The stability of S-states of unit-charge Coulomb three-body systems: from H− to H2+

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/53888/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
The stability of S-states of unit-charge Coulomb three-body systems: From H− to H2 + [J. Chem. Phys. 139, 224306 (2013)]

Andrew W. King, Frank Longford, and Hazel Cox

Citation: The Journal of Chemical Physics 141, 079902 (2014); doi: 10.1063/1.4892936
View online: http://dx.doi.org/10.1063/1.4892936
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/141/7?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

The stability of S-states of unit-charge Coulomb three-body systems: From H− to H2 +
J. Chem. Phys. 139, 224306 (2013); 10.1063/1.4834036

Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water

Publisher’s Note: “Finite temperature quantum statistics of H 3 + molecular ion” [J. Chem. Phys. 133, 044312 (2010)]

Comment on “Group-theoretical analysis of the electronic structure data for molecular ions C 60 N± (l h) derived from multipole expansion of the Coulomb interelectronic interactions” [J. Chem. Phys. 119, 11429 (2003)]
J. Chem. Phys. 120, 8334 (2004); 10.1063/1.1695319

Asymptotic structure of the three-body Coulomb Green’s function for the case of two charged particles
Publisher’s Note: “The stability of S-states of unit-charge Coulomb three-body systems: From H$^-$ to H$_2^+$” [J. Chem. Phys. 139, 224306 (2013)]

Andrew W. King, Frank Longford, and Hazel Cox

Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

(Received 20 July 2014; published online 19 August 2014)

[http://dx.doi.org/10.1063/1.4892936]

This article was originally published online and in print on 11 December 2013 with a typographical error in Eq. (1). In the numerator of the fraction, m_1 should be m_i. The correct Eq. (1) should read

$$a_i = \frac{1/m_i}{1/m_1 + 1/m_2 + 1/m_3}, \quad i = 1, 2, \text{ or } 3.$$ (1)

AIP Publishing apologizes for this error. All online versions of the article were corrected on 23 July 2014.

a)Electronic mail: h.cox@sussex.ac.uk