Understanding China’s past and future energy demand: an exergy efficiency and decomposition analysis

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/57139/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Understanding China’s past and future energy demand: An exergy efficiency and decomposition analysis

Paul E. Brockway *, Julia K. Steinberger, John R. Barrett, Timothy J. Foxon
Sustainability Research Institute, School of Earth and Environment, University of Leeds, LS2 9JT, UK

Highlights
- We complete the first time series exergy and useful work study of China (1971–2010).
- Novel exergy approach to understand China’s past and future energy consumption.
- China’s exergy efficiency rose from 5% to 13%, and is now above US (11%).
- Decomposition finds this is due to structural change not technical leapfrogging.
- Results suggest current models may underestimate China’s future energy demand.

Abstract
There are very few useful work and exergy analysis studies for China, and fewer still that consider how the results inform drivers of past and future energy consumption. This is surprising: China is the world’s largest energy consumer, whilst exergy analysis provides a robust thermodynamic framework for analysing the technical efficiency of energy use. In response, we develop three novel sub-analyses. First we perform a long-term whole economy time-series exergy analysis for China (1971–2010). We find a 10-fold growth in China’s useful work since 1971, which is supplied by a 4-fold increase in primary energy coupled to a 2.5-fold gain in aggregate exergy conversion efficiency to useful work: from 5% to 12.5%. Second, using index decomposition we expose the key driver of efficiency growth as not ‘technological leapfrogging’ but structural change: i.e. increasing reliance on thermodynamically efficient (but very energy intensive) heavy industrial activities. Third, we extend our useful work analysis to estimate China’s future primary energy demand, and find values for 2030 that are significantly above mainstream projections.

Keywords: Energy efficiency, Energy demand, Decomposition, China, Useful work, Exergy

1. Introduction

As the world’s economic powerhouse and largest energy consumer [1], much effort is spent understanding China’s historical energy consumption (e.g. [2–4]) and future energy demand [5–7]. However these studies typically examine primary or final energy data, rather than useful work values obtained using an exergy analysis based technique. This is the research gap that this paper seeks to address. Exergy analysis takes a broader, whole system approach to energy analysis, giving “a measure of the thermodynamic quality of an energy carrier” (p. 686, [8]), thereby enabling a robust view of useful work consumed in provision of energy services. Exergy analysis also has the benefit of taking into account more aspects of the energy supply chain than traditional energy analysis, and in a more consistent way. A flow visualisation of primary exergy to useful work is given in Fig. 1.

A key assumption in this study is that useful work is a better ‘energy parameter’ than primary energy on which to analyse end energy use and economic activity, since – as Fig. 1 shows – it is the last thermodynamic place where energy is measured before it is exchanged for energy services. We are not alone in this view. Numerous authors (e.g. [8–10]) suggest second law exergy analyses can help understand national-scale energy use. For economic insights, Percebois [11] suggested in 1979 that energy intensity metrics (i.e. energy consumption relative to GDP) were better undertaken at the energy output stage, since it “allows us to analyse structural change in energy supply and situates our analysis at the level of satisfied needs”. Serrenho et al. [12] recent work on useful work intensity supports this assertion. Meanwhile, Warr and Ayres [13], Santos et al. [14] and Guevara et al. [15], all found empirical evidence suggesting useful work is a better candidate as...

* Corresponding author.
E-mail address: eepbr@leeds.ac.uk (P.E. Brockway).

http://dx.doi.org/10.1016/j.apenergy.2015.05.082
0306-2619/© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
a factor of production (than primary energy) to explain economic growth. This gets us to the crux of our argument: if it is useful work and not primary energy that supplies economic needs, then we should conduct energy and economic analyses at that level.

The few published time-series studies of useful work accounting have focussed largely on industrialised countries including the US, UK and Japan (e.g. [16–18]) and later all EU-15 countries [12]. Somewhat curiously, these country-scale analyses typically focus on economic implications and linkages, rather than energy-based conclusions. Brockway et al. [19] set out to address this imbalance, by undertaking a 50 year time-series analysis (1960–2010) of the US and UK. They found the US and UK may no longer be increasing their aggregate exergy efficiency, as increases in process level efficiencies are offset by efficiency dilution taking place [19], following the case of Japan [17]. In short: individual technology gains in efficiency are being offset by using increasing amounts of less efficient processes, such as air-conditioning. This raises the question: could the same be happening in China?

Numerous Extended Exergy Accounting (EEA) studies have been published on China (e.g. [20–32]). EEA is a biophysical energy analysis method, developed largely by Wall and Scuibba in the 1990s (e.g. [33–35]) to examine the embedded exergy of all natural resources inputs (e.g. energy, natural materials) and associated outputs of the economy (e.g. food, materials, wastes). This valuable technique helps understand societal exergy consumption. It is complementary to the useful work accounting method applied here, which is based on an “energy carriers for energy use” approach [36] introduced at a national-scale by Reistad [37] in 1975, which examines the exergy destruction of energy conversion processes from primary exergy to end useful work. The key distinction is that EEA is akin to a mass-balance analysis (except it studies exergy content not mass) whereas Reistad’s approach estimates the thermodynamic work done by the energy system to deliver energy services. It is the latter approach we require for detailed energy system analysis – and such national-scale useful work accounting studies for China are rare (e.g. [38]), and none to date examine a long time-series.

To address the lack of exergy-based analyses in China which examine time-series results through an energy demand lens, we pose the following research question: What new insights can useful work analysis provide for historical and future energy demand in China? In response, we provide three novel, linked analyses. To start, we undertake the first historical exergy efficiency and useful work analysis for China, covering the period 1971–2010. Next, we adopt an index decomposition analysis to identify the key drivers of changes in China’s useful work. Last, we develop a useful work based method for projecting China’s primary energy demand to 2030, and also test implications of potential future declines in the rate of exergy efficiency improvement.

The paper proceeds as follows. After the Introduction, Section 2 contains Methods and Data, Results and Discussions are in Section 3, with Conclusions in Section 4.

2. Methods and data

2.1.1. Method Summary

Reistad [37] defined exergy as ‘available energy’. As depicted in Fig. 1, at a country-scale, primary exergy of energy carriers (e.g. coal, oil, renewables, food and feed) is transformed into ready to use ‘final energy’ (e.g., diesel or electricity), which is then used to provide ‘useful work’ (i.e. through heat, mechanical drive, manual labour or electrical devices), to ultimately provide energy services (e.g. warmth, light, cooling, sustenance). Carnahan et al. [39] defined task-level ‘useful work’ (Uij) as “the minimum exergy input to achieve that task work transfer”. For our purposes, task-level means sub-class (j) (e.g. diesel road transport or low temperature heat) levels nesting within overall main classes (i) of energy use (i.e. heat, muscle work, transport, mechanical drive). Task-level exergy efficiency (εij) represents the second law thermodynamic efficiency of the energy conversion from primary exergy to end useful work, defined by Carnahan et al. [39] as:

$$\varepsilon_{ij} = \frac{U_{ij}}{E_j}$$

$$E_j = \frac{U_{ij}}{\text{Primary Exergy}} = \text{Maximum amount of reversible work done as system reaches equilibrium}$$

Primary exergy values at task-level (Ej) are then multiplied with their associated task-level exergy efficiencies (εij) to give an estimate for task-level useful work (Uij). When summed, we derive an overall estimate for the total national-scale useful work (Utot = ∑Uij) via Eq. (2). Finally, national exergy (second law) efficiency (εtot) is given by Eq. (3), which – following Carnahan et al. [39] – we adopt as a country-scale measure of energy efficiency, and use it as a term throughout this paper for consistency. Eq. (2) also reveals the thermodynamic inefficiency that useful work changes are supplied by changes in primary exergy and/or exergy efficiency.

![Fig. 1. Conceptual diagram of primary exergy to useful work.](image-url)
The task-level outputs of useful work, primary exergy efficiency, are combined with temperature and mechanical drive classes, which is also used in this study for consistency and comparability. We apply these advances to produce a first time-series analysis of China. Fig. 2 gives an overview of the basic stages:

\[
\sum U_j = \sum (E_j \varepsilon_j)
\]

\[
\varepsilon_{\text{net}} = \frac{\sum U_j}{\sum E_j}
\]

Our country-scale useful work accounting approach builds on the methodology developed by numerous authors including Reistad [37], Wall [40], Ayres and Warr [41], and more recently Serrenho et al. [42], who introduced a consistent International Energy Agency (IEA) based input energy mapping framework. Brockway et al. [19] made further advances to electricity applications and mechanical drive classes, which is also used in this study for consistency and comparability. We apply these advances to produce a first time-series analysis of China. Fig. 2 gives an overview of the basic stages:

2.1.2. Input data

Primary exergy inputs, \(E_i\), are first derived. IEA energy datasets 1971–2010 (1) for fossil fuel and biomass (combustible renewables) provided much of the base data. IEA primary energy values are converted to primary exergy inputs using chemical exergy coefficients [43]. At an aggregate level, total primary exergy is around 5% higher than the IEA’s Total Primary Energy Supply (TPES) values. The inputs \(E_i\) are then mapped to three main classes (heat, mechanical drive and electricity) and to task-levels where possible (e.g. Low Temperature Heat (LTH)), following recent approaches [19,42]. The task-levels are listed in Appendix A. In some cases, we extend the IEA end energy use breakdown to more granular levels (e.g. road fuel split between transport modes) by supplementing Chinese end consumption data in three key areas: buildings [3,44–48]; transport [49–53]; and industry [54–58].

Next, task-level exergy efficiencies (\(\varepsilon_j\)) for transport, heat, and electricity are added. Previous US–UK values [19] are modified by Chinese data as follows. For transport, local fuel economy data was used for road and rail [52,53,59,60]. For calculating Carnot efficiencies (for heat exergy efficiencies), for external temperatures we used 1971–2010 China monthly air temperature data [61], whilst indoor temperatures (for LTH efficiencies) were weighted for China’s city/rural split and assume a 20 year lag in comfort levels versus UK data [62]. LTH first law efficiencies are based on Warr et al. [18], Chen et al. [30] and Edwards et al. [63]. Steel and ammonia industries are adopted (as with US–UK study) as representative of High Temperature Heat (HTH) efficiencies, by virtue of having the two highest proportions of Chinese industrial energy use [58]. Process (GJ/tes) efficiency data for steel [54–57,64,65] and ammonia (taken as 75% of UK values, based on average values from Phylipsen et al. [65]) and the IEA [66] are combined with temperature data to calculate time-series exergy efficiencies. For electricity application efficiencies, values of 80% of those from the US–UK analysis were typically used, based on evidence that China’s average devices were 10–20 years behind US–UK values across industry, commerce and residential sectors [3,67].

Then, we calculated primary exergy and useful work values for a fourth main class: muscle work. For human labour, estimates follow Brockway et al. approach [68]: using manual labour population [69,70], food intake data [71,72], and Smil’s estimated 13% conversion efficiency of food to human useful work [73]. For draught animals, we assumed 100 million draught animals in China in 1990 [74], and a 1% annual decline in numbers from 1971 to 2010, mirroring India [75]. For animal useful work outputs, we assumed 400 W average power output for a 5 h working day over 120 working days/year, based on published data [74,76,77]. Estimates of intake feed requirements were based on Ramaswamy and Kraussmann [74,78].

Last, a note on data quality. For input energy data, two systematic discrepancies mean our national-level datasets underestimate actual primary energy use. First, at a national-scale, IEA-based TPES values are ~5% lower than those of Lawrence Berkeley National Laboratory (LBNL) China Enerdata Book [46]. Second, reported aggregate primary energy consumption in China is ~10% higher from aggregated regional versus national datasets [79]. However, these differences are expected to be systematic, and thus have limited overall effect for our trends analysis. For task-level efficiencies, whilst the China data sources are weaker in many instances than the previous US–UK studies [19], overall trends and comparison to US–UK results remain valid.

2.1.3. Useful work accounting outputs

Appendix A shows the task-level outputs of useful work, primary exergy and exergy efficiency. This data serves as task-level inputs to the Logarithmic Mean Divisia Index (LMDI) decomposition analysis, or is summed to give useful work or exergy efficiencies at main class level (i.e. heat, mechanical drive, electricity and muscle work) and country-scale.

2.2. LMDI decomposition (1971–2010)

LMDI decomposition is now the mainstream Index Decomposition Analysis (IDA) technique for analysing drivers of changes in CO₂ emissions (e.g. [80,81]) and sectoral energy use such as manufacturing and transport (e.g. [82,83]). Using the LMDI approach, we develop a new approach to reveal the relative contribution of energy and efficiency drivers to China’s historical useful work (U). First, we expand Eq. (2) \(U = \sum E_j \varepsilon_j\) to yield Eq. (4), which is based on task-level useful work (\(U_j\)) and primary exergy (\(E_j\)), enabling the historical results to act as the input data for the LMDI analysis. Eqs. (5)–(9) give the four drivers of useful work changes: Input Exergy (\(D_{AX}\)); Main class structure (\(D_{m} \));

![Fig. 2. Useful work analysis flowchart.](image-url)
sub-class (i.e. task) level structural change (D_{str}); and task-level efficiency (D_{eff}). This shows how LMDI decomposition can be used to breakdown the overall exergy efficiency changes (from the main analysis results in Section 3.1) into three parts ($D_{\text{str}}, D_{\text{dia}}, D_{\text{eff}}$).

$$U = \sum_y U_y = \sum_y \frac{E_y}{E} E_y U_y$$ \hspace{1cm} (4)

$$D_{\text{tot}} = \frac{U_f}{U_0} = D_{\text{ex}} D_{\text{str}} D_{\text{dia}} D_{\text{eff}}$$ \hspace{1cm} (5)

$$D_{\text{ex}} = \exp \left(\sum_y \hat{w}_y \ln \left(\frac{X_f}{X_0} \right) \right)$$ \hspace{1cm} (6)

$$D_{\text{str}} = \exp \left(\sum_y \hat{w}_y \ln \left(\frac{S_f}{S_0} \right) \right)$$ \hspace{1cm} (7)

$$D_{\text{dia}} = \exp \left(\sum_y \hat{w}_y \ln \left(\frac{L_f}{L_0} \right) \right)$$ \hspace{1cm} (8)

$$D_{\text{eff}} = \exp \left(\sum_y \hat{w}_y \ln \left(\frac{F_f}{F_0} \right) \right)$$ \hspace{1cm} (9)

$$\hat{w}_y = \frac{(U_f^y - U_0^y)/\ln(U_f^y - U_0^y)}{(U_f' - U_0')/\ln(U_f' - U_0')}$$ \hspace{1cm} (10)

where
- E = Primary exergy input to economy
- E_i = Main class exergy input
- E_y = Task-level exergy input
- U_y = Task-level useful work output
- \hat{w}_y = log mean weighting function
- X = Exergy input
- S = Main class share of exergy input (E_i/E)
- L = Task-level share of exergy input within main class (E_y/E_i)
- F = Task-level exergy efficiency (U_y/E_y)
- D_{ex} = change in overall exergy input (E)
- D_{str} = change in share of exergy inputs between main classes (E_i)
- D_{dia} = change in task-level shares (E_y) of exergy inputs within each main class

2.3. China energy demand scenarios 2010–2030

After conducting the historical and decomposition analyses, we develop and trial a new useful work-based methodology to estimate primary energy demand to 2030, based on projections of GDP and extrapolations of task-level exergy efficiencies under illustrative constant and declining exergy efficiency growth rate scenarios. Four steps were required. The first estimates China’s useful work requirement for 2010–2030. To do this, 1971–2010 overall useful work energy intensity (UW/GDP) – calculated from historical GDP data [84] – is extrapolated using a best-fitting curve to 2030. Using World Bank forecasts of GDP for 2011–2030 [85] – see also the Supplementary Information – Section S1, China’s total useful work (to deliver that GDP) in 2030 is then estimated.

Second, total projected useful work to 2030 is allocated to task-levels. To start, useful work proportions from main classes are estimated based on historic trend comparison in UK, US and China. China and US allocations are shown in Fig. 3. Then, task level allocations are derived, also based on comparisons to previous US-UK values, which place China as ~40 years behind US–UK allocations. These results at task-level are given in the Supplementary Information – Section S2.

Third, task-level exergy efficiencies are projected to 2030 under two illustrative scenarios which have different efficiency gains assumptions. In Scenario 1 (constant efficiency gains), China’s 1990–2010 task-level exergy efficiency changes are extended to 2010–2030. Typically this places China’s task-level efficiencies in 2030 as those of average US-UK values in 2010. In Scenario 2 (declining efficiency gains), only half of China’s 1990–2010 efficiency gains are extended to 2010–2030, with two thirds of these reduced gains assumed to occur in 2010–2020. There is some justification for the declining gains scenario, as Brockway et al. [19] found that efficiency gains in important task-levels (e.g. residential electricity and LTH) slowed or reversed in 1990–2010 (versus 1970–1990). Assuming an average 20 year lag for China, this could mean similar effects exhibited in China by 2030. More detailed efficiency results at task-level are given in the Supplementary Information – Section S3. Whilst other efficiency scenarios are possible (and indeed probable), our two selected cases are intended to represent the possible envelope of task-level efficiencies for 2010–2030, and are thus valid to study the effects of declining efficiency gains.

Fourth, estimates of total primary energy demand for 2010–2030 are made at task-level (Eq. (11)) and aggregate level (Eq. (12)). Suffix 1 and 2 refer to Scenario 1 and 2. Finally, the chemical exergy conversion ratios [43] are removed to reveal primary

Fig. 3. China (1971–2030) and US (1860–2010) useful work allocations.
energy (i.e. TPES) projections to 2030 under these two scenarios, with differences suggesting impacts of declining exergy efficiency gains on primary energy demand.

\[E_{1ij} = \frac{U_{1ij}}{e_{1ij}}; \quad E_{2ij} = \frac{U_{2ij}}{e_{2ij}} \]

\[E_1 = \sum E_{1ij}; \quad E_2 = \sum E_{2ij} \]

3. Results and discussion

3.1. 1971–2010. useful work accounting results

Table 1 summarises useful work, primary exergy and exergy efficiency results for 1971–2010, with task-level results given in Appendix A for 1971 and 2010. China’s end useful work has increased 10-fold since 1971, with electricity applications and HTH industrial uses growing from 30% to 53% of total useful work. Conversely, muscle work and low temperature heat have together declined from 40% of total useful work to 8%.

Aggregate exergy efficiency has grown almost linearly from 5.3% to 12.5%. Table 1 (together with Appendix A) suggest a key factor is the structural shift from (low efficiency) muscle work and low temperature heat (20 °C) to (high efficiency) HTH. Fig. 4 illustrates a second reason: the strong growth in mechanical drive and heat class efficiencies – which make up over half of total primary exergy inputs. The question of whether this linear aggregate efficiency trend can continue is considered via the future scenario analysis in Section 3.3.

Fig. 4 also compares China’s aggregate efficiency growth to the stable US (10–11%) values from the previous US-UK study [19]. China’s exergy efficiency overtakes the US by around 2004. At first, it is tempting to see China’s overtaking of the US’s aggregate efficiency as ‘technological leapfrogging’ (e.g. [86]) – i.e. rapidly adopting high-efficiency technologies without having to deal with the legacy of past low efficiency capital stock. In fact this is not the case, since task-level exergy efficiencies are generally lower than the US (except mechanical drive, which is a small component of China’s energy use). This result implies structural differences make a significant contribution to China’s increasing efficiency: i.e. its production-focused industrial economy uses more high temperature heat and industrial processes versus the US’s mature consumer economy. The index decomposition results in Section 3.2 support this view. In turn, this implies as China’s economy also matures and its structure shifts towards that of the US, that this may have a diluting effect on future overall exergy efficiency, as seen later in Section 3.3.

Table 1: Summary of useful work analysis results 1971–2010.

<table>
<thead>
<tr>
<th>Main category end use</th>
<th>1971</th>
<th>% of total</th>
<th>1980</th>
<th>% of total</th>
<th>1990</th>
<th>% of total</th>
<th>2000</th>
<th>% of total</th>
<th>2010</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Useful work</td>
<td></td>
</tr>
<tr>
<td>Direct heat</td>
<td>1087</td>
<td>71</td>
<td>1848</td>
<td>71</td>
<td>2787</td>
<td>68</td>
<td>3901</td>
<td>59</td>
<td>7602</td>
<td>51</td>
</tr>
<tr>
<td>Mechanical Drive</td>
<td>126</td>
<td>8</td>
<td>268</td>
<td>10</td>
<td>477</td>
<td>12</td>
<td>1140</td>
<td>17</td>
<td>2633</td>
<td>18</td>
</tr>
<tr>
<td>Electricity end uses</td>
<td>154</td>
<td>10</td>
<td>343</td>
<td>13</td>
<td>684</td>
<td>17</td>
<td>1460</td>
<td>22</td>
<td>4665</td>
<td>31</td>
</tr>
<tr>
<td>Muscle work</td>
<td>157</td>
<td>10</td>
<td>151</td>
<td>6</td>
<td>148</td>
<td>4</td>
<td>137</td>
<td>2</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1524</td>
<td>100</td>
<td>2610</td>
<td>100</td>
<td>4096</td>
<td>100</td>
<td>6638</td>
<td>100</td>
<td>15027</td>
<td>100</td>
</tr>
<tr>
<td>Primary exergy</td>
<td></td>
</tr>
<tr>
<td>Direct heat</td>
<td>15370</td>
<td>54</td>
<td>21560</td>
<td>56</td>
<td>28271</td>
<td>55</td>
<td>31504</td>
<td>49</td>
<td>51983</td>
<td>43</td>
</tr>
<tr>
<td>Mechanical Drive</td>
<td>1090</td>
<td>4</td>
<td>1971</td>
<td>5</td>
<td>2988</td>
<td>6</td>
<td>5625</td>
<td>9</td>
<td>12720</td>
<td>11</td>
</tr>
<tr>
<td>Electricity end uses</td>
<td>1592</td>
<td>6</td>
<td>3519</td>
<td>9</td>
<td>6283</td>
<td>12</td>
<td>13951</td>
<td>22</td>
<td>42507</td>
<td>35</td>
</tr>
<tr>
<td>Muscle work</td>
<td>10661</td>
<td>37</td>
<td>11760</td>
<td>30</td>
<td>13489</td>
<td>26</td>
<td>13398</td>
<td>21</td>
<td>13159</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>28713</td>
<td>100</td>
<td>38810</td>
<td>100</td>
<td>51032</td>
<td>100</td>
<td>64478</td>
<td>100</td>
<td>120,369</td>
<td>100</td>
</tr>
<tr>
<td>Exergy efficiency (useful work/primary exergy)</td>
<td>% efficiency</td>
<td></td>
</tr>
<tr>
<td>Direct heat</td>
<td>7.1</td>
<td>8.5</td>
<td>9.9</td>
<td>12.4</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Drive</td>
<td>11.6</td>
<td>13.6</td>
<td>16.0</td>
<td>20.3</td>
<td>20.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity end uses</td>
<td>9.7</td>
<td>9.7</td>
<td>10.9</td>
<td>10.5</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle work</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.3</td>
<td>6.7</td>
<td>8.0</td>
<td>10.3</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. China’s exergy efficiency by end use 1971–2010, compared to US aggregate efficiency.
Few comparative estimates are available of aggregate Chinese efficiencies. Chen and Chen [30] calculate a value of 20%, twice that of our 10% value for China in 2000. The main reasons are due their exclusion of muscle work, and higher industry efficiency (e.g. 78% for the chemical sector). Nakicenovic [87] estimated reforming countries (e.g. China) exergy efficiencies in 1990 to be ~10%, of a similar order to our 8% estimate for 1990.

Fig. 5 shows how China’s 10-fold useful work growth was supplied by a 4-fold increase in primary energy coupled to a 2.5-fold gain in aggregate exergy efficiency: from 5% to 12.5%. In other words, if China’s exergy efficiency had stayed at 5%, a 10-fold gain in primary energy would have been required to achieve the same useful work supply level.

Finally, to understand the overall flow of exergy to end useful work, and the exergy losses that occur during the various conversion processes, useful work-based Sankey diagrams of China are constructed for 1971 and 2010, as shown in Appendix B. They show the transformation of China in 40 years from a largely agricultural to industrial economy. By 2010, China is dominated by energy dense fossil fuel inputs (versus food and feed for muscle work) and energy intensive end uses, particularly in industry, which underpins the rise in overall exergy efficiency.

3.2. LMDI decomposition results 1971–2010

The multiplicative factors are summarised in Table 2 for the period 1971–2010, comparing three countries: China, the UK and US. For China, the largest contribution to useful work growth is primary exergy, confirming the result of Fig. 5. Importantly, the overall efficiency gain factor (2.5) is now split into three parts. First, the main class structural change (1.39) tracks the move from less efficient (i.e. muscle work) to more efficient (i.e. heat) main classes. Second, we find sub-class structural change (1.19) is above 1.00, which means that within each main class there has also been an efficiency ‘concentration’ effect. In contrast note the efficiency ‘dilution’ values of 0.87–0.88 for the US and UK). This is due to China’s transition from agricultural society to industrial powerhouse, causing structural shifts within main classes from lower to higher efficiency categories (e.g. LTH to HTH). Third, task-level efficiency gains (1.48) are the largest of the three efficiency gain factors.

The value of using the LMDI approach is also highlighted by Table 2. Firstly, it confirms and quantifies the assertion stated in Section 3.2: that overall structural change (1.66) is at least as important to overall efficiency gains as task-level efficiency gains (1.48). Secondly, we can directly compare factors to other countries. In this case, we see that China has not reached the point of efficiency ‘dilution’ that can be seen in the US and UK – where D_{dil} would be below 1.00 – as found earlier by Williams et al. [17] for Japan. China’s improvements to task-level efficiencies (1.48) are similar to US (1.29) and UK (1.58) values, confirming that instead of technological leapfrogging, it is overall structural change (1.66 for China versus 0.90 for US and UK) that has been responsible for China’s rise in overall aggregate efficiency to overtake the US.

3.3. Future exergy efficiency: impacts on primary energy projections

3.3.1. Step 1 – Useful work projection to 2030

China’s useful work and primary energy intensities (of economic activity) are shown in Fig. 6, based on constant price GDP. It shows a 66% reduction in useful work intensity from 12.0 (GJ/2005$US) in 1971 to 3.9 (GJ/2005$US) in 2010, compared to an 86% reduction in primary energy intensity (210.7 to 29.8 GJ/2005$US) – the standard metric for energy intensity (e.g. [88]) – over the same period. The greater stability of useful work intensity suggests useful work is more closely linked to GDP than primary energy – supporting the key assumption noted earlier. Useful work and primary energy intensities are projected to 2030 using best-fitting trendlines as shown in Fig. 6.

The World Bank’s GDP forecast for China in 2030 [85] is $13.5 Trillion (US2005), a 3.5-fold increase from the $3.8 Trillion US2005) value in 2010. Using the useful work intensity projection of 2.45 (GJ/US$2005) for 2030, this gives a useful work estimate of 33.1EJ in 2030 (just over double the 15.0EJ consumed in 2010) – to deliver that level of GDP.

3.3.2. Step 2 – Allocation of task-level useful work

Fig. 7 shows the projected annual useful work growth to 2030 is almost linearly ~27–28 Mtoe/year. This is due to two effects cancelling each other out: a slowdown in GDP growth mirroring useful work intensity reductions. At a main class level, as China’s economy matures, a slowdown in heat’s contribution to useful work is offset by growth in electricity and mechanical drive (mainly transport) classes. This appears broadly consistent with other economic forecasts for China used in energy modelling (e.g. [6]).

Table 2

<table>
<thead>
<tr>
<th>Country</th>
<th>U</th>
<th>Dex</th>
<th>Dstr</th>
<th>Ddil</th>
<th>Deff</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>9.76</td>
<td>3.96</td>
<td>1.39</td>
<td>1.19</td>
<td>1.48</td>
</tr>
<tr>
<td>US</td>
<td>1.53</td>
<td>1.32</td>
<td>1.03</td>
<td>0.88</td>
<td>1.29</td>
</tr>
<tr>
<td>UK</td>
<td>1.43</td>
<td>1.01</td>
<td>0.90</td>
<td>0.87</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Fig. 5. China 1971–2010 useful work analysis results vs 1971 datum.
3.3.3. Step 3 – Task-level exergy efficiencies

Next, task-level exergy efficiencies are projected based on the linear and declining gains scenarios described earlier – see Supplementary Information. The results at main class level are shown in Fig. 8. In Scenario 1, stable gains in task-level exergy efficiencies are combined with structural change in China in 2011–2030 – moving towards a more service sector-based economy, with associated decreases in higher efficiency processes (e.g. high temperature heat) and increases in low-efficiency activities (e.g. residential and commercial electricity), as shown earlier in Fig. 3. This results in only a small increase in national aggregate exergy efficiency from 12.5% to 13.0% in 2030. The green wedge in Fig. 8 illustrates the effect of this structural change, compared to a simple extrapolation of China’s 1990–2010 aggregate efficiency, which would result in aggregate exergy efficiency of around 17% in 2030.

In Scenario 2, which includes both structural change and slowing of task-level efficiency gains, aggregate exergy efficiency peaks at 12.8% before 2025, then reduces to 12.5% by 2030. Therefore most of the reduction in overall efficiency is due to assumed structural change than the difference in task-level efficiencies under the two scenarios.

For heat and mechanical drive classes, the projected efficiency dilution is so strong (i.e. less industrial usage and more consumer/commercial use), their efficiencies decline by 2030 under both scenarios. As electricity provides an increasing share of useful work by 2030, this accelerates the slowdown (scenario 1) and decline (scenario 2) in overall exergy efficiency. Mechanical drive efficiency stagnates in this analysis under both scenarios, since it balances task-level efficiencies that were increasing (e.g. static motors and aviation) and decreasing (e.g. road transport – due to more
cars/less motorcycles, and more heavy duty-trucks). However, as the smallest of the three main classes, this effect has limited impact on the aggregate exergy efficiency.

3.3.4. Step 4 – Primary end demand in 2030

Finally, the useful work-based primary energy estimates are calculated based on the assumed efficiency scenarios. The results are compared in Fig. 9 to five published reference (i.e. current policies) scenarios [67,89–92] and a top-down primary energy intensity (TPES/GDP) based estimate (derived econometrically via the best-fit TPES/GDP projection shown earlier in Fig. 6). By 2030, our Scenario 1 (6000 Mtoe/year) requires 900 Mtoe/year more primary energy than the econometric estimate, whilst Scenario 2 – due to assumed declining efficiency gains – requires an additional 300 Mtoe/year (compared to Scenario 1). The TPES/GDP derived primary energy estimate (as with the other five reference projections) slows over time, following the assumed slow-down in GDP growth. In contrast, our useful work derived projections show more linear increases, as with flat overall exergy efficiencies (shown earlier in Fig. 8), the linear projected growth in useful work required (see earlier Fig. 7) is passed on to required primary energy inputs.

Our useful work-based projections are significantly higher than the five reference cases. The three reference scenarios using a 2010 base year [89–91] produce estimates of 4300–5000 Mtoe/year in 2030, whilst the two scenarios with a 2005 base year [67,92] estimate primary energy consumption as 3200 Mtoe in 2030. A key aspect therefore appears the choice of base year, with the 2005 base year models missing China’s step up in energy consumption, and so undercut the projections of later base year models. Perhaps this illustrates how tricky energy forecasting is, as Smil [93] notes: “long-range energy forecasters have missed every important shift of the past 2 generations...[and they]...will continue to be wrong”.

Nevertheless, the fact remains the traditional energy models give lower estimates of primary energy than our simple useful work-based approach – so it’s worth reflecting on this. Most importantly, we base our projections on a different energy intensity metric versus mainstream models – ours is based on useful work (U/GDP), as this measures the energy level delivered to economic activities, rather than on primary energy (TPES/GDP) entering the economy. Moreover, our TPES/GDP based projection is 20% below our U/GDP based projections – showing that this distinction is an important one. The GDP projections that we use are consistent with other models (e.g. [6]). Our methodology is also top-down: it starts from an aggregate demand estimation, and then builds up its constituent elements from task-share trends. Other energy models tend to be bottom-up, using demand and technology trends of various sectors. We attach more detailed scenario data in the Supplementary Information.

Whilst we believe the useful work based approach to primary energy forecasting is justified by the observed links between aggregate economic activity and useful work, significant caveats exist around the accuracy of the underlying data to our energy projection conclusions. For the useful work calculations for 1971–2010, though the primary exergy data is relatively robust (relying mainly on IEA energy balance data), the task-level efficiencies have greater uncertainty, being based on often partial data. In turn, projecting task-level useful work allocations and exergy efficiencies to 2030 amplifies any data inaccuracies. However the driving rationale of the paper was to develop a new technique based on useful work. The result highlights the possible importance of this method and thus mandate for further study.

4. Conclusions

To address the lack of time-series exergy analyses for China which examine energy demand drivers and implications, we set the following research question: What new insights can useful work analysis provide for historical and future energy demand in China? First, our historical analysis found China’s exergy efficiency grew linearly from 5.3% (1971) to an impressive 12.5% (2010), placing it between the US (11%) and the UK (15%). In addition, a striking 10-fold rise in China’s useful work occurred from 1971 to 2010, supplied by a 4-fold increase in primary exergy and a 2.5-fold increase in exergy efficiency. Second, using LMDI decomposition we found efficiency growth was split evenly between task-level efficiency gains and structural change (e.g. moving from muscle work to mechanical drive). Third, a new useful work-based energy forecasting technique is developed and trialled, which – based on two illustrative exergy efficiency scenarios – projects China’s 2030 primary energy demand in the range of 6000–6300 Mtoe, significantly higher than the 4500–5200 Mtoe estimates from published sources using traditional energy models which use the same 2010 baseline year.

The results allow several key insights. Firstly, if China’s exergy efficiency had stayed at 5%, a 10-fold (rather than 4-fold) gain in primary exergy would have been required to achieve the same useful work supply level. Through the mechanism of the macro-economic rebound effect, however, as Ayres et al. [94] and Schipper and Grubb [95] established, lower efficiency gains may in fact translate to lower economic growth, and hence lower required useful work. Second, the application of LMDI decomposition to useful work results provided robust insights: revealing China’s efficiency rise above the US was not due to technological leapfrogging, but greater use of energy intensive (yet more exergy efficient) industrial processes. Third, in common with the US and UK, China may approach an asymptotic exergy efficiency maximum by 2030, as its economy matures and efficiency dilution starts. Such dilution is already
forecast: the modal shift to cars [67] will reduce mechanical drive exergy efficiency; a rapid increase in residential electricity [3]; and a peaking in the share of HTH allied to a shift to greater residential LTH. Fourth, our extension of useful work based technique projects higher primary energy demand in China by 2030 versus traditional bottom-up energy model estimates (i.e. based on primary or final energy). Further studies investigating the possible reasons (e.g. differences in assumed future energy efficiency savings, structural consumption, energy rebound and efficiency dilution) would therefore be beneficial.

Overall, the useful work method appears a valuable technique to give new insights into Chinese energy consumption and efficiency – past, present and future. Given the implications to future energy demand and associated policies, further research is encouraged. First, work to improve the consistency of the useful work method would be of benefit – such as the treatment of renewables, non-energy use, active/passive system efficiencies, or extending the analysis boundary to include energy services, as others suggest [38,87,96]. Second, contrast the construction of traditional (primary and final energy) versus useful work energy models, to uncover the reasons for energy projection differences. Third, undertake further economic analysis to test the key assumption underpinning this work: that useful work is a more suitable parameter for energy and economic analysis than primary energy. Lastly, policy implications could be explored – such as how to meet higher (than expected) primary energy demand, or how to amend micro-efficiency policies to capture energy savings before rebound occurs.

Acknowledgments

We gratefully acknowledge the support of Engineering and Physical Sciences Research Council (EPSRC) and Arup for contributing to the PhD CASE (Collaborative Award in Science and Engineering) scholarship of the first author. The support of the Economic and Social Research Council (ESRC) is also gratefully acknowledged. The work contributes to the programme of the ESRC Centre for Climate Change Economics and Policy. Also, we thank João de Santos and Tiago Domingos of Instituto Superior Técnico, Lisbon, for sharing their unpublished work. We would like to thank the two anonymous reviewers and the editor of Applied Energy for their useful suggestions and valuable comments.

Appendix A. Useful work accounting outputs: China – 1971, 2010

(see Table A1)

Table A1

<table>
<thead>
<tr>
<th>Main class, i</th>
<th>Task level, j</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1971</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Drive</td>
<td></td>
</tr>
<tr>
<td>LTH (Low Temperature Heating 20°C)</td>
<td>435</td>
</tr>
<tr>
<td>MTH1 (Medium Temperature Heating 100°C)</td>
<td>30</td>
</tr>
<tr>
<td>MTH2 (Medium Temperature Heating 200°C)</td>
<td>301</td>
</tr>
<tr>
<td>HTH (High Temperature Heating 600°C)</td>
<td>283</td>
</tr>
<tr>
<td>Sub total</td>
<td>1,049</td>
</tr>
<tr>
<td>Mechanical Drive</td>
<td></td>
</tr>
<tr>
<td>Mechanical drive – Gas/diesel oil (assume diesel road vehicles)</td>
<td>20</td>
</tr>
<tr>
<td>Mechanical drive – Domestic Aviation fuel, jet fuel</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive – Gasoline fuel (Petrol road vehicles)</td>
<td>42</td>
</tr>
<tr>
<td>Mechanical drive – Diesel/gas oil fuel (Boat engines)</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical drive – Industry static motors (diesel engines)</td>
<td>28</td>
</tr>
<tr>
<td>Mechanical drive – Gas/diesel fuel (diesel trains)</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical drive – Gas/diesel fuel (tractors)</td>
<td>26</td>
</tr>
<tr>
<td>Mechanical Drive – bio-diesel/bio-gasoline (road transport)</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive – bio-diesel/bio-gasoline (road transport)</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive – Gas/diesel oil (assume diesel cars)</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive – Gas fired engines (for pipeline transport)</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive – Coal (steam powered trains)</td>
<td>7</td>
</tr>
<tr>
<td>Mechanical drive – Coal (steam powered boats)</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical drive sub-total</td>
<td>126</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>1</td>
</tr>
<tr>
<td>Domestic/commercial – Space heating</td>
<td>0</td>
</tr>
<tr>
<td>Domestic – Hot water/cooking</td>
<td>1</td>
</tr>
<tr>
<td>Industry – HTH process heating</td>
<td>16</td>
</tr>
<tr>
<td>Electrolytic end use – Industry</td>
<td>11</td>
</tr>
<tr>
<td>Communications/electric devices</td>
<td>0</td>
</tr>
<tr>
<td>Refrigeration/air conditioning</td>
<td>4</td>
</tr>
<tr>
<td>Domestic – Wet/dry motor driven appliances</td>
<td>0</td>
</tr>
<tr>
<td>Other mechanical drive motors</td>
<td>123</td>
</tr>
<tr>
<td>Electricity – Sub-total</td>
<td>156</td>
</tr>
<tr>
<td>Muscle work</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>26</td>
</tr>
<tr>
<td>Draught animals</td>
<td>131</td>
</tr>
<tr>
<td>Muscle work – Sub-total</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>1,488</td>
</tr>
</tbody>
</table>
Appendix B. Primary exergy to useful work E-Sankey flowmaps: China – 1971 and 2010

(see Figs. B1 and B2)
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apenergy.2015.05.082.

Appendix D. Data Statement. Supplementary material

A complete results file, produced following the methodology and sources described in this paper, has been deposited at the University of Leeds Data Repository at http://doi.org/10.5518/7.

References

[9] Rosen MA, Dincer I, Kanoglu M. Role of exergy in increasing efficiency and energy efficiency reverse the growth? Lawrence Berkeley National Laboratory (LBL); 2010.

[32] Jeter T. China transport efficiency data. UC Davis data sent by email to author; 2014.