, and ZZ events where one Z boson decays hadronically, where associated jets or photons contain or fake a nonprompt lepton, can pass the event selection. This background contribution is estimated to be 0.09 ± 0.01 events, using control samples and a data-driven technique described in Ref. [11]. The uncertainty is dominated by the small number of events in the control samples. It can be asymmetric due to truncation, as background contributions cannot be negative. Background from two single Z bosons produced in different pp collisions in the same bunch crossing is estimated to be negligible. The total expected number of background events is 0.20 ± 0.05 (0.25±0.05, 0.17±0.05, 0.80±0.04) in the 4e (2e2μ, 4μ) channel, giving a total of 0.62 ± 0.18 events.

A factor CZZ is applied to correct for detector inefficiencies and resolution effects. It corrects the background-subtracted number of selected events to the number in the fiducial phase space, and is defined as the ratio of generated signal events passing the selection criteria using reconstructed objects to the number passing the fiducial criteria using generator-level objects. CZZ is determined with a combination of the POWHEG ZZ MC sample and the SHERPA loop-induced gg-initiated sample. The normalization of the latter is scaled to O(αS) accuracy [2] in order to improve the model used to correct the measurement. The CZZ value and its total uncertainty is determined to be 0.55 ± 0.02 (0.63 ± 0.02, 0.81 ± 0.03) in the 4e (2e2μ, 4μ) channel. The dominant systematic uncertainties come from the uncertainties of the scale factors used to correct lepton reconstruction and identification efficiencies in the simulation and the choice of MC generator. Other smaller uncertainties come from the scale and resolution of the lepton momenta, PDFs, and statistical fluctuations in the MC sample. Table I gives a breakdown of the systematic uncertainties.

Figure 1 shows the invariant mass of the leading-PT,ℓℓ and the subleading-PT,ℓ′ℓ′ lepton pair (ℓℓ′), as well as the invariant mass, transverse momentum, and rapidity of the four-lepton system. Distributions from data are compared to the signal and background expectations, with good agreement in general.

The fiducial cross section is determined using a maximum-likelihood fit to the event counts in the three signal channels. A Poisson probability function is used to parametrize the number of expected events, multiplied by Gaussian distributions that model the nuisance parameters representing systematic uncertainties. This procedure can lead to asymmetric uncertainties as Poisson-distributed variables cannot be negative.

The cross section measured in the fiducial phase space is also extrapolated to the total phase space, which includes a correction for QED final-state radiation effects. The extrapolation factor is obtained from the same combination of MC samples as used in the CZZ determination. The ratio of the fiducial to full phase-space cross section is 0.39 ± 0.02, in all three channels. It is corrected for the ~3% increase bias introduced by the pairing algorithm in the 4e and 4μ channels. The dominant systematic uncertainty comes from the difference between the nominal value and that obtained using the SHERPA samples. Smaller uncertainties are derived from PDF variations in the CT10 error set, differences between using PYTHIA8 and HERWIG++ [40] for simulating the rest of the event, and varying the QCD renormalization and factorization scales independently by a factor of 2. In order to extrapolate to the total cross section, the fiducial cross sections are divided by the ratio 0.39 ± 0.02 and corrected for the leptonic branching fraction (3.3658%)[2] [41] (this value excludes γ contributions; including these, the branching fraction ZZ → ℓ+ℓ−ℓ′+ℓ′− is about 1.01–1.02 times larger).

The measured fiducial cross sections are shown in Table II and Fig. 2(a) along with a comparison to O(α3S) calculations [1]. Table II also shows the total combined cross section. The CT10 next-to-next-to-leading order PDFs [45] and a dynamic scale equal to the mass of the four-lepton system are used in the calculation. The loop-induced gg-initiated process is included, and contributes 7.0% (5.8%) of the cross section in the fiducial (total) phase space. The predicted cross sections in the fiducial phase space are corrected for QED final-state radiation effects, which amount to a 4% reduction. The measurements agree with the SM predictions.

The theoretical predictions do not include the following effects. The loop-induced gg-initiated process calculated at O(α3S) could receive large corrections at O(α3S) of 70% [2], which would increase the prediction by 4%−5%. Electroweak corrections at next-to-leading order [46,47]
are expected to reduce the cross section by 7%–8% [47]. Furthermore, the contribution from double parton scattering is not accounted for, but is expected to be an effect of less than 1% [48].

The measured total cross section is compared to measurements at lower center-of-mass energies and to a prediction from MC@NLO [49] with the CT14 NLO PDFs [50], which is calculated at $\mathcal{O}(\alpha_s^3)$ accuracy for the $q\bar{q}$-initiated process and at $\mathcal{O}(\alpha_s^2)$ accuracy for the loop-induced gg-initiated process and is shown vs center-of-mass energy in Fig. 2(b). The cross section increases by a factor of more than 2 with a center-of-mass energy increase from 8 TeV to 13 TeV.

In summary, ATLAS has measured the ZZ production cross section in 3.2 fb$^{-1}$ of 13 TeV pp collisions at the LHC using the fully leptonic decay channel $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$. Fiducial cross sections as well as a total cross section for Z bosons with mass 66–116 GeV have been measured and agree well with $\mathcal{O}(\alpha_s^2)$ SM predictions.

TABLE II. Cross-section measurement results compared to the $\mathcal{O}(\alpha_s^2)$ standard model predictions.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>$\mathcal{O}(\alpha_s^2)$ prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{tot}</td>
<td>$6.9^{+0.2}_{-0.1}$ fb</td>
</tr>
<tr>
<td>$\sigma_{\text{tot}}^{3\ell}$</td>
<td>$27.4^{+0.9}_{-0.8}$ fb</td>
</tr>
<tr>
<td>$\sigma_{\text{tot}}^{2\ell}$</td>
<td>$15.6^{+0.4}_{-0.4}$ pb</td>
</tr>
</tbody>
</table>
FIG. 2. (a) Comparison between measured fiducial cross sections and $O(\alpha_S^2)$ predictions. (b) Total cross section compared to measurements at lower center-of-mass energies by ATLAS, CMS, CDF, and D0\cite{11-13,42,43}, and to a prediction from MCFM at $O(\alpha_S^2)$ accuracy for the $q\bar{q}$-initiated process and at $O(\alpha_S^3)$ accuracy for the loop-induced gg-initiated process. A full $O(\alpha_S^3)$ prediction (known to improve agreement at $\sqrt{s} = 13$ TeV) was not yet available for all the different center-of-mass energies. Some data points are shifted horizontally to improve readability. The ZZ cross section as function of \sqrt{s} in the range 130–209 GeV was also measured at the LEP 2 e^+e^- collider\cite{44}.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and FUP, Czech Republic; DAE, DST and DSTO, India; INFN, Italy; MES and NWO, Netherlands; RCN, Norway; SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BDF, GIF and Minerva, Israel; BRF, Norway; the Royal Society, and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[3] ATLAS Collaboration, Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^\ast \rightarrow 4l$ Decay Channels at $\sqrt{s} = 8$ TeV with the ATLAS Detector, Phys. Rev. Lett. 115, 091801 (2015).
[43] V. M. Abazov et al. (D0 Collaboration), A measurement of the WZ and ZZ production cross sections using leptonic final states in 8.6 fb\(^{-1}\) of pp collisions, Phys. Rev. D 85, 112005 (2012).
[47] B. Biedermann et al., Electroweak corrections to \(pp \rightarrow \mu^+\mu^-e^+e^- + X \) at the LHC—a Higgs background study, arXiv:1601.07787.
[48] ATLAS Collaboration, Measurement of hard double-parton interactions in \(W(\rightarrow \ell\nu) + 2 \) jet events at week ending 11 MARCH 2016
\[\sqrt{s} = 7 \text{ TeV} \text{ with the ATLAS detector, } \text{New J. Phys. 15, 033038 (2013).}\]

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4 Departamento de Física, Ankara University, Ankara, Turkey
5 Istanbul Aydin University, Istanbul, Turkey
6 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7 IAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
8 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9 Department of Physics, University of Arizona, Tucson, Arizona, USA
10 Physics Department, The University of Texas at Arlington, Arlington, Texas, USA
11 Physics Department, University of Athens, Athens, Greece
12 Department of Physics, National Technical University of Athens, Zografou, Greece
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
15 Physics Department, University of Belgrade, Belgrade, Serbia
16 Department for Physics and Technology, University of Bergen, Bergen, Norway
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 Department of Physics, Bogazici University, Istanbul, Turkey
20 Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
22 INFN Sezione di Bologna, Italy
23 Department of Physics, Boston University, Boston, Massachusetts, USA
24 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
25 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
26 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, Ontario, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
33 Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
34 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
35 Department of Modern Physics, University of Science and Technology of China, Anhui, China
36 Department of Physics, Nanjing University, Jiangsu, China
37 School of Physics, Shandong University, Shandong, China
38 Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP), China
39 Physics Department, Tsinghua University, Beijing 100084, China
40 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
41 Nevis Laboratory, Columbia University, Irvington, New York, USA
42 Niels Bohr Institute, University of Copenhagen, København, Denmark
43 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
44 Dipartimento di Fisica, Università della Calabria, Rende, Italy

101801-15