Tracking of motor vehicles from aerial video imagery using the OT-MACH correlation filter

Nagachetan Bangalore, Rupert Young, Philip Birch, Chris Chatwin

Department of Engineering and Design, University of Sussex, Brighton, United Kingdom
Introduction

- Accurately tracking moving targets in a complex scene involving moving cameras, occlusions and targets embedded in noise is a very active research area in computer vision.

- An optimal trade-off maximum correlation height (OT-MACH) filter has been designed and implemented as a robust tracker.

- The algorithm allows selection of different objects as a target, based on the operator’s requirements.

- The tracker has been tested on both colour visible band as well as infra-red band video sequences acquired from the air by the Sussex County police helicopter.
OT-MACH Filter

Frequency domain Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter function (Mahalanobis et al)

OT-MACH tunable nature gives:

• ability to produce easily detected correlation peaks
• tolerance to untrained target object distortions
• ability to suppress noise/clutter
Frequency domain Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter function:

\[h = \frac{m^*}{\alpha C + \beta D_x + \gamma S_x} \]

- \(\alpha, \beta \) and \(\gamma \) are the OT-MACH (non-negative) parameters
- \(m^* \) is the average of the training images
- \(C \) is the diagonal matrix of the power spectral density of additive input noise, where we have: \(C = \sigma_{input} / \mu_{input}, \alpha = 1 \)
- \(D_x \) is the diagonal matrix of the average power spectral density of the training images
- \(S_x \) is the similarity matrix of the training images
Target Initialisation

Initialisation circle over target vehicle

Target reference image used to train filter
Active contour based target extraction

An energy functional is computed and iterated for each co-ordinate point around the object:

$$E_{snake}^*(s) = E_{int}(v_s) + E_{image}(v_s)$$

The continuously up-dated snake energy:

$$E_{snake}^* = \alpha(s) \left| \frac{dv_s}{ds} \right|^2 + \beta(s) \left| \frac{d^2v_s}{ds^2} \right|^2 + \gamma(s)E_{edge}$$
Reference image with mapped contour

Target reference image used to train filter
Rotationally multiplexed reference image

Target reference image used to train filter
Correlation Plane Response

Correlation Plane with peak location \((x, y) = (195, 342)\)
Tracker Results on test video

Kalman filter (Red) and OT-MACH filter tracker (Yellow)
Tracker Results on test video

Particle filter (blue, green and red) and OT-MACH filter tracker (Yellow)
False object rejection

Sussex Police video (1) Frame 5 with false objects
Tracker results

Sussex Police video (1) Frame 15 with multiple false objects
Tracker results

Sussex Police video (1) Frame 240, scale changed
IR tracker results

Sussex Police infra-red video frame 104, scale changed with Gaussian noise
IR tracker results

Sussex Police infra-red video frame 265, scale changed
IR tracker results

Sussex Police infra-red video frame 435, scale and orientation changed
Colour camera, variable lighting

Sussex Police video (3) frame 35
Colour camera, variable lighting

Sussex Police video (3) frame 548, scale and orientation changed
Conclusions

• The OT-MACH filter has been optimised and implemented as a robust vehicle tracker

• The filter is rotation multiplexed and applied at a frame rate initialised by the user on the video sequences, with a filter up-date being implemented every m frames

• Compared to rectangular and circular extraction methods the active contour snake is found to allow the maintenance of a strong and accurate correlation peak at the target location
Conclusions

• The OT-MACH filter is frequently updated by retraining with rotationally multiplexed reference images extracted and processed during an interval period chosen by the user.

• From the tests performed to date, the OT-MACH tracker shows considerable promise and has the capability to perform accurately in cluttered and noisy sequences.

• The filter is found to be accurate in recognising and tracking the target, outperforming an extended Kalman filter and colour based Particle filter approach in noisy and dynamic sequences.
References

10) P. Bone, R. C. D. Young, C. R. Chatwin, Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes, Optical Engineering, Volume 45, pp. 077203-1 to 8, No. 7, 2006
12) Fastest Fourier Transform in the West, Website: http://www.fftw.org/
References

