Search for a CP-odd Higgs boson decaying to Zh in pp collisions at $\sqrt{s}=8$TeV with the ATLAS detector

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/55821/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Search for a CP-odd Higgs boson decaying to Zh in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration

A search for a heavy, CP-odd Higgs boson, A, decaying into a Z boson and a 125 GeV Higgs boson, h, with the ATLAS detector at the LHC is presented. The search uses proton–proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb$^{-1}$. Decays of CP-even h bosons to $\tau\tau$ or bb pairs with the Z boson decaying to electron or muon pairs are considered, as well as $h \rightarrow bb$ decays with the Z boson decaying to neutrinos. No evidence for the production of an A boson in these channels is found and the 95% confidence level upper limits derived for $\sigma(gg \rightarrow A) \times BR(A \rightarrow Zh) \times BR(h \rightarrow f\bar{f})$ are $0.098-0.013$ pb for $f = \tau$ and $0.57-0.014$ pb for $f = b$ in a range of $m_A = 220-1000$ GeV. The results are combined and interpreted in the context of two-Higgs-doublet models.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

After the discovery of a Higgs boson at the LHC in 2012 [1,2], one of the most important remaining questions is whether the newly discovered particle is part of an extended scalar sector. A CP-odd Higgs boson, A, appears in many models with an extended scalar sector, e.g. in the case of the two-Higgs-doublet model (2HDM) [3].

The addition of a second Higgs doublet leads to five Higgs bosons after the electroweak symmetry breaking. The phenomenology of such a model is very rich and depends on the vacuum expectation values of the Higgs doublets, the CP properties of the Higgs potential and the values of its parameters and the Yukawa couplings of the Higgs doublets with the fermions. In general, it is possible to accommodate in the model a Higgs boson compatible to the one discovered at the LHC. In the case where the Higgs potential of the 2HDM is CP-conserving, the Higgs bosons after electroweak symmetry breaking are two CP-even (h and H), one CP-odd (A) and two charged (H^+) Higgs bosons. Many theories beyond the Standard Model (SM) include a second Higgs doublet, such as the minimal supersymmetric SM (MSSM) [4–8], axion models [9] and baryogenesis models [10]. Searches for a CP-odd Higgs boson are reported in Refs. [11–14].

In this Letter, a search for a heavy CP-odd Higgs boson decaying into a Z boson and the ~ 125 GeV Higgs boson, h, is described.

The $A \rightarrow Zh$ decay rate can be dominant for part of the 2HDM parameter space, especially for an A boson mass, m_A, below the $t\bar{t}$ threshold. In this case, the A boson is produced mainly via gluon fusion and its natural width is typically small: $\Gamma_A/m_A \lesssim \mathcal{O}(1\%)$.

The search is performed for m_A in the range 220 to 1000 GeV, reconstructing $Z \rightarrow \ell\ell$ decays (where $\ell = e, \mu$) with $h \rightarrow bb$ or $h \rightarrow \tau\tau$, as well as $Z \rightarrow \nu\nu$ with $h \rightarrow bb$. The selected h boson decay modes provide high branching ratios and the possibility to fully reconstruct the Higgs boson decay kinematics. The reconstructed invariant mass (or transverse mass) of the Zh pair, employing the measured value of the h boson mass, m_h, to improve its resolution, is used to search for a signal.

2. Data and simulated samples

The data used in this search were recorded with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 8 TeV. The ATLAS detector is described in detail elsewhere [15]. The integrated luminosity of the data sample, selecting only periods where all relevant detector subsystems were operational, is 20.3 ± 0.6 fb$^{-1}$ [16]. The data used in the $\ell\ell\tau\tau$ and $\ell\ell bb$ final states were collected using a combination of single-electron, single-muon, dielectron (ee) and dimuon ($\mu\mu$) triggers. Depending

* E-mail address: atlas.publications@cern.ch.
on the trigger choice, the p_T^2 thresholds vary from 24 to 60 GeV for the single-electron and single-muon triggers, and from 12 to 13 GeV for the ee and $\mu\mu$ triggers. The data used in the $\nu\bar{\nu}bb$ final state were collected with a missing transverse momentum (E_T^{miss}) trigger with a threshold of $E_T^{miss} > 80$ GeV.

Signal events from a narrow-width A boson produced via gluon fusion are generated with MadGraph5 [17] for all final states considered in this search. The parton showering is performed with PYTHIA8 [18,19].

Production of W and Z bosons in association with jets is simulated with SHERPA [20]. Top-quark pair and single top-quark production is simulated with POWHEG [21–23] based on the ME/GEANT4-based [24] production of WW, WZ, and ZZ dibosons are simulated using NOWHEG. The WZ and ZZ processes include the production of off-shell Z bosons (Z^*) and photons (γ^*). Triboson production ($WWW^{(*)}$, $ZWW^{(*)}$, $ZZZ^{(*)}$) and top pair production in association with a Z boson are generated with MadGraph5. Finally, the production of the SM Higgs boson in association with a Z boson is considered as a background in this search. It is simulated using PYTHIA8.

The CT10 [26] set of parton distribution functions was used for samples generated with MadGraph5 and PYTHIA8. The CT10 is set was used for the other samples.

All generated samples are passed through the GEANT4-based [27] detector simulation of the ATLAS detector [28]. The simulated events are overlaid with minimum-bias events, to account for the effect of multiple interactions occurring in the same and neighboring bunch crossings (“pile-up”). The events are reweighted so that the average number of interactions per bunch crossing agrees with the data.

The background estimation in this search for most processes is based on data driven techniques, but in some cases only simulated samples are used. In that case, the simulated samples are normalized using theoretical cross section calculations. In particular, for diboson production both $q\bar{q}$ [29] and gg [30,31] initiated processes are included. Triboson production follows Ref. [32] and top pair production in association with a Z boson follows Refs. [33, 34]. SM Higgs boson production in association with a Z boson uses a calculation described in Ref. [35].

3. Object reconstruction

Electrons are identified from energy clusters in the electromagnetic calorimeter that are matched to tracks in the inner detector [36]. Electrons are required to have $|\eta| < 2.47$ and $p_T > 7$ GeV. Isolation requirements, defined in terms of the calorimetric energy or the p_T of tracks within cones around the object, as well as quality requirements are applied to distinguish electrons from jets.

Muons are reconstructed by matching tracks reconstructed in the inner detector to tracks or track segments in the muon spectrometer systems [37]. The muon acceptance is extended to the region $2.5 < |\eta| < 2.7$, which is outside the inner detector coverage, using only tracks reconstructed in the forward part of the muon detector. Muons used for this search must have $|\eta| < 2.7$, $p_T > 6$ GeV and are also required to pass isolation requirements.

Jets are reconstructed using the anti-k_T algorithm [38] with radius parameter $R = 0.4$ and $p_T > 20$ GeV ($p_T > 30$ GeV) for $|\eta| < 2.5$ ($2.5 < |\eta| < 4.5$). Low-p_T jets from pile-up are rejected with a requirement on the scalar sum of the p_T of the tracks associated with the jet: for jets with $|\eta| < 2.4$ and $p_T < 50$ GeV, tracks associated with the primary vertex2 must contribute over 50% to the sum. Jets from the decay of long-lived heavy-flavor hadrons are selected using a multivariate tagging algorithm (b-tagging) [39]. The b-tagging efficiency is 70% for jets from b-quarks in a sample of simulated tt events.

Hadronic decays of τ leptons (τ_{had}) [40] are reconstructed starting from clusters of energy in the calorimeter. A τ_{had} candidate must lie within $|\eta| < 2.47$, have a transverse momentum greater than 20 GeV, one or three associated tracks and a total charge of ± 1. Information on the collimation, isolation, and shower profile is combined into a multivariate discriminant to reduce backgrounds from quark- or gluon-initiated jets. Dedicated algorithms that reduce the number of electrons and muons misidentified as hadronic τ decays are applied. In this analysis, two τ_{had} identification selections are used — “loose” and “medium” — with efficiencies of about 65% and 55%, respectively.

The missing transverse momentum (E_T^{miss}) is computed using fully calibrated and reconstructed physics objects, as well as clusters of calorimeter-cell energy deposits that are not associated with any object [41]. In addition, a track-based missing transverse momentum (p_T^{miss}) is calculated as the negative vector sum of the transverse momenta of tracks with $|\eta| < 2.4$ and associated with the primary vertex.

4. Search for $A \rightarrow Zh$ with $h \rightarrow \tau\tau$

In the search for $A \rightarrow Zh$ with $h \rightarrow \ell\ell\tau\tau$, three channels are considered, distinguished by the way the $\ell\ell\tau\tau$ pair decays: two ℓ leptons decaying hadronically ($\ell_{had}\tau_{had}$), one lepton and one hadronic decay ($\ell_{lep}\tau_{had}$) and, finally, two leptonic decays ($\ell_{lep}\ell_{lep}$). Electrons in the $\tau_{had}\tau_{had}$ and $\ell_{lep}\tau_{had}$ channels are rejected in the transition region between the barrel and end-cap of the detector (1.37 < $|\eta|$ < 1.52). Muons in the $\tau_{had}\tau_{had}$ and $\ell_{lep}\tau_{had}$ channels are considered only for $|\eta| < 1.5$.

The resolution of the reconstructed A boson mass is improved using a mass-difference variable,

$$m_A = m_{\ell\ell\tau\tau} - m_{\ell\ell} - m_{\tau\tau} + m_Z + m_h,$$

where m_Z is the mass of the Z boson, m_h is 125 GeV is the mass of the CP-even Higgs boson, $m_{\ell\ell}$ is the invariant mass of the two leptons associated with the Z boson decay, and $m_{\tau\tau}$ denotes the $\ell\ell\tau\tau$ invariant mass. The value of m_A, the invariant mass of the τ's, is estimated with the Missing Mass Calculator (MMC) [42]. The mass resolution for all $\tau\tau$ channels ranges from 3% at $m_A = 220$ GeV to 5% at $m_A = 1$ TeV.

4.1. $\ell\ell\tau_{had}\tau_{had}$

Events in the $\ell\ell\tau_{had}\tau_{had}$ channel are required to contain exactly two opposite-sign leptons $\ell\ell$ (ee or $\mu\mu$) and exactly two opposite-sign τ_{had}. The p_T requirements for these objects are $p_T > 26$ GeV (15 GeV) for the leading (subleading) electron, $p_T > 25$–36 GeV (10 GeV) for the leading (subleading) muon, depending on the trigger, and $p_T > 35$ GeV (20 GeV) for the leading (subleading) τ_{had} candidates. The τ_{had} candidates are required to satisfy the “loose” τ_{had} identification criterion. In addition, the ee/$\mu\mu$ invariant mass and the $\tau\tau$ invariant mass have to lie in the ranges $80 < m_{\ell\ell} < 100$ GeV and $75 < m_{\tau\tau} < 175$ GeV. Finally, the p_T of the $\ell\ell$ pair, $p_T^{\ell\ell}$, is required to be:

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta)/2)$. Transverse momenta are computed from the three-momenta, $p_T = |p| \sin \theta$.

3 The primary vertex is taken to be the reconstructed vertex with the highest Σp_T^2 of the associated tracks.
$p_T^Z > 125$ GeV, if $m_A^2 > 400$ GeV

$0.64 \times m_A^2 - 131$ GeV, otherwise.

This requirement maximizes the sensitivity over the whole explored A mass range. In the region of $p_T^Z > 125$ GeV, there is little background present, so tightening the requirement results in no additional increase in sensitivity. The total acceptance times selection efficiency varies from 6.2%, for $m_A = 220$ GeV, to around 18% for the highest A boson masses considered.

The dominant background for this channel originates from events where one or both of the τ's is a misidentified jet ("fake-τ background"). This background is dominated by $Z +$ jets events, with small contributions from dibosons and events with top quarks, and it is estimated using a template method. The shape of the fake-τ background is taken from a control region (the "template region") that contains events satisfying all the $\ell\ell\tau_{\text{had}}\tau_{\text{had}}$ selection criteria apart from the requirements for an opposite-sign $\tau_{\text{had}}\tau_{\text{had}}$ pair and the τ_{had} identification criteria. The fake-τ background is normalized by using two additional control regions. The first region, "A", contains events that satisfy the signal selection criteria, with the exception that the m_τ constraint is inverted, i.e. $m_\tau < 75$ GeV or $m_\tau > 175$ GeV. The second region, "B", contains events that satisfy all the template selection criteria, with the exception that the m_τ constraint is inverted, as in the region "A" definition. The ratio of the number of events in "A" to the number of events in "B" is used to scale the template region events in order to obtain the normalization of the fake-τ background.

In addition to the fake-τ background, there are also contributions from backgrounds with real $\ell\ell\tau_{\text{had}}\tau_{\text{had}}$ objects in the event. These backgrounds come primarily from $ZZ^{(*)}$ production. SM Higgs boson production in association with a Z boson is estimated using simulation, and contributes 17% of the total background.

4.2. $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$

Events in the $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$ channel are required to contain exactly three light leptons, $\mu\mu\mu$, $e\mu\mu$, $e\mu\mu$ or eee, and exactly one τ_{had}. The p_T requirements for these objects are $p_T > 26$ GeV (15 GeV) for the leading (remaining) electron(s), $p_T > 25$–36 GeV (10 GeV) for the leading (remaining) muon(s), depending on the trigger, and $p_T > 20$ GeV for the τ_{had}. Subsequently, all the possible $\ell\ell$ pairs that are composed of opposite-sign, same-flavor leptons are selected. From these pairs, the pair that has the invariant mass closest to m_T is considered to be the lepton pair from the Z boson decay. The third light lepton is considered to be the leptonic τ decay, and it is used along with the τ_{had} to define the $\tau_{\text{lep}}\tau_{\text{had}}$ pair. This light lepton is required to have opposite-sign charge with respect to the τ_{had}. In addition, the τ_{had} is required to satisfy the "medium" τ_{had} identification requirement, and $m_{\ell\ell}$ and $m_{\tau\tau}$ have to lie in the ranges $80 < m_{\ell\ell} < 100$ GeV and $75 < m_{\tau\tau} < 175$ GeV. The total acceptance times selection efficiency varies from 6% for $m_A = 220$ GeV, to around 17% for the highest A boson masses considered.

About half of the total background for this channel comes from events where the τ_{had} and/or the light lepton is a misidentified jet ("fake-ℓ/τ background"). This background is dominated by diboson and $Z +$ jets events and it is estimated using a template method. The shape of the fake-ℓ/τ background is taken from a control region (the "template region") that contains events satisfying all $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$ selection criteria, apart from requiring "medium" τ_{had} identification criterion and opposite-sign charge for the $\tau_{\text{lep}}\tau_{\text{had}}$ pair. The fake-ℓ/τ background is normalized by using two additional control regions, defined similarly to those in the $\ell\ell\tau_{\text{had}}\tau_{\text{had}}$ channel.

The other half of the background comes from events with real $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$ objects in the event. These backgrounds come primarily from $ZZ^{(*)}$ production. There is also a small (11%) contribution from the SM Higgs boson production in association with a Z boson, which is estimated using simulation.

4.3. $\ell\ell\tau_{\text{lep}}$

Events in the $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$ channel are required to contain at least four leptons, which form one same-flavor and opposite-sign pair consistent with the Z mass ($80 < m_{\ell\ell} < 100$ GeV), and either a same-flavor or different-flavor pair with an invariant mass reconstructed with the MMC algorithm, consistent with a decay from the CP-even Higgs boson ($90 < m_\tau < 190$ GeV). One muon is allowed to be reconstructed in the forward region ($2.5 < |\eta| < 2.7$) of the muon spectrometer, or to be identified in the calorimeter with $p_T > 15$ GeV and $|\eta| < 0.1$ [37]. The highest-p_T lepton must satisfy $p_T > 20$ GeV, and the second (third) lepton in p_T order must satisfy $p_T > 15$ GeV ($p_T > 10$ GeV). Among all the possible lepton quadruplets in an event the one minimizing the sum of the mass differences with respect to both the Z and h bosons is chosen.

Two different analysis categories are defined based on the lepton flavors in the Higgs boson decay: ee or $\mu\mu$ (SF), and $e\mu$ (DF). The expected background is very different in the two cases. For the SF channel, the background is dominated by $ZZ^{(*)}$ production with $Z \rightarrow ee/\mu\mu$ decays. For the DF channel, the main background is from the $ZZ^{(*)}$ process through the $Z \rightarrow \tau_{\text{lep}}\tau_{\text{lep}}$ decay chain, but other backgrounds are also important. The signal-to-noise ratio in the SF category is improved by using a set of requirements specifically targeted to suppress the main $ZZ^{(*)}$ background. First, a veto on the on-shell production of Z boson pairs is introduced, requiring the invariant mass of the h boson leptons to lie outside the Z peak: $m_h < 80$ GeV or $m_h > 100$ GeV. Background events are characterized by low missing transverse momentum and are further rejected by requiring $E_{\text{miss}} > 30$ GeV, and the azimuthal angle between the E_{miss} direction and the Z boson transverse momentum to be greater than $\pi/2$. Furthermore, a requirement that the highest-p_T lepton of the $\ell\ell$ pair associated with the h boson has $p_T > 15$ GeV is applied, since it is found to be effective against backgrounds from $Z +$ jets production. The total acceptance times selection efficiency varies from 6.5% (1.5%) for DF (SF) channel for $m_A = 220$ GeV, to around 20% for both channels for the highest A boson masses considered.

The subleading contributions to the background are from diboson and triboson production, $t\bar{t}$ production in association with a Z boson, and SM Higgs boson production. All these are determined from simulation and amount to about 95% (65%) of the total background in the SF (DF) category. The other background events have at least one lepton which is a misidentified jet or a lepton from a heavy-flavor quark decay and are dominated by $Z +$ jets production, with a smaller contribution from top-quark production. These backgrounds are estimated using a control region where one or both of the leptons in the $\ell\ell$ pair associated with the $h \rightarrow \tau_{\text{lep}}\tau_{\text{lep}}$ decay fail to satisfy the isolation criteria. After subtraction of genuine sources of four-lepton events using simulation, the data are extrapolated to the isolated signal region using normalization factors derived from simulated samples.

4.4. Systematic uncertainties and results

The most important systematic uncertainty for the backgrounds with real $\ell\ell\tau_{\text{lep}}$ objects in the $\tau_{\text{lep}}\tau_{\text{had}}$ and $\tau_{\text{lep}}\tau_{\text{lep}}$ channels comes...
Fig. 1. Distributions of the reconstructed A boson mass for the combined $\ell\ell\tau\ell\tau$ and $\ell\ell\tau\ell\tau$ final states (a) and the $\ell\ell\tau\ell\tau$ final states (b). The signal shown in both cases corresponds to $\sigma(gg \rightarrow A) \times BR(A \rightarrow Zb) \times BR(h \rightarrow \tau\tau) = 50$ fb with $m_A = 340$ GeV. The background contributions shown are the results of simulation and data-driven estimation methods. The background uncertainty is shown as a hatched area, and the overflow is included in the last bin.

Table 1

<table>
<thead>
<tr>
<th>Expected background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell\ell\tau\ell\tau$</td>
<td>28 \pm 6</td>
</tr>
<tr>
<td>$\ell\ell\tau\tau$ (SF)</td>
<td>17 \pm 4</td>
</tr>
<tr>
<td>$\ell\ell\tau\ell$ (DF)</td>
<td>9.5 \pm 0.6</td>
</tr>
<tr>
<td>$\ell\ell\tau\ell$ (DF)</td>
<td>72 \pm 0.7</td>
</tr>
</tbody>
</table>

from the uncertainty on the theoretical cross sections used in the normalization. They are due to the parton distribution function choice, the renormalization and factorization scales, as well as the α_s value. This amounts to an uncertainty on the normalization of this background of about 5.0% for the $\ell\ell\tau\ell\tau$ channel and 6.4% for the $\ell\ell\tau\ell\tau$. In the $\tau\tau$ channel, the largest contributions come from the $\tau\tau$ identification and energy scale and amounts to 8.9% [40]. The fake-τ/ℓ background systematic uncertainty for the $\tau\tau$ channel is dominated by the statistical uncertainty on data in control regions used for the background normalization. It amounts to a normalization uncertainty of 38% and 25% for the $\tau\ell\ell\tau\ell\tau$ and $\tau\tau\ell\ell\tau\ell\tau$ channels, respectively. For the $\ell\ell\tau\ell\tau$ channel, the normalization uncertainty is 65% (25%) for the SF (DF) category.

The reconstructed A boson mass distributions for events passing the $\ell\ell\tau\ell\tau$, $\ell\ell\tau\ell\tau$ and $\ell\ell\tau\ell\tau$ selections are shown in Fig. 1. The number of events passing the $\ell\ell\tau\ell\tau$ channel selections are shown in Table 1. The agreement of the expectation with data is very good.

5. Search for $A \rightarrow Zh$ with $h \rightarrow bb$

This section describes the searches in the $A \rightarrow Zh \rightarrow \ell\ell b\bar{b}$ and $A \rightarrow Zh \rightarrow \nu\nu b\bar{b}$ channels.

5.1. $\ell\ell b\bar{b}$ selection

Events in the $\ell\ell b\bar{b}$ channel are selected by requiring either two electrons or two muons. In the case of muons they are required to be of opposite-sign charge. Leptons must have $p_T > 7$ GeV, and electrons are restricted to $|\eta| < 2.47$, while muons must have $|\eta| < 2.7$. Tighter acceptance requirements are placed on one of the leptons in each event in order to select a sample for which the trigger efficiency is high and to reduce the multi-jet background, while keeping a high signal acceptance. These requirements are that the leptons have $p_T > 25$ GeV, and, if they are muons, satisfy $|\eta| < 2.5$. A dilepton invariant mass window of $83 < m_{\ell\ell} < 99$ GeV is imposed to reduce top-quark and multi-jet backgrounds.

The $h \rightarrow bb$ decay is reconstructed by requiring two b-tagged jets with $p_T > 45$ GeV (20 GeV) for the leading (subleading) jet. Events with more than two b-tagged jets are removed but all events with one or more additional jets failing b-tagging are retained. The $h \rightarrow bb$ decay is selected by requiring that the invariant mass of the two b-tagged jets lies within the range $105 < m_{bb} < 145$ GeV.

The top-quark background, which includes top-quark pair and single top-quark production, is reduced by requiring $E_T^{miss}/\sqrt{H_T} < 3.5$ GeV/\sqrt{T}, where H_T is defined as the scalar sum of the p_T of all jets and leptons in the event.

The reconstructed A boson mass, m_{rec}^A, is the invariant mass of the two leptons and two b-tagged jets. In this calculation, the four-momentum of each b-tagged jet is scaled by 125 GeV/m_{bb} in order to improve the resolution. The resulting m_{rec}^A resolution ranges from 2% at $m_A = 220$ GeV to 3% at $m_A = 1$ TeV.

In order to reduce the dominant $Z + jets$ background, a requirement is imposed on the transverse momentum of the Z boson, p_T^Z, reconstructed from the two leptons: $p_T^Z > 0.44 \times m_{rec}^A - 106$ GeV, where m_A is in units of GeV. The requirement depends on m_{rec}^A since the background is generally produced at low p_T^Z, whereas the mean p_T^Z increases with m_A for the signal. The total acceptance times selection efficiency varies from 7%, for $m_A = 220$ GeV, to around 16% for the highest A boson masses considered.

5.2. $\nu\nu b\bar{b}$ selection

The event selection in the $\nu\nu b\bar{b}$ channel follows closely the SM $h \rightarrow bb$ analysis in Ref. [43]. Events are selected with $E_T^{miss} > 120$ GeV, $p_T^{miss} > 30$ GeV and no electrons or muons with $p_T > 7$ GeV. In addition to the jet selection of the $\ell\ell b\bar{b}$ analysis, additional restrictions are applied. In order to suppress top-quark background, which is larger than in the $\ell\ell b\bar{b}$ channel, events are rejected if any of the following conditions is satisfied: there is a jet with $|\eta| > 2.5$; there are four or more jets; one of the b-tagged jets is the third-highest-p_T jet. In order to select a sample for which the trigger efficiency is high, H_T is required to be above 120 GeV (150 GeV) for events with two (three) jets. There are also requirements on the separation between the two b-jets in the $\eta-\phi$ space, ΔR_{bb}, to suppress $Z + jets$ and $W + jets$ backgrounds as described in Ref. [43]. As in the $\ell\ell b\bar{b}$ channel, the h boson is selected by requiring $105 < m_{bb} < 145$ GeV.
Additional requirements are imposed on angular quantities sensitive to the presence of neutrinos in order to suppress the multijet background: the azimuthal angle between E^miss and p_T^{miss}, $\Delta \phi(E^\text{miss}, p_T^{\text{miss}}) < \pi/2$; the minimum azimuthal angle between E^miss and any jet $\min(\Delta \phi(E^\text{miss}, \text{jet}) > 1.5$; and the azimuthal angle between E^miss and the b-jet pair $\Delta \phi(E^\text{miss}, bb) > 2.8$. The total acceptance times selection efficiency varies from 4%, for $m_A = 400$ GeV, to around 7% for the highest A boson masses considered.

It is not possible to accurately reconstruct the invariant mass of the A boson due to the presence of neutrinos in the final state. Therefore, the transverse mass is used as the final discriminant:

$$m_T^{\text{rec}} = \sqrt{(E_T^{\text{miss}} + E_T^{\text{miss}})^2 - (\vec{p}_T^{bb} + \vec{E}^\text{miss}_T)^2},$$

where E_T^{bb} and \vec{p}_T^{bb} are the transverse energy and transverse momentum of the b-jet pair system. As in the $\ell\ell bb$ channel, the resolution is improved by scaling each b-tagged jet four-momentum by 125 GeV/m_{bb}.

5.3. Backgrounds

All backgrounds in $\ell\ell bb / vvbb$ final states are determined from simulation, apart from the multijet background, which is determined from data. The multijet background in the $\mu\ell bb$ final state is found to be negligible. In the eebb final state, the background is determined by selecting a sample of events with the electron isolation requirement inverted. The sample is normalized by fitting the $m_{\ell\ell}$ distribution. In the vvbb final state, the multijet background is determined by inverting the $\Delta \phi(E^\text{miss}, p_T^{\text{miss}})$ requirement. The sample is normalized using the region with $\min(\Delta \phi(E^\text{miss}, \text{jet})) < 0.4$.

The $Z + \text{jets}$ simulated sample is split into different components according to the true flavor of the jets, i.e. $Z + \text{ll}$, $Z + \text{cl}$, $Z + \text{cc}$, $Z + \text{bl}$, $Z + \text{bc}$ and $Z + \text{bb}$, where l denotes a light quark (u, d, s) or a gluon. These components are constrained by defining control samples which have the same selection as the $\ell\ell bb$ final state, but with the requirement on the number of b-tagged jets changed to either zero or one. The samples are further divided into events with two or at least three jets. In order to improve the description of the data, corrections are applied to the simulation as a function of the azimuthal angle between the two leading jets, $\Delta \phi_{jj}$, for $Z + \text{ll}$ events and a function of p_T^{W} for the other components, as described in detail in Ref. [43].

The $W + \text{jets}$ background, which contributes significantly only in the vvbb final state, is split into its components in the same way as the $Z + \text{jets}$ sample. It is constrained by defining a sample of events that are selected using the E_T^{miss} triggers and contain exactly one lepton with $p_T > 25$ GeV and a tightened isolation requirement. The transverse momentum of the lepton and the E_T^{miss} system (p_T^{W}) is required to be above 120 GeV to approximately match the phase space of the signal region. The sample is split into events with zero, one or two b-tagged jets and into events with 2 and 3 jets. A correction depending on $\Delta \phi_{jj}$ is applied to $W + \text{ll}$ and $W + \text{cl}$ events, following studies similar to those performed for the $Z + \text{jets}$ background [43].

A correction is made to the p_T distribution of $t\bar{t}$ production in the simulation to account for an observed discrepancy in the data [44]. The normalization of top-quark pair production in the $\ell\ell bb$ channel is measured by defining a sample of events with exactly one electron and one muon, one of which has $p_T > 25$ GeV, and two b-tagged jets with $50 < m_{bb} < 180$ GeV.

5.4. Systematic uncertainties and results

The most important experimental systematic uncertainties in the $\ell\ell bb$ and vvbb final states come from the jet energy scale uncertainty and the b-tagging efficiency.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>$\ell\ell bb$</th>
<th>vvbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z + \text{jets}$</td>
<td>1443 ± 60</td>
<td>225 ± 11</td>
</tr>
<tr>
<td>$W + \text{jets}$</td>
<td>−</td>
<td>55 ± 8</td>
</tr>
<tr>
<td>Top</td>
<td>317 ± 28</td>
<td>203 ± 15</td>
</tr>
<tr>
<td>Diboson</td>
<td>30 ± 5</td>
<td>10.8 ± 16</td>
</tr>
<tr>
<td>SM Z, W, h</td>
<td>317 ± 1.8</td>
<td>22.5 ± 12</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>20 ± 16</td>
<td>3.2 ± 3.1</td>
</tr>
<tr>
<td>Total background</td>
<td>1843 ± 34</td>
<td>521 ± 12</td>
</tr>
<tr>
<td>Data</td>
<td>1857</td>
<td>511</td>
</tr>
</tbody>
</table>

The jet energy scale systematic uncertainty arises from several sources including uncertainties from the in situ calibration, pile-up dependent corrections and the jet flavor composition [45]. In addition, an uncertainty on the jet energy resolution is applied. The jet energy scale and resolution uncertainties are propagated to the E_T^{miss}. The uncertainty on E_T^{miss} also has a contribution from hadronic energy that is not associated with jets [41].

The b-tagging efficiency uncertainty depends on jet p_T and comes mainly from the uncertainty on the measurement of the efficiency in $t\bar{t}$ events [39]. Similar uncertainties are derived for the c-tagging and light-flavor jet tagging [46].

Other experimental systematic uncertainties that are included but have a smaller impact are uncertainties from lepton energy scale and identification efficiency, the efficiency of the E_T^{miss} trigger and the uncertainty on the multi-jet background estimate, which is taken to be 100% of the estimated number of events.

In addition to the experimental systematic uncertainties, modeling systematic uncertainties are applied, accounting for possible differences between the data and the simulation model used for each process. For the background samples, the procedure described in Ref. [43] is followed. The $Z + \text{jets}$ and $W + \text{jets}$ backgrounds include uncertainties on the relative fraction of the different flavor components, and on the $m_{bb}, \Delta \phi_{jj}$ and p_T^{W} distributions. For $t\bar{t}$ production, uncertainties on the top-quark transverse momentum, m_{bb}, E_T^{miss} and p_T^{W} distributions are included. Uncertainties on the ratio of two- to three-jet events are also included for each background.

The m_{bb}^{rec} and m_A^{rec} distributions for events passing the $\ell\ell bb$ and vvbb final-state selections, respectively, are shown in Fig. 2. The distributions are shown after a profile-likelihood fit, which constrains simultaneously the signal yield and the background normalization and shape, which is performed in the same manner as in Ref. [43]. The overall background is more constrained than the individual components, causing the errors of individual components to be anti-correlated. The number of events passing the $\ell\ell bb$ and vvbb final state selections are shown in Table 2, where the values for the expectations and uncertainties are obtained from the profile-likelihood fit.

6. Results

In all channels, no significant excess of events is observed in the data compared to the prediction from SM background sources. The significance of local excesses is estimated using p-values calculated with a test statistic based on the profile likelihood [47]. The largest data excesses are at $m_A = 220$ GeV (p-value = 0.014) and $m_A = 260$ GeV (p-value = 0.14) in the combined final states with $h \rightarrow bb$ and $h \rightarrow \tau \tau$, respectively. Exclusion limits at the 95% confidence level (CL) are set on the production cross section times the branching ratio $BR(A \rightarrow Zh)$ as a function of the A boson mass. The exclusion limits are calculated with a modified frequentist method [48], also known as CLs, and the profile likelihood method.
using the binned $m_A^{rec,T}$ mass distributions for $\ell\ell\tau\tau$ and $\ell\ell bb$ final states and the binned $m_A^{rec,T}$ distribution for the $v\nu bb$ final state.

Fig. 3 shows the 95% CL limits on the production cross section times the branching ratio, $\sigma(gg \rightarrow A) \times BR(A \rightarrow Zh) \times BR(h \rightarrow bb/\tau\tau)$, as well as the expected limits for each individual subchannel. The limit on the production times the branching ratio is in the range 0.998–0.013 pb and 0.57–0.014 pb for m_h in the range 220–1000 GeV for the $\tau\tau$ and bb channels, respectively. The $\tau\tau$ channels use few signal mass points beyond $m_h = 500$ GeV, since a coarse binning in $m_A^{rec,T}$ is adopted in view of the very small predicted number of background events.

The results of the search in the $\tau\tau$ and bb channels are combined in the context of the CP-conserving 2HDM [3], which has seven free parameters and four arrangements of the Yukawa couplings to fermions. In particular, the free parameters are the Higgs boson masses (m_h, m_A, $m_{A'}$, $m_{H'}$), the ratio of the vacuum expectation values of the two doublets ($\tan \beta$), the mixing angle between the CP-even Higgs bosons (α) and the potential parameter m_ϕ^2 that mixes the two Higgs doublets. The Yukawa coupling arrangements distinguish four different 2HDM models, determining which of the two doublets, Φ_1 and Φ_2, couples to up- and down-type quarks and leptons. In the Type-I model, Φ_2 couples to all quarks and leptons, whereas in the Type-II, Φ_1 couples to down-type fermions and Φ_2 couples to up-type fermions. The Lepton-specific model is similar to Type-I apart from the fact that the leptons couple to Φ_1, instead of Φ_2. The Flipped model is similar to Type-II apart from the leptons coupling to Φ_2, instead of Φ_1. In all these models, the limit $\cos(\beta - \alpha) \rightarrow 0$ is such that the light CP-even Higgs boson, h, has indistinguishable properties from a SM Higgs boson with the same mass. The cross sections for production by gluon fusion are calculated using SusHi [49–54] and the branching ratios are calculated with 2HDMC [55]. For the branching ratio calculations, it is assumed that $m_A = m_H = m_{H'}$, $m_h = 125$ GeV and $m_{A'} = m_A^{rec,T} \tan \beta/(1 + \tan^2 \beta)$.

The constraints derived from the combined search in $\tau\tau$ and bb final states are presented as a function of 2HDM parameters. The exclusion region in the $\cos(\beta - \alpha)$ versus $\tan \beta$ plane for $m_A = 300$ GeV are shown in Fig. 4 for the four 2HDM models, while the constraints obtained in the $m_A^{rec,T}$–$\tan \beta$ plane for $\cos(\beta - \alpha) = 0.10$ are shown in Fig. 5. The width of the A boson in the 2HDM may be larger than the experimental mass resolution, and it is taken into account in the 2HDM parameter exclusion regions for widths up to 5% of m_A. For Type-II and Flipped models, Higgs boson production
in association with b-quarks dominates over gluon fusion for large $\tan\beta$ values ($\tan\beta \gtrsim 10$). The cross section for the b-associated production uses an empirical matching of the cross sections in the four- and five-flavor schemes [56]. Cross sections in the four-flavor scheme are calculated according to Refs. [57,58] and cross sections in the five-flavor scheme are calculated using Sushi. The relative efficiencies for the b-associated and gluon fusion production as well as the predicted cross-section ratio are taken into account when deriving the constraints in the two-dimensional planes shown in Fig. 4. The b-associated production efficiencies are estimated using PYTHIA8 and SHERPA samples. The regions of parameter space excluded at 95% CL by the $A \to \tau\tau$ decay mode are displayed in the same plots, using the results of a search for a heavy Higgs boson decaying into $\tau\tau$ (Ref. [13]), reinterpreted considering only the production of an A boson via gluon fusion and b-associated production. For m_A values below the $t\bar{t}$ kinematic threshold, the search presented here can exclude $\cos(\beta - \alpha)$ values down to a few percent for $\tan\beta$ values up to ≈ 3.

7. Conclusions

Data recorded in 2012 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy 8 TeV, are used to search for a CP-odd Higgs boson, A, decaying to Zh, where h denotes a light CP-even Higgs boson with a 125 GeV mass. No deviations from the SM background predictions are observed in the three final states considered: $Zh \to \ell\ell\tau\tau$, $Zh \to \ell\ell bb$, and $Zh \to \nu\bar{\nu}bb$. Upper limits are set at the 95% confidence level for $\sigma(gg \to A) \times \mathcal{B}(A \to Zh) \times \mathcal{B}(h \to f\bar{f})$ of 0.098–0.013 pb for $f = \tau$ and 0.57–0.014 pb for $f = b$ in the range of $m_A = 220$–1000 GeV. This Zh resonance search improves significantly the previously published constraints on CP-odd Higgs boson production in the low $\tan\beta$ region of the 2HDM.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and Bundesministerium für Bildung und Forschung, Germany; IN2P3-CNRS, CEA-DSM/IRFU, France; BMBF, DFG, HGF, MPG and AvH Founda-
Fig. 5. The interpretation of the cross-section limits in the context of the various 2HDM types as a function of the parameters $\tan \beta$ and m_h for $\cos(\beta - \alpha) = 0.1$: (a) Type-I (a), (b) Type-II, (c) Lepton-specific, and (d) Flipped. Variations of the natural width up to $\Gamma_{h}/m_h = 5\%$ are taken into account. The grey solid area indicates that the width is larger than 5\% of m_h. For Type-II and Flipped 2HDM, the h-associated production is included in addition to the gluon fusion. The blue (in the web version) shaded area denotes the area excluded by taking into account the constraints on the CP-odd Higgs boson derived by considering the $A \rightarrow \tau^+ \tau^-$ decay mode after reinterpreting the results in Ref. [11].

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

ATLAS Collaboration

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 Department of Physics, Ankara University, Ankara, Turkey
5 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Armenian Academy of Sciences, Yerevan, Armenia
12 Instituto de Física de Altes Energies and Departamento de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul, (b) Department of Physics, Dohug University, Istanbul, (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna, (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, Universität Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidade Federal do Rio de Janeiro COPPE/EEF, Rio de Janeiro, (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, (c) Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, (c) University Politehnica Bucharest, Bucharest, (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, (b) Department of Modern Physics, University of Science and Technology of China, Hefei, (c) Department of Physics, Nanjing University, Nanjing, (d) School of Physics, Shandong University, Jinan, (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
36 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
37 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
38 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 (a) INFN Sezione di Genova, (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 (a) Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 (a) Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
55 Department of Physics, Hampton University, Hampton, VA, United States
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, (b) Department of Physics, The University of Hong Kong, Hong Kong, (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
60 Department of Physics, Indiana University, Bloomington, IN, United States
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
Coimbra, Cosmos 68
Petersburg 123
INFN Nagasaki 102
Max-Planck-Institut National Institute (95 Group Nikhef 93 108 115)
Palacký 127
Ohio 111 109 Budker
Budker

181

DSM/IRFU Department of Physics, Paris, France

128 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinsu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

* Deceased.