Efficient microwave-assisted synthetic protocols and in silico behaviour prediction of per-substituted β-cyclodextrins

Article (Published Version)


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/54513/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Efficient microwave-assisted synthetic protocols and 
in silico behaviour prediction of per-substituted 
β-cyclodextrins†

K. Martina, a G. Cravotto,*a M. Caporaso, a L. Rinaldi, a,b C. Villalonga-Barberc and 
G. Ermondi b

Selective per-substituted cyclodextrin design enables the carrier’s physicochemical and binding properties 
to be tailored and can even modify some biological native structure of several amino, ureido 
and thioureido per-substituted β-cyclodextrin derivatives. A rapid parallel synthetic approach has given a 
set of 14 different CD derivatives. Our strategy is supported by computational analyses which were used 
to estimate the physicochemical behaviour of per-substituted derivatives and to tailor suitable 
substituents.

Introduction

Cyclodextrins (CDs) are natural cyclic oligosaccharides composed of α-(1→4)-linked glucose units and which feature a relatively 
rigid tronoconic structure.1 The salient characteristic of a CD molecule is the presence of a central “cavity” or “hole” 
which provides an excellent resting site for hydrophobic molecules of appropriate dimensions.2 Modified CDs have been the 
subject of intense study in recent years. The cyclic maltoligosaccharide nucleus combines biocompatibility, availability and 
a tubular symmetric framework with well differentiated faces that can be modified in a flexible manner. The selective substitu-
tion of native CDs dramatically affects their physicochemical properties, and so their behaviour in aqueous media can be 
tailored to specific needs.3 The synthesis of selective mono-, poly- and per-substituted CDs has often been limited by poor 
overall yield and time-consuming purification procedures. In particular, full derivatisation generally gives mixtures of 
poly-substituted products with varying degrees of substitution.

per-(6-Amino-6-deoxy)-β-CDs are an important class of 
derivatives because they are well suited to a large number of applications and lend themselves particularly well to use as 
biomimetic receptors. Amino-per-substitution on the primary face usually preserves the symmetry and the hydrophobic 
character of the CD cavity. Notably, chemically modified CDs that bear cationic groups on one rim may boast spatial orient-
ation capabilities and may potentially self-assemble into discrete architectures, tubular assemblies and nanometric 
objects.4 Tubular assemblies, in particular, have attracted a great deal of attention because they act as ion channels in the 
mediation of anion over cation transport.5 In fact, a recent study showed that per-amino β-CD derivatives mimic an anti-
bacterial peptide, called polymyxin B, and strongly permeabilize bacterial membranes and inhibit bacterial proliferation.6 
Supramolecular adducts obtained from cationic CDs have been programmed to complex, compact, deliver and release 
plasmid DNA into a target cell.7 per-Amino β-CD derivatives 
and their ability to overcome in vitro protein aggregation have been the focus of further studies, which have led to them 
potentially finding various biomedical applications ranging from disease treatment (such as Alzheimer’s and Parkinson’s disease) to the stabilization, storage and delivery of protein 
drugs.8 Antitoxin activity has also been ascribed to the comple-
mentary electrostatic interactions between cationic substitu-
ents on the primary hydroxyl group CD rim and the negatively 
charged amino acids on the inner surface of the protective 
antigen pore.9

It has been demonstrated that 6-per-amino CDs possess a lower haemolytic activity than native CDs,10 although both are 
characterized by poor membrane permeability.11 This drawback has prompted investigations into CD derivatisation that 
may enhance membrane permeability, a mandatory requirement for drug delivery.
The aim of this work is the optimization of reliable non-conventional procedures for the synthesis of per-substituted CDs that bear amino groups on the primary face. This important scaffold may exploit multiple electrostatic interactions via its protonable N-sites. We have therefore looked to broaden the existing CD library by means of synthetic protocols in which low-boiling amines are efficiently employed. In this work, these per-amino β-CDs were used as building blocks for the preparation of reactive intermediates (isocyanate and isothiocyanate) to afford more lipophilic ureido and thioureido CD derivatives. Microwave (MW) and ultrasound (US) irradiation were exploited as a useful enabling technique for the synthesis of tailor-made selectively modified CDs. A computational study was carried out to aid the design of a set of per-substituted CDs that express a wide range of physicochemical properties. We applied VolSurf+,[12] a computational tool designed to produce descriptors related to physical and chemical properties from 3D molecular field maps. In the standard procedure, GRID interaction fields[13] were calculated around the target molecules. VolSurf+ compresses the information present in 3D grid maps into a few 2D numerical descriptors which are simple to understand and to interpret. Finally, VolSurf+ descriptors provided a global depiction of the chemical structure, in terms of size and shape, of both the hydrophilic and hydrophobic regions of the CDs and the balance between them. Two synthetic methodologies, compatible with molecular diversity oriented strategies, were pursued with the aim of modulating the structural (sizes and shapes) and functional (surfaces chemistry and charges) properties of CD derivatives. Rapid and parallel syntheses of amino, ureido and thioureido per-substituted CD derivatives were optimized and the synthesis of a set of 14 different CD derivatives is herein described.

Results and discussion

Cationic hepta-substituted β-CD derivatives were synthesized via the nucleophilic displacement of heptakis(6-iodo-6-deoxy)-β-CD with amines. As depicted in Scheme 1, the selective replacement of all the primary hydroxyl groups on a β-CD with iodine atoms was obtained using I₂ and Ph₃P in DMF, in accordance with the literature.[14] The following MW-assisted nucleophilic substitution afforded the per-amino β-CDs in good yields, whereas the conventional reaction does not typically run to completion and leaves the problem of separating the fully heptasubstituted from the hexa- or pentasubstituted β-CD derivatives. Thus, quantitative conversions are required because purification reduces the isolated yields excessively. To the best of our knowledge, the solventless quantitative conversion of per-iodo CD (1) to the corresponding amino derivative under conventional heating at 75–80 °C in excess of amine required several days.[15] When the reaction is performed with an excess of amine in a minimum amount of solvent (DMSO, DMF) it does not proceed to completion.

Benzylamine was selected as the preliminary substrate for the optimisation of reaction conditions. It was thus reacted with per-(6-iodo-6-deoxy)-β-CD in DMF at 85 °C (Table 1). Dielectric heating dramatically cut reaction time and the desired product was isolated by precipitation in acetone. The reaction yields were comparable in monomode or multimode MW[15] reactors. When the reaction was repeated with 50 equiv. of benzylamine the reaction did not proceed to completion and a mixture of poly-substituted CD derivatives was isolated.

The preparation of per-(6-amino-6-deoxy)-β-CD (4) via the per-(6-azido-6-deoxy)-β-CD derivative (3) was optimised with the aim of pursuing the synthesis of 6-per-substituted ureido and thioureido β-CD derivatives. The Staudinger reaction has already been described[16] and commonly pursued[17] even though it exacerbates the drawbacks of residual Ph₃PO.

As has already been described in the literature,[18] the reduction of the epta-azido derivative via catalytic hydrogenation with Pd/C is a very difficult task and so a preliminary study was carried out, as a part of this work, to investigate catalytic transfer hydrogenation with hydrazine as the hydrogen donor to avoid the presence of Ph₃P in the final product. Derivative 3 was heated under reflux in a solution of N₃H₄ in methanol–H₂O for 3 h and the desired amine 4 was collected in 85% yield as the chloride salt. The presence of hydrazine in the final product, a serious drawback due to its high toxicity and instability, was detected by IR. This prompted the

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine equiv. (ratio of amine:solvent)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>436 (1:1)</td>
<td>65%c, 68%d</td>
</tr>
<tr>
<td>2</td>
<td>150 (1:5)</td>
<td>62%b</td>
</tr>
<tr>
<td>3</td>
<td>100 (1:4)</td>
<td>60%b</td>
</tr>
<tr>
<td>4</td>
<td>50 (1:8)</td>
<td>_bd</td>
</tr>
</tbody>
</table>

a Multimode oven (MicroSYNTH – Milestone) 85 °C, 150 W.
b Monomode reactor (Discovery – CEM) 85 °C, 150 W. c Multimode reactor (SynthWAVE – Milestone). N₂ (20 bar) 85 °C, 150 W. d The product was obtained as a mixture of poly-substituted β-CD derivatives.
investigation of catalytic hydrogenation under MW irradiation in a professional MW reactor equipped with temperature and pressure control systems. A solution of per-(6-azido-6-deoxy)-β-CD in methanol–H₂O was irradiated at 70 °C in the presence of Pd/C under H₂ pressure (10 bar). The equipment guarantees homogeneous and regular reaction mixture heating because the reaction vessel is immersed in an adsorbing medium, such as ethylene glycol. As depicted in Table 2, the catalytic hydrogenation of gave the pure final product after 3 h of irradiation in 90% yield (Scheme 2).

To obtain the thioureido derivatives, the chloride salt of per-(6-amino-6-deoxy)-β-CD was treated with sodium bicarbonate and heated in MW with benzyl isothiocyanate in DMF for 4 h (Scheme 3). Despite the widespread use of this procedure, a mixture of different poly-substituted derivatives is generally produced under conventional conditions, as can be inferred from the lack of examples in the literature. MW promoted the reaction and the desired product was obtained in satisfactory yields after reverse phase purification.

On the basis of the optimized synthetic protocols, 68 potential reagents (27 amines, 19 isothiocyanate, and 22 isocyanates, see ESI † for structures) were selected on the basis of their commercial availability and substructure. An in silico approach was used to select a set of substituents with a wide range of physicochemical properties. Volsurf+ descriptors were used to characterize the substituents and then submitted to principal component analysis (PCA) (see the Computational studies section for details). PCA provides two kinds of results: the score and the loading plots. The first graphically shows similarities between objects (in this case the substituents), whereas the second suggests the interpretation of such similarities in terms of the descriptors used to characterize objects. The score plot (Fig. 1) of the two main PCs (PC1 and PC2) shows how the substituents can be split into three clusters reflecting the presence of different functional groups: amino, isocyanate and isothiocyanate. In addition, sub-sets of substituents corresponding to the presence of alkyl, benzyl or phenyl moieties can be observed in each cluster. Other useful information was extracted from the loading plots (Fig. 2). PCs are obtained as linear combinations of original descriptors. The loading of a single descriptor indicates how much this descriptor participates in defining the PC. Variables that contribute very little to the PCs have small loading values and are plotted around the centre of the plot, whereas the variables that contribute most are plotted around the borders of the plot.

H-bond and hydrophilic Volsurf+ descriptors were essentially located in the upper part of the loadings plot while hydrophobic descriptors in the lower. Thus these descriptors were the variables that contribute most to PC1 and PC2. As a consequence, amines, which were located in the upper part of the score plot, were characterized mainly by their H-bond
donors/acceptors and hydrophilic properties whereas isocyanates, located in the lower part, mainly by their hydrophobic properties; finally, the isothiocyanates were in the middle with average properties.

These results confirmed the ability of Volsurf+ descriptors to single out substituents’ physicochemical properties, while PCA permitted them to be grouped into clusters. A small but representative set of substituents can be designed by choosing some objects from each cluster. A Volsurf+ study performed using the structure of the whole CD essentially confirmed these results, but more time was required to take into account CD flexibility. Thus, there was no advantage in considering the complete structure of the CDs.

A diversity set of 14 substituents was chosen from the PCA scores analysis (see Fig. 1). As depicted in Fig. 3, the selected CD derivatives belong to three series of functionalized CDs and the substituents were picked from the sub-sets corresponding to the presence of alkyl, benzyl or phenyl moieties.

When amino derivatives were synthesized, primary and secondary amines were selected. In the end, 9 per-6-amino β-CD derivatives (2a–i), 2 per-6-ureido β-CD derivatives (5a–b) and 3 per-6-thioureido β-CDs derivatives (6a–c) were synthesized.

The nucleophilic displacement of heptakis(6-iodo-6-deoxy)-β-CD was successfully repeated with phenylethyl amine, 2-chlorobenzylamine, aniline and with secondary amines such as 1-methyl piperazine, morpholine and tetrahydroisoquinoline. The products were recovered and purified by precipitation in 60% average yield. To obtain more hydrophilic compounds, volatile amines such as allylamine and butylamine were selected and reacted in a MW reactor SynthWAVE (Milestone), a closed-cavity system, designed to work in a wide range of pressures (up to 200 bar) and temperatures (up to 300 °C). The reactions were all performed under N₂ pressure (20 bar) which allowed for the use of a wider range of low-boiling reagents. The combination of physical activation with MW irradiation and the MW reactor, equipped with a rack for several test tubes, facilitated the search for the optimal reaction conditions.

The synthesis of 6-per-ureido β-CD derivatives and 6-per-thioureido β-CD was repeated. Phenyl and cyclohexyl isocyanate, benzyl, butyl and phenyl ethyl isothiocyanate were reacted with per-(6-amino-6-deoxy)-β-CD. The reactions were performed in MW at 85 °C for 4 h and the products were recovered in 37% average yield after column purification. As has already been described above, volatile butylisothiocyanate was selected and reacted in a MW SynthWAVE reactor (Milestone) to obtain more hydrophilic compounds.

**Conclusions**

In this manuscript we have described a few highly efficient MW-assisted synthetic protocols for the preparation of several...
amino, ureido and thioureido per-substituted β-CD derivatives. The structural and functional properties of the CD derivatives were designed by a preliminary computational study which expressed a wide range of physicochemical properties. Two synthetic protocols, compatible with a diversity oriented strategy, have been pursued and a set of 14 per-substituted CDs have been synthesized via MW-assisted optimized procedures. Hydrophilic CD derivatives have been obtained by performing the reaction in a closed cavity MW reactor that allows high temperature and high gas pressures to be achieved and consequently enables the use of low-boiling point reagents.

**Experimental**

**Computational studies**

PCA is a general tool for the interpretation of large data tables in which the number of original variables (in this case the VolSurf+ descriptors for each substituent) is reduced by projection of the objects (i.e. the substituents) onto a smaller number of new variables named principal components (PC). The PCs are oriented so that the first PC describes as much of the original variation between the objects as possible. The second PC is oriented in an orthogonal manner to the first PC and is directed to describe as much of the remaining variation as possible and so on. The projection of objects onto a PC is called scoring. By plotting the scores for two PCs it is possible to graphically find similarities and differences between objects. Loading plots represent the original descriptors in the PC space.

SMILES codes for the 68 substituents were prepared and submitted to VolSurf+ (version 1.0.4, Molecular Discovery Ltd, Pinner, Middlesex, UK, 2009, http://www.moldiscovery.com) using default settings and four probes (OH2, DRY, N1 and O probes) that mimic the compounds’ water, hydrophobic, hydrogen bond acceptor and hydrogen bond donor interactions with the environment respectively.

Briefly, VolSurf+ is a computational procedure used to discover molecular descriptors from 3D molecular interaction fields (MIFs) obtained using the GRID force field. Interaction fields are obtained with different probes and the surfaces of the regions that encompass interaction energy values under certain cut-off limits are calculated. In particular, water (OH2), hydrophobic (DRY), hydrogen bond donor (HBD, amide N1) and hydrogen bond acceptor (HBA, carbonyl O) probes were considered in the present work. Since VolSurf+ calculates 82 descriptors (Table 3) that represent polarity and hydrophobicity (as well as the size and shape) of molecules, they are generally well suited for modelling a wide range of physicochemical properties of molecules.

**General methods**

Commercially available reagents and solvents were used without further purification. β-CD was kindly provided by Wacker Chemie. Reactions were monitored using TLC on Merck 60 F254 (0.25 mm) plates. Spot detection was carried out via staining with 5% H2SO4 in ethanol. NMR spectra were recorded with a Bruker 300 Avance (300 MHz and 75 MHz for 1H and 13C, respectively) at 25 °C. Chemical shifts were calibrated to the residual proton and carbon resonances of the solvent; DMSO-d6 (δH = 2.54, δC = 39.5), D2O (δH = 4.79), CDCl3 (δH = 7.26). Chemical shifts (δ) are given in ppm, and coupling constants (J) in Hz. ESI-mass spectra were recorded on a Waters Micromass ZQ equipped with an ESI source.

MW-promoted reactions were carried out in three professional reactors: the MicroSYNTH and the SynthWAVE by Milestone and the Discover by CEM.

**General procedure for the synthesis of per-(6-alkylamino-6-deoxy)-β-cyclodextrin derivatives**

per-(6-Iodo-6-deoxy)-β-CD (1) (0.0525 mmol) was dissolved in DMF (2 mL) and amine (5.25 mmol) was added. The reaction was carried out under magnetic stirring in a MW reactor (150 W) at 85 °C for 1 h. After concentration under vacuum to half volume and the addition of acetone (10 mL), a solid precipitate was collected by filtration on a Hirsch funnel. The desired product was obtained without further purification.

MW-promoted reactions were carried out in the SynthWAVE MW reactor, 20 bar of nitrogen pressure were applied.

per-(6-Benzylamino-6-deoxy)-β-CD (2a) is a white powder; yield = 68%, 1H NMR (300 MHz, DMSO-d6) δ = 7.27–7.10 (m, 35H, H-Ar), 5.76–5.73 (m, O2H, O3H), 4.83 (br s, 7H, H-1), 3.60–3.50 (m, 28H, Ph-CH2), 2.54, 2.61 (m, 14H, H-6), ppm; 13C NMR (75 MHz, DMSO-d6) δ = 140.8 (Cipso), 128 (Cmeta), 127.6 (Cortho), 126.4 (Cpara), 102.14 (C1), 82.89 (C4), 72.91 (C3), 72.52 (C2), 70.6 (C5), 53.2 (Ph-CH2), ppm; MS [ESI]: m/z calculated for C53H119N2O28 [M + H]+ 1758.81, found 1758.95.

per-(6-Allylamino-6-deoxy)-β-CD (2b) is a yellowish powder; yield = 67%, 1H NMR (300 MHz, DMSO-d6) δ = 6.20–5.85 (m, O2H), 5.50–5.20 (m, 7H, H-1), 5.05 (m, 7H, H-5), 3.93–3.80 (m, 14H, H-6), ppm; 13C NMR (75 MHz, DMSO-d6) δ = 132.2 (CH=CH2), 120.5 (CH=CH2), 101.5 (C1), 82.3 (C4), 72.4 (C3), 71.8 (C2), 68.2 (C5), 50.65 (NHCH2CH=CH2), 47.3 (C6), ppm; MS [ESI]: m/z calculated for C63H160N2O28 [M + 2H]2+ 704.85, found 705.33.

**Table 3 VolSurf+ descriptors grouped on the basis of their physical-chemical meaning**

<table>
<thead>
<tr>
<th>Block</th>
<th>Descriptors</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/shape</td>
<td>V, S, R, G, W1, WO1, WN1</td>
<td>7</td>
</tr>
<tr>
<td>OH2</td>
<td>W2–W8, IW1–IW4, CW1–CW8</td>
<td>19</td>
</tr>
<tr>
<td>N1</td>
<td>WN2–WN6</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td>WO2–WO6</td>
<td>5</td>
</tr>
<tr>
<td>DRY</td>
<td>D1–D8, D1–D8, D1–D4, CD1–CD8</td>
<td>28</td>
</tr>
<tr>
<td>Others</td>
<td>HSA, PSAR, PSA, HL1, HL2, A, CP, PHSAR, DRDRDR, DRDRAC, DRDRDO, DRACAC, DRACDO, DRDODO, ACACAC, ACACDO, ACACDO, ACACDO, DODODO</td>
<td>18</td>
</tr>
</tbody>
</table>
**per-(6-Butylamino-6-deoxy)-β-CD (2c)** is a yellowish powder; yield = 63%. 1H NMR (300 MHz, DMSO-d_6) δ 6.10–5.86 (m, H-2, H-3, H-4, H-5), 4.90 (br s, 7H, H-1), 4.00–3.38 (m, overlapped with water, H-2, H-3, H-4, H-5, CH_2(a)N, CH_2(c)) ppm; 13C NMR (75 MHz, DMSO-d_6) δ 161.9 (Cl), 134.2 (Cl), 128.8, 127.8, 127.2, 126.3 (Ce-h), 102.8 (Cl), 83.9 (C4), 73.4 (C3), 72.9 (C2), 70.9 (C5), 61.9 (C6), 60.7 (C5), 51.6 (C6) 29.1 (Cd) ppm; MS (ESI): m/z calcd for C_{105}H_{133}N_{14}O_{28} [M + H]^+ 1940.92, found 1941.22.

**per-(6-Amino-6-deoxy)-β-CD (2d)** is a white powder; yield = 69%. 1H NMR (300 MHz, DMSO-d_6) δ 7.27–7.10 (m, 35H, H-6), 6.13–5.87 (m, O(2)H, O(3)H), 5.03 (br s, 7H, H-1), 3.86–3.15 (m, 42H, overlapped water, H-2, H-3, H-4, H-5, H-6) ppm; 13C NMR (75 MHz, DMSO-d_6) δ 118.9 (Cipso), 116.1 (Cpara), 102.4 (Cl), 86.3 (C4), 72.7 (C3), 72.4 (C2), 71.2 (C5), 49 (C6) ppm; MS (ESI): m/z calcd for C_{94}H_{105}N_{10}O_{28} [M + 2H]^+ 1660.70, found 1661.01.

**per-(6-Chlorobenzylamino)-6-deoxy)-β-CD (2e)** is a white powder; yield = 75%. 1H NMR (300 MHz, DMSO-d_6) δ 7.61–7.19 (m, 28H, H-6), 5.86–5.50 (m, O(2)H, O(3)H), 4.99–4.82 (m, 7H, H-1), 3.81–3.66 (m, 28H, H-3, H-4, H-5, H-6) ppm; 13C NMR (75 MHz, DMSO-d_6) δ 132.1 (Cipso), 132.2 (Cpara), 129.9 (Ph), 129.8 (Ph), 129.6 (Ph), 127.9 (Ph), 102.3 (C1), 83.2 (C4), 73.1 (C3), 72.6 (C2), 70.5 (C5), 50.1 (Ph–CH=), 48.7 (C6) ppm; MS (ESI): m/z calcd for C_{101}H_{111}Cl_{6}N_{2}O_{28} [M + 2H]^+ 1998.77, found 1998.93.

**per-(6-Phenylenamino-6-deoxy)-β-CD (2f)** is a white powder; yield = 54%. 1H NMR (300 MHz, DMSO-d_6) δ 7.41–7.02 (m, 35H, H-6), 5.87–5.77 (m, O(2)H, O(3)H), 4.99–4.75 (m, 7H, H-1), 3.85–3.17 (m, 35H, –Ph–CH–H–H–H–H, H-1, H-3, H-4, H-5, H-6), 2.75–2.58 (m, 14H, H-6), 1.26–1.05 (m, 21H, CH_3) ppm; 13C NMR (75 MHz, DMSO-d_6) δ 128.6 (Cipso), 126.6 (Cpara), 126.2 (Cortho), 101.6 (C1), 83.2 (C4), 72.5 (C3), 72.1 (C2), 70.6 (C5), 57.5 (Ph–CH), 48.6 (C6) 23.9 (CH_3) ppm; MS (ESI): m/z calcd for C_{98}H_{103}N_{10}O_{28} [M + H]^+ 1856.92, found 1857.02.

**per-(6-Methyl piperazino-6-deoxy)-β-CD (2g)** is a white powder; yield = 55%. 1H NMR (300 MHz, DMSO-d_6) δ 5.96–5.85 (m, O(2)H, O(3)H), 4.90 (br s, 7H, H-1), 3.70–3.20 (m, overlapped with water, H-2, H-3, H-4, H-6, 2.80–2.25 (m, overlapped with DMSO, CH_3N, CH_3N, H-6) ppm; 13C NMR (75 MHz, DMSO-d_6) δ 102.5 (C1), 84.2 (C4), 87.3 (C3), 55.3 (CH_2N), 54.7 (CH_2N), 54 (C6), 45.8 (CH_3) ppm; MS (ESI): m/z calcd for C_{62}H_{64}N_{14}O_{28} [M + H]^+ 1710.00, found 1710.82.

**per-(6-Morpholinono-6-deoxy)-β-CD (2h)** is a white powder; yield = 54%. 1H NMR (300 MHz, D_2O) δ 5.08 (br s, 7H, H-1), 4.22 (m, 7H, H-5), 4.01–3.87 (m, 21H, H-3, CH_3O), 3.67–3.59 (m, 14H, H-2, H-4), 3.26–2.99 (m, 42H, CH_2N–H–N–H) ppm; 13C NMR (75 MHz, D_2O) δ 100.2 (C1), 80.8 (C4), 72.2 (C3), 71.8 (C2), 68.1 (C5), 64.9 (CH_2O), 58.1 (C6), 53.6 (CH_3N) ppm; MS (ESI): m/z calcd for C_{65}H_{119}N_{15}O_{35} [M + H]^+ 1617.78, found 1619.06.

**per-(6-Tetrahydroisoquinolino-6-deoxy)-β-CD (2i)** is a white powder; yield = 52%. 1H NMR (300 MHz, DMSO-d_6) δ 7.22–6.76 (m, 28H, H-6), 6.03–5.93 (m, O(2)H, O(3)H), 4.90 (br s, 7H, H-1) ppm; MS (ESI): m/z calcd for C_{103}H_{133}N_{14}O_{28} [M + H]^+ 1940.92, found 1941.22.

**per-(6-Amino-6-deoxy)-β-CD (3)** is a white powder; yield = 37%. 1H NMR (300 MHz, DMSO-d_6) δ 7.86 (s, 7H, NH), 7.47–7.10 (m, 42H, NH–Ar, –CH_2–), 5.63–5.54 (m, O(2)H, O(3)H), 5.05–4.54 (m, 21H, H-1, Ph–CH_2), 4.15–3.63 (m, 21H, H-1) ppm; MS (ESI): m/z calcd for C_{105}H_{133}N_{14}O_{28} [M + H]^+ 1940.92, found 1941.22.

**per-(6-Amino-6-deoxy)-β-CD (4)** was an off-white powder; analytical data were in accordance with reported values.¹⁸

General procedure for the synthesis of per-(6-ureido/thioureido-6-deoxy)-β-cyclodextrin derivatives

**per-(6-Amino-6-deoxy)-β-CD (4)**, as the chloride salt (0.0723 mmol), was dissolved in DMF (1 mL) and isocyanate or isothiocyanate (3.61 mmol) was added. The reaction was carried out under magnetic stirring in a professional SynthWave MW reactor (150 W) at 70°C for 3 h with H_2 (10 bar). Solvents were partially evaporated and the solution was acidified with HCl to pH = 4.0. The solid was filtered, washed and the solution was lyophilized. The desired product was obtained in 91% yield (78 mg).

A was an off-white powder; analytical data were in accordance with reported values.¹⁸
H-3, H-5, H-6), 3.58–3.31 (m, overlapped with water, H-2, H-4), ppm; 13C NMR (75 MHz, DMSO-d_6) δ 182.8 (C=S), 139.2 (C=O), 128.1 (C=O=C), 127.3 (C=O=O), 126.9 (C=O=O), 101.7 (C1), 83.1 (C4), 72.7 (C3), 71.7 (C2), 69.5 (C7), 47.4 (Ph-CH_3), 44.3 (C6), ppm; MS (ESI): m/z calcd for C_{90}H_{126}N_{14}O_{28}S_7 [M + 2H]^2+ 1086.34, found 1086.52.

\textit{per-}(6-(3-Phenylethylthioireido)-6-deoxy)-β-CD (6b) is a white powder; yield = 36%, 1H NMR (300 MHz, DMSO-d_6) δ 7.70–7.06 (m, 59H, H-2, H-4), 6.20–5.73 (m, O(2)H, O(3)H), 4.88 (br s, 2H, H-1), 3.86–2.62 (m, overlapped with water, H-2, H-3, H-4, H-5, H-6, CH_2=CH, CH_2=CH), ppm; 13C NMR (75 MHz, DMSO-d_6) δ 183.1 (C=S), 139.6 (C=O), 128.5 (C=O=C), 127.2 (C=O=O), 126.6 (C=O=O), 102.2 (C1), 83.9 (C4), 72.9 (C3), 72.6 (C2), 69.6 (C6) 47.2 (CH_2=CH), 45.1 (C6), 40.5 (Ph-CH_3) ppm; MS (ESI): m/z calcd for C_{103}H_{146}N_{14}O_{28}S_7 [M + 2H]^2+ 1135.40, found 1135.81.

\textit{per-}(6-(3-Butylthioireido)-6-deoxy)-β-CD (6c) is a yellowish powder; yield = 39%, 1H NMR (300 MHz, DMSO-d_6) δ 7.67–7.13 (m, 41H, NH), 6.18–5.48 (m, O(2)H, O(3)H), 4.89 (br s, 2H, H-1), 4.22–2.92 (m, overlapped with water, H-2, H-3, H-4, H-5, H-6, CH_2=CH), 1.89–1.31 (m, 42H, NH–CH_2–CH=CH–CH_2–CH_3), 0.90 (s, 21H, CH_3), ppm; 13C NMR (75 MHz, DMSO-d_6) δ 183.4 (C=S), 102.6 (C1), 88.3 (C4), 73.3 (C5), 72.7 (C2), 70.4 (C5), 44.3 (NH–CH_2–CH_2–CH_2–CH_3), 43.7 (C6), 30.1 (–CH_2–CH_2–CH_3), 20.1 (–CH_2–CH_3), 14.4 (CH_3) ppm; MS (ESI): m/z calcd for C_{27}H_{44}N_{14}O_{28}S_7 [M + Na]^+ 1955.80, found 1955.82.

Acknowledgements

This work was funded by the Compagnia di San Paolo – University of Turin (Progetti di Ricerca di Ateneo 2011, grant DI15E11001710003). The authors also acknowledge the ARCADE project (FP7-REGPOT-2009-1 Support action – Grant Agreement No. 245866) for financial support of the personnel exchange.

Notes and references
