Inducing Nonclassical Lasing via Periodic Drivings in Circuit Quantum Electrodynamics

Carlos Navarrete-Benlloch,1 Juan José García-Ripoll,2 and Diego Porras3,4
1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-strasse 1, 85748 Garching, Germany
2Instituto de Fisica Fundamental, IFF-CSIC, Serrano 113-bis, Madrid E-28006, Spain
3Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN19QH, United Kingdom
4Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain

(Received 7 February 2014; published 7 November 2014)

We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.

DOI: 10.1103/PhysRevLett.113.193601 PACS numbers: 42.50.Pq, 42.50.Dv, 42.55.-f, 85.25.-j

Introduction.—Recent progress in experimental solid-state quantum optics has led to exciting possibilities for the control of quantum states of the electromagnetic field. Circuit quantum electrodynamics (QED) [1,2] is one of such new platforms and can be seen as the microwave counterpart of cavity QED, with optical cavities and atoms replaced, respectively, by linear and nonlinear superconducting circuits. The latter are usually referred to as “artificial atoms” or “superconducting qubits.” In circuit QED single emitters are placed permanently, and different quantum-optical elements can be combined by fabrication. The field emitted by those devices can be integrated into circuits in the form of itinerant fields and, hence, new ideas for generating quantum photonic states are of major importance for applications of this emerging field.

In recent years various experiments have shown that single-qubit lasing is possible in this scenario [3,4], while at the same time the generation of squeezed fields via Josephson parametric amplifiers has taken a lot of attention [5–7]. Here we propose a scheme that combines these two physical scenarios, motivated by two main advantages that circuit QED offers with respect to their optical counterparts. (a) Superconducting qubits having frequencies within the microwave range, the system parameters can be modulated with rates and amplitudes comparable to their characteristic energy, which opens the way to a versatile control of the qubit-field couplings via periodic drivings [8], something that in optical implementations typically involves Raman transitions which rely on the atomic internal structure [9]. So far this has allowed for the observation of the dynamical Casimir effect [10,11], as well as motivated proposals for the simulation of the ultrastong coupling regime of quantum optics [12]. (b) Several cavities and dissipative elements can be permanently coupled to single qubits. Thus, they provide us with an ideal toolbox for engineering dissipative processes [13] that are very challenging to implement in atomic QED.

We exploit these advantages for the design of a lasing dissipative phase transition in which light is emitted into a squeezed state, that is, a nonclassical state in the sense of Glauber [14,15]. In particular, we show the following. (i) A periodic driving of the qubit energy is able to induce an effective counterrotating-type interaction with the field, which turns the qubit relaxation into an effective population inversion mechanism, hence turning dissipation into something useful. This leads to single-atom lasing into a classical, coherent state. (ii) A biperiodic driving allows us to shape the qubit-field interaction such that photons are emitted into a squeezed photonic mode. A mean-field description of this problem allows us to predict a lasing transition. Surprisingly, if decay occurs by normal cavity leakage, dissipation still drives the system into a classical lasing phase. (iii) An additional qubit can be used to induce a cavity decay mechanism that cools it into a squeezed vacuum [8,16]. The joint action of this cooling process and the emission of light into a squeezed mode yields lasing into a squeezed state. (iv) Our ideas can be implemented in circuit QED setups with state-of-the-art experimental parameters, thus leading to a scheme that goes beyond single-atom lasing into coherent states in atomic [17] or solid-state [18–22] systems.

In addition to applications related to bright sources of squeezed or entangled light, the scalability of our scheme paves the way to the study of dissipative phase transitions in mesoscopic lattice QED systems [23] since many-qubit extensions of our work [24] pose an intriguing many-body problem where strongly correlated phenomena could be analyzed.

Single artificial atom and cavity system.—As shown in Fig. 1, we consider one mode of a cavity coupled to a qubit...
whose transition frequency is modulated in time. Such a system is described by a time-dependent Hamiltonian

\[H(t) = H_0 + H_{\text{int}} + H_{\text{qubit}}(t), \]

with

\[H_0 = \omega a^\dagger a + \varepsilon \sigma_z/2, \]

\[H_{\text{int}} = g(a + a^\dagger)\sigma_z, \]

\[H_{\text{qubit}}(t) = \sum_{j=1}^{n_0} \Omega_j \eta_j \cos(\Omega_j t) \sigma_z, \]

where we have set \(\hbar = 1 \) and have assumed that the modulation is multi-periodic. \(\omega \) is the cavity frequency and \(a \) the corresponding annihilation operator, \(\sigma_z \) are the Pauli operators associated to the qubit with bare frequency \(\varepsilon \), and \(H_{\text{qubit}}(t) \) describes \(n_0 \) periodic drivings with frequencies \(\Omega_j \) and normalized amplitudes \(\eta_j \).

Additionally, we consider two dissipative channels, one describing the radiative decay of the qubit to an open transmission line at rate \(\gamma \) and another for the cavity losses at rate \(\kappa \). We will employ the notation \(\mathcal{L}_{\{0,\Gamma\}}[\rho] = \Gamma(2\rho O^\dagger - O^\dagger O - \rho O^\dagger O) \), such that the master equation governing the evolution of the system's state \(\rho \) reads

\[\dot{\rho} = -i[H(t), \rho] + \sum_{\gamma = 0, \Gamma} \mathcal{L}_{\{\gamma, \Gamma\}}[\rho] + \sum_{\alpha, \kappa} \mathcal{L}_{\{\alpha, \kappa\}}[\rho]. \]

(1)

We will be considering a far-off resonant and weak coupling regime \((g \ll \varepsilon, \omega, |\varepsilon - \omega|) \), such that in the absence of driving the steady state corresponds to the trivial photon vacuum. However, we show below that by switching on an appropriate modulation \(H_{\text{qubit}}(t) \), energy can be injected into the system, driving it into a lasing regime.

Shaping the interaction.—Consider a bichromatic driving \((n_0 = 2) \) modulating at the upper and lower sidebands, \(\Omega_{1,2} = \varepsilon \mp \omega \); see Fig. 1. Moving to an interaction picture with respect to \(H_0 + H_{\text{qubit}}(t) \), we show in the Supplemental Material [27] that the system dynamics is well captured by the time-independent Hamiltonian \(\hat{H} = -\tilde{g}(ua^\dagger + va)\sigma_z^\dagger + \text{H.c.} \); we define the parameters \(u = J_0(2n_1)J_1(2n_2)/N \) and \(v = J_0(2n_2)J_1(2n_1)/N \), which satisfy the Bogoliubov relation \(|u|^2 - |v|^2 = 1 \) with the definition \(N^2 = \left| J_{2m}^0(2n_1)J_{2m}^1(2n_2) - J_{2m}^0(2n_2)J_{2m}^1(2n_1) \right| \) being \(J_m(z) \) the Bessel function of order \(m \), as well as a renormalized coupling \(\tilde{g} = gN \). Note that we are describing here the renormalization of the qubit-field interaction by photon-assisted tunneling in a nonperturbative regime with respect to the modulation amplitudes [28].

Hence, we see that a biperiodic modulation allows us to tune the relative weights of the rotating and counterrotating terms of the qubit-field interaction, which we exploit in the following to generate lasing to coherent or squeezed states.

Single-qubit lasing.—Consider first the simple case \(\eta_1 = 0 \), in which we drive the qubit with a single frequency \((u = 1, v = 0) \). In this case the qubit is coupled to the cavity mode through a counterrotating-type interaction, so that the master equation of the system reads \(\dot{\rho} = i\tilde{g}[a^\dagger\sigma_z^\dagger + aa^\dagger, \rho] + \mathcal{L}_{\{\gamma, \Gamma\}}[\rho] + \mathcal{L}_{\{\alpha, \kappa\}}[\rho] \). By using the transformation \(\sigma_{\mp} = \sigma_z \pm i\eta \) (a permutation of the qubit basis, irrelevant for the field dynamics), we see that the qubit relaxation is turned into an effective incoherent pump of its population together with a corotating coupling to the field. This leads to our first result: the periodic driving induces a lasing mechanism. This equation has been studied in the past [29–32], and mean-field theory predicts a lasing transition that depends on the cooperativity parameter \(\tilde{C} = \tilde{g}^2/\kappa \). If \(\tilde{C} \gg 1 \) and the inversion rate is much faster than the cavity losses, \(\gamma \gg \kappa \), the steady state of the cavity consists in a coherent state with a random phase.

Engineering nonclassical lasing.—Let us now consider the situation in which both driving amplitudes \(\eta_{1,2} \) are nonzero, so that the qubit is coupled to a squeezed mode \(A = ua + va^\dagger \) instead of the original cavity mode \(a \). Choosing \(|u| > |v| \), the interaction takes the form \(\hat{H} = -\tilde{g}(A^\dagger \sigma_z^\dagger + A\sigma_z) \). This seems to suggest lasing into the squeezed mode \(A \), and thus emission of a bright squeezed state of light. However, we show below that a careful study of the master equation shows that this is not the case since losses still take place by photon decay in the original cavity mode basis, \(a \), through the term \(\mathcal{L}_{\alpha, \kappa} \) in Eq. (1). We prove in the following that in order to achieve lasing in the squeezed mode, \(A \), cavity decay has to occur on that basis. We thus introduce a second, auxiliary qubit that will be used to control the photon decay in the cavity,
following the ideas introduced in [8]. We assume that the auxiliary qubit is controlled by the same driving parameters, except for an increment in the amplitudes $\eta_1 \leftrightarrow \eta_2$ which makes $|u| < |v|$, such that one effectively generates the rotating-type interaction $\hat{H}' = -\vec{g}' (A' \sigma' + A \eta'^2)$, where σ' and \vec{g}' correspond to operators and couplings of the auxiliary qubit, respectively. The latter has a decay rate γ', such that in the limit $\gamma' \gg \vec{g}' \sqrt{\langle \bar{n} \rangle}$, it can be adiabatically eliminated. This way, we obtain the master equation,

$$\dot{\rho} = i\vec{g}' [A' \sigma' + A \sigma, \rho] + \mathcal{L}_{\{\sigma, \gamma\}}[\rho] + \mathcal{L}_{\{\eta, \xi\}}[\rho] + \mathcal{L}_{\{\chi, \zeta\}}[\rho].$$

If condition $\vec{C}' = \vec{g}'^2 / \gamma' \kappa \gg v^2$ is met, the effective dissipator in the squeezed mode $\mathcal{L}_{\{\eta, \xi\}}$ dominates the natural cavity dissipation $\mathcal{L}_{\{\chi, \zeta\}}$ and the system behaves as a laser for the squeezed mode A, and hence as a nonclassical laser for the original cavity mode a.

In order to get an approximate description of the steady state predicted by this master equation, we apply a mean-field approximation in which ρ is assumed to be separable in the qubit-field subspaces [30]. Defining the expectation values $F = \langle A \rangle$, $S = i \langle \sigma \rangle$, and $D = \langle \sigma \xi \rangle$, we get the nonlinear system of equations

$$\dot{F} = -\kappa_{\text{eff}} F + \vec{g} S, \quad \dot{S} = -\gamma S + \vec{g} D F, \quad \dot{D} = -2\vec{g} (S F^* + S^* F) - 2\gamma (D - 1),$$

with $\kappa_{\text{eff}} = \kappa (1 + \vec{C}')$, which are the so-called Maxwell-Bloch equations well known in laser physics [29,30]. The steady-state solution of these equations predicts a lasing transition depending on the cooperativity parameter $\vec{C}' = \vec{g}'^2 / \gamma \kappa_{\text{eff}}$, which separates a trivial phase with $\dot{F} = \dot{S} = \dot{D} = 0$ and $\dot{D} = 1$ (bar indicates steady-state values within the mean-field approximation) for $\vec{C} < 1$, from a bright phase when $\vec{C} > 1$ in which $F = \sqrt{\gamma (\vec{C} - 1) / 2 \kappa_{\text{eff}}} \vec{C} \exp(i\theta)$, $\dot{S} = \vec{g} \dot{F} / \gamma \vec{C}$, and $\dot{D} = 1 / \vec{C}$, where θ is an arbitrary phase not fixed by the equations. Note that deep into the lasing regime ($\vec{C} \to \infty$) the number of (mean-field) photons depends solely on the ratio $\kappa_{\text{eff}} / \gamma$.

The mean-field approximation also allows us to estimate the reduced steady state of the field $\rho_1 = \text{tr}_{\text{qubit}}[\rho]$. For this, we just use the fact that within this approximation the state is separable in the qubit-field subspaces, so that taking the partial trace of (2), we get a Gaussian master equation with an analytic stationary solution; in particular, using the parametrization $\{u = \cosh r, v = \sinh r\}$ with $r \in [0, \infty]$ (we assume from now on that $u, v > 0$ without a loss of generality), and taking into account that the mean-field solution assumes spontaneous symmetry breaking, whereas in reality the statistics over many realizations would show a random phase θ, we show in the Supplemental Material [27,33] that our mean-field ansatz is given by the mixture

$$\rho_1^{(1)}(F, \vec{C}', r) = \int_{\vec{C}' \geq 0} \frac{2\pi}{2\pi} D_A(\vec{F}) S_A(r) \rho_{\text{th,A}}(\vec{n}) S_A^\dagger(\vec{r}) D_A^\dagger(\vec{F}).$$

where we have defined the displacement and squeezing operators $D_A(\alpha) = \exp(\alpha A^\dagger - \alpha^* A)$ and $S_A(r) = \exp[r(A^2 - A^2)/2]$, respectively, and the thermal state $\rho_{\text{th,A}}(\vec{n}) = \sum_{n=0}^\infty [N^n/(1 + N)^{1+n}] |n\rangle_A \langle n|$, $|n\rangle_A$ referring to the Fock states associated to mode A, and where $\vec{C}' \approx \exp(2r) + \vec{C}'/\exp(-2r + \vec{C}')$ and $2\vec{n} = \sqrt{\exp(2r) + \vec{C}'}|\exp(-2r + \vec{C}')/(1 + \vec{C}')^2 - 1$.

This mean-field state is a generalization of the usual coherent-state mixture found in the laser [29,31,32]; below, we discuss how well it describes the system compared to the exact steady state, but, before doing so, let us consider two physically relevant limits. First, the limit $\vec{C}' \gg \exp(2r)$, in which $\vec{n} = 0$ again, so that the ansatz can be written as

$$\rho_1^{(2)}(F) = \int_{\vec{C}' \geq 0} \frac{2\pi}{2\pi} D_A(\vec{F}) S_A(r)|0\rangle_A \langle 0| D_A^\dagger(\vec{F}) S_A^\dagger(\vec{r}) D_A^\dagger(\vec{F}) S_A(r);$$

we see that, as expected, in this limit the state is just a balanced mixture of all the coherent states of mode A with the same mean-field amplitude $|\vec{F}|$, which is the ideal laser state. Hence, this is the limit in which our system works as a nonclassical laser, since this state corresponds to a mixture of squeezed coherent states in the basis of the original cavity mode. The second limit we want to consider is $\vec{C}' \to 0$, that is, the limit in which we do not add a second qubit to engineer dissipation in the squeezed mode A. In this case, $\vec{n} = 0$ again, but $\vec{n} = r$, so that the mean-field ansatz can be written as

$$\rho_1^{(2)}(F) = \int_{\vec{C}' \geq 0} \frac{2\pi}{2\pi} D_A(\vec{F}) S_A(r)|0\rangle_A \langle 0| D_A^\dagger(\vec{F}) S_A(r);$$

this shows that without the help of the second qubit, the lasing process is still classical from the point of view of the original mode a, that is, the state is a mixture of coherent states.

Our laser works in a mesoscopic photon number regime in which the validity of the mean-field solution must be handled with care, and hence we proceed to study numerically the exact steady state of (2). In the solid blue curve of Fig. 2(a), we show the fidelity between this exact steady state and the mean-field ansatz (4) as we move up into the lasing transition for 90% of quadrature squeezing ($r \approx 1.15$, $\kappa_{\text{eff}} / \gamma = 0.02$, and $\vec{C}' = 10$ (similar curves are found for other values of \vec{C}'). It can be appreciated how the mean-field ansatz adapts very well to the exact steady state above the lasing transition. In addition, in the rest of the curves of Fig. 2(a), we show the fidelity between the ansatz and the exact steady state of the system when the second qubit is not adiabatically eliminated, for different
values of \bar{g}/γ'; we can appreciate that $\bar{g}/\gamma' \approx 0.03$ is needed in order to achieve the lasing conditions we seek.

In order to better characterize the state in the different regimes, Figs. 2(b)–2(e) show the Wigner functions corresponding to the steady states (5) and (6), respectively—see [27,33–36] for the details of their evaluation. In particular, in Figs. 2(d) and 2(e) we plot these Wigner functions in the phase space of the original cavity mode a, which we propose to reconstruct with a tomography experiment along the lines of [6,37]. Since all of our Wigner functions are positive everywhere in the phase space formed by the quadratures $x_a = c^+ + c$ and $p_a = i(c^+ - c)$, where $c = A$ or a, they can be directly interpreted as the joint probability distribution describing measurements of these observables.

Let us finally remark that it can be proved that the addition of dephasing (at rate γ_c) in the qubits doesn’t have any significant effect on the results presented above, except for decreasing the cooperativity of the corresponding qubit by a factor $(1 + 4\gamma_c/\gamma)$. Consequently, we have omitted such processes to ease the presentation.

Physical implementation.—In order to show the feasibility of our scheme, let us give some concrete parameters for the circuit QED architecture sketched in Fig. 1. We take $\nu/2\pi = 10$ GHz, $\omega/2\pi = 4.5$ GHz, and $g/2\pi = 40$ MHz, which are common parameters in state-of-the-art superconducting circuits [37]. In addition, a relatively fast radiative decay rate $\gamma/2\pi = 15$ MHz is induced in the qubit, while the LC resonator has a damping rate $\kappa/2\pi = 30$ kHz to the readout circuit. As for the driving, let us fix $\eta_1 = 0.2$, corresponding to a modulation amplitude of $\Omega_2\eta_2 = 2.9$ GHz, which is quite reasonable. Single-qubit lasing with cooperativities and photon numbers up to 140 and 250, respectively, can be achieved with these parameters. In order to generate the squeezed lasing proposed in the Letter, one could include a second qubit with $\bar{g}/2\pi = 70$ MHz and a strong radiative decay $\gamma'/2\pi = 250$ MHz, conditions in which its adiabatic elimination should be valid. Having chosen a small normalized amplitude η_2, we can approximate $\tan r = v/u \approx \eta_1/\eta_2$, so that 90% of quadrature squeezing ($r \approx 1.15$) is obtained by choosing $\eta_1 \approx 0.16$; taking into account that the renormalized coupling can be approximated by $\bar{g} \approx g\sqrt{\eta_2^2 - \eta_1^2}$ (and similarly for \bar{g}'), one can then get up to cooperativities $\tilde{C} = 5$ and $\tilde{C}' = 10$, enough to see the phenomena introduced in the Letter.

Conclusions and Outlook.—We have shown how to engineer a single-atom laser that emits light into a non-classical state in a circuit QED scenario. Our scheme relies only on the modulation of the transition frequencies of two qubits with periodic drivings and exploits their radiative decay to our advantage: for one qubit it is turned into the effective population inversion mechanism needed for lasing, while for the other it allows engineering the cavity dissi- pation such that the lasing process becomes nonclassical. The generalization of our ideas to the generation of multimode squeezed and entangled states is straightforward, while the extension of our work to many qubits would allow studying strongly correlated phenomena with circuit QED setups, providing the exciting possibility of preparing nontrivial many-body states dissipatively [38–42]. In addition to this, working in the GHz range, where stable phase-locked continuous-wave sources exist, our system opens a way to analyzing the coherence of the lasing process and its underlying spontaneous symmetry breaking mechanism, questions upon which there are still open debates among the quantum optics community [43–45].
We thank Géza Giedke for the interesting suggestions concerning the characterization of the state of the system; Irfan Siddiqi, Steven J. Weber, and Kater W. Murch, for insight about the concrete circuit QED architecture and the corresponding system parameters; and Alfredo Luis for the fruitful discussions. We acknowledge CAM Research Consortium QUITEMAD (Grant No. S2009-ESP-1594). C.N.-B. acknowledges the support from the Alexander von Humboldt Foundation through its Fellowship for Postdoctoral Researchers, and of the Future and Emerging Technologies (FET) program within the Seventh Framework Programme for Research of the European Commission under the FET-Open grant agreement MALICIA, Grant No. FP7-ICT-265522. J.J.G.-R acknowledges FET-Open project PROMISC and MINECO Project No. FIS2012-33022. D.P. acknowledges RyC Contract No. Y200200074.