A four-step ortho-rectification procedure for geo-referencing video streams from a low-cost UAV

Article (Presentation)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/56233/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran
Introduction

• What?
Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform.

• Why?
Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired by the UAV.

• How?
This can only be achieved by comparing the UAV video imagery with an existing well referenced map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The method used in this paper is based on the photogrammetry model, this is a form of geometric imaging system that makes use of the aerial image central perspective and the principle of collinearity.
The four basic steps for ortho-rectification and geo-referencing of video streams captured by a low-cost multi-sensor UAV:

- De-compilation of video streams
- Establishing the video camera interior orientation parameters (IOPs)
- Determining the relative orientation parameters of each video frame
- Find the absolute orientation parameters using self-calibration bundle adjustment

Procedure workflow
Decomposition of video streams

- BPS video converter Software
- Feature points extraction and tie points matched

Courtesy ERDAS Field Guide
Finding the interior orientation

- Interior orientation is basically used to transform the image coordinate system to the image space system.

- It defines the internal geometry of the camera as it existed at the time of data capture.

- The internal geometry of the camera is defined by 3 parameters:
 1. Principal point
 2. Focal length
 3. Lens distortion
In the simplest terms, finding interior orientation involves shifting the actual point to satisfy the collinearity conditions.
This collinearity condition is used by the Direct Linear Transformation (DLT) to facilitates a perspective projection between the 2D image data and the 3D object space, it requires foreknowledge of 3 ground control points and is of the form:

\[u - \Delta u = \frac{L_1X + L_2Y + L_3Z + L_4}{L_9X + L_{10}Y + L_{11}Z + 1} \]

\[v - \Delta v = \frac{L_5X + L_6Y + L_7Z + L_8}{L_9X + L_{10}Y + L_{11}Z + 1} \]
Finding the interior orientation (cont.)

- Orientation offset between camera sensor frame

This is express by (Guoqing) as:

\[q^F_G = q^F_{GPS}(t) + Q^F_{INS}(t)[S_F \ast Q^{INS}_C(q^C_g(t) + q^C_{GPS})] \]
Finding the interior orientation (cont.)

Orientation offset between camera sensor frame

\[q^F_G = q^F_{GPS}(t) + Q^F_{INS}(t)[S_F * Q^I_{INS}(q^C_g(t) + q^C_{GPS})] \]

\[Q^F_{INS} = \begin{bmatrix} \cos \psi \cos \kappa & \cos \psi \sin \kappa + \sin \psi \sin \kappa \cos \kappa & \sin \psi \sin \kappa - \cos \psi \sin \kappa \cos \kappa \\ -\cos \kappa \sin \kappa & \cos \psi \cos \kappa - \sin \psi \sin \kappa \sin \kappa & \sin \psi \cos \kappa + \cos \psi \sin \kappa \sin \kappa \\ \sin \kappa & -\sin \psi \cos \kappa & \cos \psi \cos \kappa \end{bmatrix} \]

In this step, the camera calibration process considers the focal length and principal point coordinates only, because the IOPs and EOPs that was solved by DLT and the boresight values will be used as initial values for the final bundle adjustment model.
Finding the Relative Orientation

- What is relative orientation?
- How is this achieved?

stereoscopic viewing with two different camera positions
Finding the Absolute Orientation

- Absolute orientation
- Self-calibration

Absolute orientation showing ground control
Experimental results

The four steps procedure mentioned was evaluated using data collected from a low-cost UAV.

Our results show that, the 2-D planimetric accuracy when compared with the 6 control points is between 3 to 5 metres.

Mosaicked images covering test area
Conclusions

- Our method for ortho-rectification, although, is automatic but is not autonomous, it does not require significant operator interaction.

- Error assessment during the matching of conjugates on frames shows that the image RMS residual is small.

- Cost and turnaround time for production of ortho-rectified mosaics are quite small when compared with the traditional method.
References

Thank you