Validity of Using the Sheffield Algorithm for the Sussex EIT MK4
Xiaolin Zhang¹, Tabassum Qureshi¹, Chris Chatwin¹ and Wei Wang²
¹University of Sussex, Brighton, UK, xz68@sussex.ac.uk
²Micro Image UK Ltd, UK, w97wang@yahoo.co.uk

Abstract: This paper introduces the image reconstruction algorithm from Sheffield group and the validity of this algorithm to the Sussex MK4.

1 Introduction

The Sussex MK4 electrical impedance mammography (EIM) is developed for breast cancer detection[1][2]. This paper is focusing on the validity analysis of using the Sheffield algorithm for the MK4.

2 Methods

The widely used equation to explain the relationship between the change of the conductivity and the change of the boundary voltage measurements is:

\[\Delta V = V_m - V_{ref} = S(C - C_{ref}) = SC \]

where \(S \) is the Jacobian matrix, \(\partial V_j / \partial C_i = S_{ij} \). Vector \(V_m \) denotes the real voltage measurement corresponding to the real conductivity. Vector \(V_{ref} \) denotes the reference voltage measurements corresponding to the reference conductivity \(C_{ref} \). \(S \) is a function of \(C \). As \(C \) changes, \(S \) changes. Eq. (1) is based on the assumption that the changes of \(C \) are small, so that the changes of \(S \) can be ignored. However, Eq. (1) was proven by us to have a poor noise tolerance for the MK4, thus the Sheffield method using the voltage ratio rather than the difference is employed [3]: (For details, please read [3], Page 368-371)

\[\Delta \ln V = F \Delta \ln C \] (2)

where \(\Delta \ln V_i = \ln(V_{mi}/V_{ref}) \), \(\Delta \ln C_i = \ln(C_i/C_{ref}) \).

\[\frac{\partial \ln(V_j)}{\partial \ln(C_i)} = \frac{\partial V_j}{\partial C_i} = S_{ij} \]

The image reconstruction algorithm is:

\[\{ \Delta \ln(C) = (F^T F + \alpha^2 I)^{-1} F^T \{ \ln(V_m) - \ln(V_{ref}) \} \}

\[\ln(C_{ref}) = \ln(C) + \Delta \ln(C) \] (3)

where \(\alpha \) is the regularization parameter, \(I \) is the identity matrix. Let’s see Eq. (3). As \(V \) and \(S \) are both determined by \(C \), basically \(F \) is determined by \(C \). As \(C \) changes, \(F \) changes. So this algorithm is based on the assumption that the changes of \(F \) are ignored when the changes of the conductivity are sufficiently small. However how much changes of the conductivity will make the assumption invalid? According to Eq. (3), if \(V_j \) is equal or close to 0, \(F_{ij} \) will go to infinity, which will make the algorithm unavailable. In practice, the measurements from the 0.5 mS/cm saline are used as the reference measurements and in each excitation, we only use at most 12 strongest measurements which are collected parallel to the electric field [1][2], therefore \(V_j \) won’t be close to 0. However if there are big changes of conductivity, \(V_j \) may be close to 0, then Eq. (2)-(4) becomes invalid.

This section discuss how much changes of the conductivity will make Eq. (2)-(4) invalid. See Figure 1. The positive pole of the current source is at the yellow dot \(S^+ \) and the negative pole of the current is at the yellow dot \(S^- \). The electric potential at P1, P2, P3, P4 is denoted by: \(\emptyset_1, \emptyset_2, \emptyset_3, \emptyset_4 \) and the voltage measurements between P2 and P1, P4 and P3 are denoted by \(V_{21}, V_{43} \). For an uniform field (0.5 mS/cm Saline), according to our study, \(V_{21}, V_{43} \) are approximately 300mv when the tank height is 4.5cm.

For a significant changes of the field, \(\emptyset_1 \) and \(\emptyset_3 \) may get close to \(\emptyset_2 \) and \(\emptyset_4 \), which means \(V_{21}, V_{43} \) may become 0 and then Eq. (2)-(4) will be invalid. Thus, we conclude that the changes of the conductivity which cause \(V_{21} \leq 0 \) or \(V_{43} \leq 0 \) will make Eq. (2)-(4) invalid. If \(V_{21} \leq 0 \), there must be a high conductivity path between \(S^+ \) and P1, so that most of the current flows through this path and brings up \(\emptyset_1 \). See Figure 1. The most likely condition to make \(V_{21} \leq 0 \) or \(V_{43} \leq 0 \) is that the high conductivity path needs 1) the shortest distance between \(S^+ \) and P1 without covering P2; 2) a big volume of the conductivity path needs 1) the shortest distance between \(P_1 \) and \(S^+ \) is 4.5 cm.

\[\begin{align*}
3.5\text{cm} \leq d &\leq 7.5\text{cm} \\
\sigma_1 &\leq \sigma_2 \\
V_{21} &\leq 0
\end{align*} \]

Figure 1: Voltage measurements reverse analysis

3 Conclusions

The Sheffield algorithm is not valid for every condition. For the MK4 system, it is available, for a real breast is too far from the conditions which make the boundary voltage measurements close to 0, hence invalidating Eq. (2)-(4).

References

