Climate model simulation of the South Indian Ocean Convergence Zone: mean state and variability

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/60556/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Climate model simulation of the South Indian Ocean Convergence Zone: mean state and variability

Melissa J. Lazenby*, Martin C. Todd, Yi Wang

Department of Geography, University of Sussex, Brighton, East Sussex BN1 9RH, UK

ABSTRACT: Evaluation of climate model performance at regional scales is essential in determining confidence in simulations of present and future climate. Here we developed a process-based approach focussing on the South Indian Ocean Convergence Zone (SIOCZ), a large-scale, austral summer rainfall feature extending across southern Africa into the southwest Indian Ocean. Simulation of the SIOCZ was evaluated for the Coupled Model Intercomparison Project (CMIP5). Comparison was made between CMIP5 and Atmospheric Model Intercomparison Project (AMIP) models to diagnose sources of biases associated with coupled ocean–atmosphere processes. Models were assessed in terms of mean SIOCZ characteristics and processes of interannual variability. Most models simulated a SIOCZ feature, but were typically too zonally oriented. A systematic bias of excessive precipitation was found over southern Africa and the Indian Ocean, but not particularly along the SIOCZ. Excessive precipitation over the continent may be associated with excessively high low-level moisture flux around the Angola Low found in most models, which is almost entirely due to circulation biases in models. AMIP models represented precipitation more realistically over the Indian Ocean, implying a potential coupling error. Interannual variability in the SIOCZ was evaluated through empirical orthogonal function analysis, where results showed a clear dipole pattern, indicative of a northeast–southwest movement of the SIOCZ. The drivers of this shift were significantly related to the El Niño Southern Oscillation and the subtropical Indian Ocean dipole in observations. However, the models did not capture these teleconnections well, limiting our confidence in model representation of variability.

KEY WORDS: CMIP5 · ENSO · Ensemble · Teleconnection · Model evaluation · South Indian Ocean Convergence Zone · SIOCZ · Southern Africa · December-January-February · DJF

1. INTRODUCTION

1.1. Model evaluation

Future projections of climate still contain a large amount of uncertainty, especially for precipitation (Schaller et al. 2011, Collins et al. 2013). In order to make future climate simulations with confidence, it is essential that models are able to adequately simulate the present climate (Sushama et al. 2006, Engelbrecht et al. 2009), as well as long-term mean circulation patterns and surface fields, and also particularly variability on all time scales (Battisti et al. 1995, Renwick & Revell 1999, Engelbrecht et al. 2009).

*Corresponding author: M.Lazenby@sussex.ac.uk

Common evaluators of model performance include error (bias) against observations (Schaller et al. 2011) and correlations (spatial and temporal) between historical model simulations and observations (Taylor 2001). Complementary and more recent approaches to evaluate model performance suggest a process-based analysis to form a framework for evaluating model credibility (e.g. Gleckler et al. 2008, Thibault & Seth 2014). This includes evaluating a model’s ability to capture the large-scale processes, such as the general circulation and variability of a particular feature or variable (Thibault & Seth 2014). The objective is to identify the mechanisms or processes causing future change in models, therefore not solely...
relying on representation of present climatology as an indicator of credibility in future projections (Shongwe et al. 2011, Thibeault & Seth 2014, James et al. 2015).

1.2. South Indian Ocean Convergence Zone (SIOCZ)

The southern African climate is relatively understudied, and due to the region’s generally high vulnerability to climate variability and change and low adaptive capacity, there is a growing demand from policymakers for more robust estimates of the future climate deemed sufficiently reliable to aid in decision making for adaption (Callaway 2004, Knutti et al. 2010). The southern African climate is dominated by the SIOCZ, a diagonal northwest to southeast band of enhanced low-level convergence and precipitation during austral summer extending from the southern African continent into the southwest Indian Ocean over the southeast coast from 10°–40°S to 0–60°E (Cook 1998, 2000). It is a land-based convergence zone that forms the dynamic link between the large-scale circulation and the precipitation over southern Africa and the southwestern Indian Ocean (Tyson 1986, Cook 1998, 2000, Ninomiya 2008). It can be identified using variables such as outgoing longwave radiation (OLR), convergence fields, vertical uplift, high clouds and mean sea level pressure (SLP), which has been done previously to identify the South Atlantic Convergence Zone (SACZ) (Liebmann et al. 1999) and the South Pacific Convergence Zone (SPCZ) (Brown et al. 2011).

The zonal wind convergence occurring between the thermal low (Angola Low) and the South Indian Ocean High Pressure (SIOHP, also known as the Mascarene high pressure) are responsible for the dominant boundary of the SIOCZ over the southern African continent (Cook 2000, Ninomiya 2008) (Fig. 1). The extension of the SIOCZ into the Indian Ocean is mainly a result of the partially compensating influences of moisture advection and moist transient eddy activity and meridional wind convergence (Cook 2000). Three clear sources of moisture flux to be noted in Fig. 1 are (1) from the circulation around the Angola Low, (2) from the NE monsoon region and (3) from the circulation around the SIOHP thatridges over the continent.

Climate variability over southern Africa and the southwestern Indian Ocean is dominated by a dipole pattern in OLR, convection and rainfall, which can be interpreted as the interannual shift in the position of the SIOCZ (Cook 2000) (see Section 5 below). This dipole between the northeastern regions and the eastern African regions (Cook 1998) has a strong association with El Niño Southern Oscillation (ENSO) and the Indian Ocean (Makarau & Jury 1997, Goddard & Graham 1999, Nicholson et al. 2001, Hoerling et al. 2006, Rowell 2013). The subtropical Indian Ocean dipole (SIOD) is important in understanding southern African rainfall variability over interannual time scales (Goddard & Graham 1999, Cook 2000, Behera & Yamagata 2001, Reason 2001).

In this paper, models are evaluated in terms of their ability to simulate the mean state of the SIOCZ and variability on an interannual time scale. The drivers of interannual variability will also be identified in observations and models.
The simulation of the SIOCZ has not previously been evaluated using this suite of climate models, and information about the SIOCZ in models will provide input for evaluating uncertainty in regional climate projections for southern Africa.

2. DATA AND METHODS

2.1. Data

The gridded precipitation observational dataset used here was the monthly Climate Prediction Center Merged Analysis of Precipitation (CMAP, Xie & Arkin 1997). Other precipitation gridded gauge datasets were tested with essentially equivalent results (i.e. the Global Precipitation Climatology Project, GPCP; Adler et al. 2003, Yin et al. 2004). Other observed datasets used include NOAA sea surface temperatures (SSTs; Reynolds et al. 2007) and ERA-Interim reanalysis fields (Dee et al. 2011).

Twentieth century simulations from a total of 44 models from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset, in the most recent (Fifth) Assessment Report of the Intergovernmental Panel on Climate Change were used (Meehl et al. 2007, Taylor et al. 2012) (Table 1). Additionally, 27 Atmospheric Model Intercomparison Project (AMIP) (Gates 1992, Gates et al. 1999) were analysed to attribute the source of biases. Monthly data were extracted for the December-January-February (DJF) austral summer season of key diagnostic variables to understand essential processes of southern African climate.

2.2. Model performance metrics

The ability of models to capture the SIOCZ structure is derived through spatial correlations of the mean observed and modelled precipitation over the SIOCZ region (domain: 0–30° S, 25–50° E, illustrated by the black rectangle in Fig. 1). Model error is quantified through mean bias and root mean square errors (RMSEs; metrics listed in Table 2).

To diagnose model errors, we determine the errors in the structure of low-level moisture flux into the SIOCZ region in models to understand the key controls in the formation and maintenance the SIOCZ. SST climatology is also assessed in multi-model ensembles to investigate the links and potential relationships between SSTs and precipitation.

To determine SIOCZ variability, empirical orthogonal functions (EOFs) of DJF precipitation, for a 30 yr period over southern Africa, are derived for both models and observations. The first 3 EOFs are calculated for observations, as well as for all CMIP5 and AMIP models, from which the EOF with the highest association with the observed EOF 1 is chosen for further model analysis. Composite analysis of specific humidity and zonal and meridional winds are evaluated to link the large-scale circulation to interannual variability of the SIOCZ. Global maps correlating the EOF (time coefficients) to global SSTs are created to determine major SST teleconnection regions.

3. MODEL REPRESENTATION OF THE SIOCZ

3.1. SIOCZ climatology bias

As discussed in Section 1 above, southern African austral summer climate is dominated by the SIOCZ, which is driven by the circulation around the Angola Low and SIOHP, and an additional influx from the northwestern region. These 3 moisture flux pathways converge at low levels (850 hPa) to form the SIOCZ (Fig. 1).

The zonal mean precipitation distribution indicates that most CMIP5 models overestimate the intensity of precipitation over the SIOCZ region in some models by up to 100 mm mo⁻¹ (Fig. 2). The overall model bias over the SIOCZ region is 24 mm mo⁻¹, which is 18% of the observed mean of 135 mm mo⁻¹ (Table 2), with a standard deviation (not shown) of 17 mm mo⁻¹. This indicates that the multi-model mean (MMM) is relatively close to observations; however, individual models show relatively high positive biases as well as excessively large RMSEs. Model RMSEs average 71 mm mo⁻¹, which is approximately 53% or over a factor of 2 in excess of the climatological mean.

3.2. Spatial structure of the SIOCZ

The majority of CMIP5 models capture the spatial distribution of precipitation reasonably well in terms of identifying the SIOCZ (Fig. 3). Main points to note are (1) models exhibit a lack of continuity in the SIOCZ, i.e. a clear break in precipitation is seen between land and ocean, and (2) the majority of models simulate excessive precipitation over the southern African continent and adjacent Indian Ocean.

The multi-model ensembles (MMEs) for both CMIP5 and AMIP have a SIOCZ that is relatively
Table 1. CMIP5 models (n = 44) used in this study, including modelling centre, institute ID and atmospheric resolution. *Models for which the atmosphere-only version was also used in the analysis

<table>
<thead>
<tr>
<th>Modelling centre (or group)</th>
<th>Institute ID</th>
<th>Atmospheric resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS1.0*</td>
<td>Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology (BOM), Australia</td>
<td>CSIRO-BOM 1.25° × 1.9°</td>
</tr>
<tr>
<td>ACCESS1.3*</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>BCC-CSM1.1*</td>
<td>College of Global Change and Earth System Science, Beijing Normal University</td>
<td>GCESS 2.8° × 2.8°</td>
</tr>
<tr>
<td>BCC-CSM1.1(m)*</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>CCCMA 2.8° × 2.8°</td>
</tr>
<tr>
<td>BNU-ESM*</td>
<td>National Center for Atmospheric Research</td>
<td>NCAR 0.94° × 1.25°</td>
</tr>
<tr>
<td>CanESM2</td>
<td>Community Earth System Model Contributors</td>
<td>NSF-DOE-NCAR 0.94° × 1.25°</td>
</tr>
<tr>
<td>CanAM4*</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CCSM4*</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CESM1(BGC)</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CESM1(CAM5)</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CESM1(FASTCHEM)</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CESM1(WACC)</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>BCC 2.8° × 2.8°</td>
</tr>
<tr>
<td>CMCC-CESM</td>
<td>Centro Euro-Mediterraneo per i Cambiamenti Climatici</td>
<td>CMCC 3.71° × 3.75°</td>
</tr>
<tr>
<td>CMCC-CM*</td>
<td>Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique</td>
<td>CNRM-CERFACS 1.4° × 1.4°</td>
</tr>
<tr>
<td>CMCC-CMS</td>
<td>Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique</td>
<td>CNRM-CERFACS 1.4° × 1.4°</td>
</tr>
<tr>
<td>CNRM-CM5*</td>
<td>Centre National de Recherches Météorologiques / Centre Européen de Recherches et Formation Avancées en Calcul Scientifique</td>
<td>CNRM-CERFACS 1.4° × 1.4°</td>
</tr>
<tr>
<td>CSIRO-Mk3.6.0*</td>
<td>CSIRO in collaboration with Queensland Climate Change Centre of Excellence</td>
<td>CSIRO-QCCCE 1.9° × 1.9°</td>
</tr>
<tr>
<td>EC-EARTH*</td>
<td>EC-EARTH consortium</td>
<td>EC-EARTH 1.1° × 1.1°</td>
</tr>
<tr>
<td>FGOALS-g2*</td>
<td>LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University</td>
<td>LASG-CESS 2.8° × 2.8°</td>
</tr>
<tr>
<td>FGOALS-s2*</td>
<td>LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences</td>
<td>LASG-CESS 2.8° × 2.8°</td>
</tr>
<tr>
<td>FIO-E3M</td>
<td>The First Institute of Oceanography, SOA, China</td>
<td>FIO 2.8° × 2.8°</td>
</tr>
<tr>
<td>GFDL-CM3*</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>NOAA GFDL 2.0° × 2.5°</td>
</tr>
<tr>
<td>GFDL-CM3-G2</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>NOAA GFDL 2.0° × 2.5°</td>
</tr>
<tr>
<td>GFDL-CM3-G2</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>NOAA GFDL 2.0° × 2.5°</td>
</tr>
<tr>
<td>HadGEM2-AO</td>
<td>National Institute of Meteorological Research/Korea Meteorological Administration</td>
<td>NIMR/KMA 1.25° × 1.9°</td>
</tr>
<tr>
<td>HadGEM2-CC</td>
<td>Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)</td>
<td>MOHC (additional realizations by INPE) 1.25° × 1.9°</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)</td>
<td>MOHC (additional realizations by INPE) 1.25° × 1.9°</td>
</tr>
<tr>
<td>HadGEM2-A</td>
<td>Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)</td>
<td>MOHC (additional realizations by INPE) 1.25° × 1.9°</td>
</tr>
<tr>
<td>INM-CM4*</td>
<td>Institute for Numerical Mathematics</td>
<td>INM 1.5° × 2°</td>
</tr>
<tr>
<td>IPSL-CM5A-LR*</td>
<td>Institut Pierre-Simon Laplace</td>
<td>IPSL 1.9° × 3.75°</td>
</tr>
<tr>
<td>IPSL-CM5A-MR*</td>
<td>Institut Pierre-Simon Laplace</td>
<td>IPSL 1.25° × 2.5°</td>
</tr>
<tr>
<td>IPSL-CM5B-LR*</td>
<td>Institut Pierre-Simon Laplace</td>
<td>IPSL 1.9° × 3.75°</td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies</td>
<td>MIROC 2.8° × 2.8°</td>
</tr>
<tr>
<td>MIROCS-ESM-CHEM</td>
<td>Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies</td>
<td>MIROC 2.8° × 2.8°</td>
</tr>
<tr>
<td>MIROC4h</td>
<td>Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology</td>
<td>MIROC 0.56° × 0.56°</td>
</tr>
<tr>
<td>MIROC5*</td>
<td>Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology</td>
<td>MIROC 1.4° × 1.4°</td>
</tr>
<tr>
<td>MPI-ESM-LR*</td>
<td>Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)</td>
<td>MPI-M 1.9° × 1.9°</td>
</tr>
<tr>
<td>MPI-ESM-MR*</td>
<td>Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)</td>
<td>MPI-M 1.9° × 1.9°</td>
</tr>
<tr>
<td>MPI-ESM-P</td>
<td>Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)</td>
<td>MPI-M 1.9° × 1.9°</td>
</tr>
<tr>
<td>MRI-CGCM3*</td>
<td>Meteorological Research Institute</td>
<td>MRI 1.1° × 1.1°</td>
</tr>
<tr>
<td>NorESM1-M*</td>
<td>Norwegian Climate Centre</td>
<td>NCC 1.9° × 2.5°</td>
</tr>
<tr>
<td>NorESM1-ME</td>
<td>Norwegian Climate Centre</td>
<td>NCC 1.9° × 2.5°</td>
</tr>
</tbody>
</table>
underestimated when compared to the positive precipitation bias over the continent and Indian Ocean (Fig. 4). The SIOCZ does not have a negative bias; however, when compared to the excessive bias over land and the Indian Ocean, the SIOCZ is potentially being relatively underestimated in models. AMIP has reduced these biases in both regions, demonstrating a coupled model error. Both MME plots show the SIOCZ to be too zonal in structure, particularly the CMIP5 MME.

SSTs are overlaid on the CMIP5 MME bias plot (Fig. 4b) to potentially understand the large ocean precipitation bias. A small negative SST bias (ca. −0.5°C) is found over the Indian Ocean, therefore not explicitly explaining the overestimation of precipitation in this area by means of an overly warm ocean. Over the Atlantic Ocean, there is a large positive SST bias (~2°C), which may be linked to the precipitation bias over this region. However, both thermodynamic (local SST) and dynamic (circulation) components can contribute to precipitation biases. In recent studies by Bollasina & Ming (2013), the dynamic contribution tends to explain the excessive precipitation bias through anomalous circulation over the Indian Ocean.

Spatial correlations between observed and modelled DJF precipitation over the SIOCZ region are shown in Table 2. The majority of models have a correlation coefficient above 0.7, and only 1 model (MIROC-ESM) below 0.5, therefore confirming that the vast majority of the models are able to capture the spatial structure of the summer rainfall patterns well over the SIOCZ region. Models with the highest spatial correlations, e.g. bcc-csm1-1 (0.85) and CESM1-CAM5 (0.87), also tend to have the lowest or lower biases (0.3 and 0.7) and RMSEs (1.41 and 1.77).

3.3. Moisture flux and large-scale regional circulation

The MME moisture flux bias shows that models on average over-simulate the 3 sources of moisture flux into the SIOCZ, particularly moisture flux pathway 2 from the NE Monsoon flow (from Fig. 1), as well as the low-level moisture flux around the Angola Low, viz. moisture flux pathway 1, where more moisture flux convergence (orange and red shading) is evident in
over the same region. Therefore, low-level moisture flux in models that is erroneously high may be a reason for the precipitation bias, particularly over the continent (e.g. Washington et al. 2013).

4. INTERANNUAL VARIABILITY OF THE SIOCZ

4.1. Observed variability

Interannual modes of SIOCZ variability in both observations and models are determined using EOF analysis. In observations, variability is characterised by a clear dipole pattern, which can be interpreted as a NE–SW shift in the position of the SIOCZ axis (Fig. 7) (Cook 2001). Composite analysis was applied to other diagnostic fields, specifically low-level specific humidity and wind reanalysis fields. The top minus the bottom 5 years from observed EOF 1 time series were derived. The variability of the wind circulation appears to be driven by anomalously strong anti-cyclonic circulation in the southwestern Indian Ocean (Fig. 8), which brings in moisture from the Indian Ocean into the convergence zone (moisture flux pathway 3, see Fig. 1).

SIOCZ is clearly associated with dominant global and regional modes of interannual variability, apparent through correlations of EOF 1 time coefficients with global tropical SSTs (Fig. 9, Table 3). Specifically, there is a significant correlation with ENSO and the SIOD at the 95% confidence interval (Table 3). The mean position of the SIOCZ lies approximately between the dipole pattern as shown in EOF 1 in Fig. 7, consistent with previous analysis (e.g. Cook 2001). Therefore, the dipole pattern is indicating the variability of this feature, which is dominated by ENSO and the Indian Ocean (see Fig. 9).

4.2. Model variability

In the majority of models, a NW/SE dipole pattern indicative of the SIOCZ interannual variability emerges in the leading EOF. We found no notable difference in skill between the CMIP5 and AMIP EOF plots. For 7 CMIP5 models, there is no discernable SIOCZ dipole pattern similar to observations.

Observed drivers of variability are clearly distinguishable from Fig. 9, with regions of highest correlations (~0.4) over the central Pacific and Indian Ocean. These global plots were replicated for CMIP5 and AMIP, but are not shown due to space constraints. Of 44 CMIP5 models, 17 have EOF spatial
Fig. 3. Mean DJF precipitation over the wider study region (1979/80–1998/99) for the 44 CMIP5 models. MME: multi-model ensemble.
correlations >0.6 compared to the observed EOF 1, and for 6 of these models, correlations of >0.6 are found in EOF 2. Of the 17 models that exhibit this dipole, only 9 depict global SST correlation patterns similar to observations, i.e. with highest correlations found over the Pacific and Indian Ocean. Therefore, the majority of CMIP5 models are not able to capture the relationship between the Pacific and Indian Ocean as in observations, i.e. teleconnections. Three examples of these global correlation maps (CESM1-BGC: good, bcc-csm1-1: average, and MPI-ESM_P: poor) are shown in Fig. 10. The vast majority of models are not able to capture the observed teleconnections, but are evidently better at capturing the ENSO teleconnection than the Indian Ocean influence (SIOD) (Table 3).

5. DISCUSSION AND CONCLUSIONS

The first key conclusion from this study is that the majority of CMIP5 models perform well at simulating the spatial pattern of seasonal rainfall for DJF over southern Africa. An overall systematic bias toward an excessively wet southern African region is found, which is confirmed by the predominant amount of positive model biases and high RMSEs. However, the SIO CZ itself is not particularly wet; rather, the surrounding regions exhibit excessive precipitation. Reasons for the SIO CZ itself not being particularly wet may be due to the dominant bias in the Indian Ocean as well as circulation biases that enhance moisture flux into the surrounding regions. There is a noticeable break in the SIO CZ in the vast majority of models between land and ocean. A potential reason
Fig. 5. (a) CMIP DJF 850 hPa moisture flux bias (g kg\(^{-1}\) m s\(^{-1}\), magnitude shaded) for the period 1979/80–1998/99. (b) As in panel (a), but derived using observed ERA-Interim winds and CMIP MME mean specific humidity bias. (c) Same as in panel (a), but derived using observed ERA-Interim specific humidity (q) and CMIP MME mean u and v wind biases.

Fig. 6. As in Fig. 5a, but for 3 individual selected, contrasting models from the CMIP archive.
Fig. 7. Primary DJF precipitation empirical orthogonal function calculated for CMAP for the 30 yr period from 1979/80–2008/09. The percentage of the total variance explained is shown in the top right-hand corner of the plot.

Fig. 8. Moisture transport patterns associated with shifts in the South Indian Ocean Convergence Zone (SIOCZ). 850 hPa DJF moisture flux composite anomalies (g kg$^{-1}$ m s$^{-1}$) for the top 5 DJF seasons minus the bottom 5 DJF seasons of the CMAP precipitation empirical orthogonal function time series (see Section 4 for details).

Fig. 9. Teleconnections associated with South Indian Ocean Convergence Zone (SIOCZ) variability. Correlation of CMAP EOF 1 time coefficients and observed global sea surface temperatures (SSTs) for DJF 1979/80–2008/09.

for this break could be the different dynamics within models over land and ocean.

These systematic biases implied the need to identify the cause (potentially excessive moisture flux convergence in models, Washington et al. 2013; and SST biases in models, e.g. Brown et al. 2011) so these can be corrected for in models. Therefore, biases in model moisture flux were investigated and were found to be anomalously high around the Angola Low. The bias is mainly due to large-scale circulation biases and not specific humidity biases (Fig. 5).

SSTs showed a small negative bias over the Indian Ocean region in the MME, and are therefore not linked to the excessive precipitation through overly warm ocean temperatures resulting in more convect-
tion and hence rainfall. Further studies are required to understand this Indian Ocean precipitation bias; SST gradients in models may also be a potential contributor.

The EOF analysis provided the pattern of variability of the SIO CZ with the typical mean position of the SIO CZ located between the dipole pattern found in the primary EOF. This primary EOF also correlated significantly to Niño3.4 and the SIOD in observations. The dipole pattern found in EOF 1 could be interpreted as the movement or shift of the SIO CZ in wet and dry years, i.e. La Niña and El Niño years, respectively, similar to the north–south displacement of the SPCZ during El Niño and La Niña years, which is well captured by most CMIP3 (Brown et al. 2011) and CMIP5 (Brown et al. 2013) models. Most CMIP5 and AMIP (not shown) models captured the primary EOF dipole pattern consistent with observations, which implies that the models do exhibit characteristics of variability to some extent, which is a step further in our understanding of model processes and dynamics. SIO CZ rainfall is complex in terms of variability, as it is not just influenced by one major source but potentially several, e.g. wave activity such as Rossby waves and the Matsuno-Gill response (Ratnam et al. 2014).

The large-scale circulation of the SIO CZ was linked through to variability via composite analysis of the primary observed EOF time series and moisture flux fields. Variability is dominated by moisture flux pathway 3 (anti-cyclonic circulation around the SIOHP), feeding into the eastern parts of southern Africa. This anomalous circulation of moisture flux highlights the change of importance in the 3 moisture flux pathways.

There is a significant influence of ENSO and the SIOD on the meridional position of the SIO CZ found in observations; however, the CMIP5 and AMIP models were not able to significantly capture this relationship. Models make the SIO CZ shift north and southwards but not for the correct reasons, i.e. weak correlations with Indian Ocean and Pacific SSTs. Implications are that future climate change signals will be partly due to changes in SST gradients in the Pacific and Indian Ocean (e.g. changes to ENSO; Power et al. 2006, Alder 2011, Stevenson 2012). Therefore, models need to correctly simulate teleconnections at present, so future analyses can be valuable.

This paper is the first in which CMIP5 models are evaluated regarding their ability to capture the climatology and variability of the SIO CZ. These results have implications for regional climate projections using the set of CMIP5 models, such as which models are more accurate in capturing both mean state and variability (bcc-csm1-1 and bcc-csm1-1-m). Other implications include where biases are likely to be important within CMIP5 models, such as in regions with excessive moisture convergence in those areas. Further work is needed to explore what processes are responsible for the model precipitation biases, and what other potential drivers are driving variability within CMIP5 models besides the observed influence of ENSO and the SIOD.

Acknowledgements. This work was supported by the Peter Carpenter Scholarship for African Climate Change through the University of Sussex and the Natural Environment Research Council (NERC) Future Climate for Africa (FCFA) regional consortium project ‘UMFULA’, reference: NE/M020258. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Model Development (WGCM) and the Intergovernmental Panel on Climate Change’s Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

LITERATURE CITED

- Callaway JM (2004) Adaptation benefits and costs: Are they important in the global policy picture and how can we estimate them? Glob Environ Change 14:273−282
Cambridge and New York, NY, p 1029–1136

Editorial responsibility: Filippo Giorgi, Trieste, Italy

Submitted: October 14, 2015; Accepted: February 18, 2016
Proofs received from author(s): April 4, 2016