Allaire, Grégoire, Palombaro, Mariapia and Rauch, Jeffrey (2015) A bound on the group velocity for Bloch wave packets. Portugaliae Mathematica, 72 (2). pp. 119-123. ISSN 0032-5155

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/55752/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A BOUND ON THE GROUP VELOCITY FOR BLOCH WAVE PACKETS

GRÉGOIRE ALLAIRE\textsuperscript{1}, MARIAPIA PALOMBARO\textsuperscript{2}, AND JEFFREY RAUCH\textsuperscript{3}

\textsuperscript{1} Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau, and the DEFI project at INRIA Saclay Ile-de-France.
Email: gregoire.allaire@polytechnique.fr
\textsuperscript{2} Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, UK.
Email: M.Palombaro@sussex.ac.uk
\textsuperscript{3} Department of Mathematics, University of Michigan, Ann Arbor 48109 MI, USA.
Email: rauch@umich.edu

Abstract. We give a direct proof that the group velocities of Bloch wave packet solutions of periodic second order wave equations cannot exceed the maximal speed of propagation of the periodic wave equation.

Key words: Geometric optics, diffractive geometric optics, Bloch waves, diffraction, homogenization.

2010 Mathematics Subject Classification: 35B40, 35B27, 35L30.

Dedicated to our friend and colleague J. P. Dias celebrating years of comradery.

1. Main result

This note complements our studies [2], [3] of Bloch wave packets. Bloch wave packets are short wavelength asymptotic solutions of periodic wave equations and their perturbations. They propagate with a group velocity that is given by the gradient of the Bloch dispersion relation. The dispersion in turn is defined by the Bloch eigenvalues of a periodic elliptic partial differential operator. Using the rigorously established asymptotic solutions one can conclude that these group velocities cannot exceed the maximal speeds of the periodic wave equation. In this note we give a direct proof that the group velocity is no larger than that maximal speed. This is reminiscent of the pair of papers of Lax [9] and Weinberger [11]. The first derives a result about matrix eigenvalues from properties of hyperbolic partial differential equations. The second gives a direct algebraic proof.

With the notations from [3], $\mathbb{T}^N$ denotes the unit torus and for periodic symmetric matrix valued $A_0(y)$ and scalar valued $\rho_0(y)$ both in $L^\infty(\mathbb{T}^N)$ the central object is the wave equation

$$\rho_0(y) u_{tt} - \text{div}_y (A_0(y) \text{grad}_y u) = 0. \quad (1.1)$$
For any fixed $y \in \mathbb{T}^N$ the maximal speed of propagation for (1.1) at $y$ is given by

$$c(y) := \max_{1 \leq j \leq N} \sqrt{\mu_j(y)}$$

where $\mu_j(y) > 0$ are the roots of the polynomial

$$p(y, \mu) := \det \left( A_0(y) - \mu \rho_0(y) I \right).$$

The maximal speed of propagation is

$$(1.2) \quad c_{\text{max}} := \max_{y \in \mathbb{T}^N} c(y).$$

Denote the Bloch parameter $\theta \in [0, 1]^N$. The Bloch spectral cell problem for $\psi_n$ periodic in $y$ is

$$(1.3) \quad -(\text{div}_y + 2i\pi\theta) \left( A_0(y)(\text{grad}_y + 2i\pi\theta)\psi_n \right) = \lambda_n(\theta) \rho_0(y) \psi_n \quad \text{in} \quad \mathbb{T}^N.$$ 

Assuming that $A_0(y)$ is symmetric and uniformly coercive and that $\rho_0(y)$ is uniformly bounded away from zero, it is well known that (1.3) admits a countable infinite family of positive real eigenvalues $\lambda_n(\theta)$ (repeated according to their multiplicity) and associated eigenfunctions $\psi_n(\theta, y)$ that, as functions of $y$, belong to $H^1(\mathbb{T}^N)$ [6, 5, 10, 12]. The eigenvalues, labeled in increasing order, are uniformly Lipschitzian as functions of $\theta$. They are not more regular because of possible crossings. Simple eigenvalues are analytic functions of $\theta$ [8]. Simple eigenvalues are generic [1]. Normalize the eigenfunctions by

$$(1.4) \quad \int \rho_0(y) |\psi_n(y, \theta)|^2 \, dy = 1.$$ 

**Assumption.** Fix $\theta_0 \in [0,1]^N$, $n \in \mathbb{N}$ and assume that $\lambda_n(\theta_0)$ is a simple eigenvalue.

Define the associated nonnegative frequency $\omega_n(\theta_0)$ as the solution of the dispersion relation

$$(1.5) \quad 4 \pi^2 \omega_n^2(\theta) = \lambda_n(\theta), \quad \omega_n \geq 0.$$ 

Corresponding plane wave solutions of (1.1) are

$$e^{i(2\pi\omega_n(\theta) t + y \cdot \theta)} \psi_n(y, \theta).$$ 

Superposition in $\theta$ yields wave packets with group velocity defined by (see [3])

$$(1.6) \quad \mathcal{V} := -\nabla_\theta \omega_n(\theta_0) = \frac{-\nabla_\theta \lambda_n(\theta_0)}{4\pi \sqrt{\lambda_n(\theta_0)}}.$$ 

**Theorem 1.1.** The group velocity defined by (1.6) and the maximal speed (1.2) satisfy

$$|\mathcal{V}| \leq c_{\text{max}}.$$ 

**Proof.** Introduce the operator

$$A_\theta(\cdot)\psi := -(\text{div}_y + 2i\pi\theta) \left( A_0(y)(\text{grad}_y + 2i\pi\theta)\psi \right) - \lambda_n(\theta) \rho_0(y) \psi.$$
Equation (1.3) asserts that $A(\theta)\psi_n = 0$. At the point $\theta_0$, differentiate (1.3) with respect to $\theta$ in the direction $\xi$ to find
\[
\left( \xi \cdot \nabla_\theta A(\theta) \right) \psi_n(\theta) + A(\theta) \left( \xi \cdot \nabla_\theta \psi_n(\theta) \right) = 0.
\]
Therefore
\[
(1.7) \\
A(\theta) \xi \cdot \nabla_\theta \psi_n = 2i\pi \xi \cdot A_0(y) (\nabla_y + 2i\pi \theta) \psi_n + 2i\pi (\text{div}_y + 2i\pi \theta) (A_0(y) \xi \psi_n) + \xi \cdot \nabla_\theta (\lambda_n \rho_0(y) \psi_n).
\]
Multiply (1.7) by $\psi_n$ and integrate $dy$. Equation (1.4) shows that
\[
(1.8) \\
\xi \cdot \nabla_\theta \int_{\mathbb{T}^N} \psi_n(y, \theta) \rho(y) \psi_n(y, \theta) \, dy = 0.
\]
Therefore
\[
\xi \cdot \nabla_\theta \lambda_n(\theta) = 2i\pi \int_{\mathbb{T}^N} \left( \psi_n A_0(y) \xi \cdot (\nabla_y + 2i\pi \theta) \psi_n - \psi_n \xi \cdot A_0(y) (\nabla_y + 2i\pi \theta) \psi_n \right) \, dy
\]
\[
= 4i\pi \text{Re} \int_{\mathbb{T}^N} \left( \psi_n A_0(y) \xi \cdot (\nabla_y + 2i\pi \theta) \psi_n \right) \, dy.
\]
Write the integrand as the product of three terms,
\[
(\rho_0^{1/2} \psi_n) \left( \rho_0^{-1/2} A_0(y)^{1/2} \xi \right) \cdot \left( A_0(y)^{1/2} (\nabla_y + 2i\pi \theta) \psi_n \right).
\]
Constrain to unit vectors $\xi$ and estimate for each $y$ using the Euclidean norm on vectors and the induced matrix norm,
\[
\| \rho_0^{-1/2} A_0(y)^{1/2} \xi \| \leq \| \rho_0^{-1/2} A_0(y)^{1/2} \| \| \xi \| = \| (\rho_0^{-1/2} A_0(y)^{1/2})^2 \|^{1/2} = c(y) \leq c_{\max}.
\]
The Cauchy-Schwartz inequality estimates the integral expression for $\xi \cdot \nabla_\theta \lambda_n$ by
\[
| \xi \cdot \nabla_\theta \lambda_n(\theta) | \leq 4 \pi c_{\max} \| \rho_0^{1/2} \psi_n \|_{L^2(\mathbb{T}^N)} \| A_0^{1/2} (\nabla_y + 2i\pi \theta) \psi_n \|_{L^2(\mathbb{T}^N)}.
\]
Using the normalization (1.4) and then the eigenvalue equation yields
\[
(1.9) \\
| \xi \cdot \nabla_\theta \lambda_n(\theta) | \leq 4 \pi c_{\max} \| A_0^{1/2} (\nabla_y + 2i\pi \theta) \psi_n \|_{L^2(\mathbb{T}^N)}
\]
\[
= 4 \pi c_{\max} \sqrt{\lambda_n(\theta)}.
\]
Since $\xi$ is an arbitrary unit vector, this estimate together with (1.6) implies the Theorem. \hfill \Box

Remark 1.2. i. Estimate (1.9) yields a bound for the propagation speed as a function of direction by the corresponding fastest speeds of the original system (see [4] for an analogous result).

ii. The simplicity of $\lambda_n$ is only used to yield smoothness of $\lambda_n$. The proof applies without modification away from eigenvalue crossings or for directional derivatives when crossing occurs.
REFERENCES


