Prospecting for scarabid specific Bacillus thuringiensis crystal toxin cry8 gene in sugarcane ecosystem of Tamil Nadu, India

Article  (Published Version)


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/53242/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
PROSPECTING FOR SCARABID SPECIFIC BACILLUS THURINGIENSIS CRYSTAL TOXIN CRY8 GENE IN SUGARCANE ECOSYSTEM OF TAMIL NADU, INDIA

B. Singaravelu1*, N. Crickmore2, J. Srikanth1, K. Hari1, C. Sankaranarayanan1, R. Nirmala1, S. Radesh Krishnan1 and M. Meghna1

Abstract

In the present study, we report the occurrence of cry8 positive isolates of Bacillus thuringiensis (Bt) in selected white grub, Holotrichia serrata F. (Coleoptera: Scarabaeidae), endemic soils of sugarcane ecosystem and other places in Tamil Nadu. Out of the 66 soil samples collected and screened for white grub specific Bt, 74 isolates of the bacterium, all containing only spherical crystal toxin, were identified. PCR screening of these isolates with cry8 gene universal primer revealed six isolates to be positive. Further, the amplicon of a 370 bp band, amplified with another set of degenerate primer designed based on the conserved sequence of cry8 genes, was sequenced from four isolates. Multiple sequence alignment revealed the gene sequences to be the same for all the isolates. The present report of the availability of cry8 positive Bt isolates opens the avenue for controlling white grubs through transgenic research.

Key words: Sugarcane, white grub, Holotrichia serrata, Scarabaeidae, Bacillus thuringiensis, cry8 gene

Introduction

Melolonthin scarabs occur across the Indian subcontinent and throughout southeast and east Asia (Ward et al. 2002). The chafer beetle Holotrichia serrata F. (Coleoptera: Scarabaeidae) is one such scarab whose larval stage is a serious pest of coconut (Cocos nucifera L.), sugarcane (Saccharum officinarum L.), groundnut (Arachis hypogaea L.) and vegetables in parts of Western and peninsular India (Subaharan et al., 2013). The grubs of H. serrata damage sugarcane crop by feeding on the roots ultimately leading to drying of the plant, often causing 80-100% crop loss (David and Ananthanarayana 1986). The subterranean habit makes this pest intractable for control and hence the available control measures are less than satisfactory. Among the various control options, biocontrol agents such as the entomopathogenic fungus Beauveria brongniartii (Sacc.) Petch (Srikanth et al. 2009) and entomopathogenic nematode Heterorhabditis indicus (Sankaranarayanan et al. 2006) hold some promise although slow speed of kill by the fungus and lack of economically viable mass multiplication techniques of the nematode limit their use. The use of the soil bacterium Bacillus thuringiensis (Bt) against this serious pest has not been contemplated.
in our country as was evident from the lack of reports. However, recently Bt that have specific mode of action against other Holotrichia species have been isolated in China. The Bt isolated from China was found to harbour Cry8-type toxin with known specific action against scarab pests (Yu et al. 2006; Shu et al. 2009a & 2009b). In the present study, Bt strains were isolated from the soils of sugarcane ecosystem and screened for the presence of cry8 genes, which encode insecticidal proteins that are toxic to scarab insects like H. serrata.

Materials and methods

Soil collection

Soil samples for isolation of Bt were collected from white grub endemic areas of Tamil Nadu, namely Anaikatty Hills, Coimbatore district, and Sakthi Sugars Ltd and Bannari Amman Sugars Ltd, Erode district (Table 1). Fifty grams of soil samples were collected by scraping off surface soil with a spatula upto a depth of 30 cm. Soil samples were collected in polyethylene bags, transferred to the lab and stored at room temperature.

Bt isolation

Bt isolation from soils was carried out with a slight modification to the method followed by Travers et al. (1987). Ten grams of soil sample was suspended in 100 ml of 0.85% NaCl solution. The samples were heated at 80°C for 15 min in water bath. One ml of the heat treated sample was inoculated in 50 ml of Luria Bertani (LB) broth and incubated overnight at 30°C with an orbital shaking of 250 rpm. From this broth, serial dilution (10^1 to 10^6) was performed and each dilution was plated in Travers (T3) medium. The plates were then incubated for 48h at 30°C. After incubation, Bt like colonies were selected and streaked on T3 and incubated for 72h at 30°C. The single colonies were observed under phase contrast microscopy for identification of Bt. The isolates showing the presence of crystalline inclusions were selected as Bt and streaked on T3 agar medium for single colony purification. Broth culture (pH adjusted to 6.9) was made from the isolated single colonies of crystal positive Bt isolates. Glycerol stocks of Bt isolates were prepared by using equal amounts of 30% glycerol and 72 h old T3 broth culture and stored at -20°C for further studies.

PCR screening of cry8 gene

Polymerase chain reaction (PCR) was used to identify cry8 gene type from our isolates. Bt reference cry8 strain (Buibui) and our isolates from white grub endemic soils were streaked on Luria Agar (LA) plate and grown overnight at 30°C. Two swipes of the overnight grown cultures were suspended in 200 µl of sterile distilled water and the isolates were heated by placing them in boiling water for 10 min. The lysed cells were allowed to settle for 8-10 min at room temperature and the supernatant was taken as DNA template for PCR reaction. Universal primers (forward and reverse) of cry8 were used to amplify a specific fragment as described by Bravo et al. (1998). All PCR reactions were carried out in 50 µl reaction volumes.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Location</th>
<th>No. of soil samples</th>
<th>No. of colonies selected</th>
<th>No. of Bts isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anaikatty, Coimbatore</td>
<td>6</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Sakthi Sugar Mills Ltd, Tamil Nadu</td>
<td>31</td>
<td>682</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Bannari Amman Sugar Mills Ltd, TamilNadu</td>
<td>29</td>
<td>427</td>
<td>36</td>
</tr>
</tbody>
</table>
Twenty µl of template DNA was mixed with reaction buffer containing 1.25 µl of 2.5mM deoxynucleoside triphosphate mix, 0.5 µl of 10µM (direct and reverse) primers, 5 µl Taq buffer (10X), and 1 U of Taq DNA polymerase. Amplifications were carried out in a DNA thermal cycler (Biorad S1000). The PCR conditions for screening the isolates were as follows: single denaturation step of 5 min at 94°C, a step cycle program set for 30 cycles (with a cycle consisting of denaturation at 94°C for 1 min, annealing at 50°C for 30 seconds and extension at 72°C for 1 min), and an extra step of extension at 72°C for 7 min after completion of all the cycles. All PCR reactions were performed with the cry8 reference strain B. thuringiensis serovar japonensis Buibui. Following the amplification, electrophoresis of each PCR sample was done on 1 % agarose-ethidium bromide gel.

**Results and discussion**

Out of the 66 soil samples collected from white grub endemic areas, 74 isolates were identified as Bt (Table 1) by phase contrast microscopy. Bts are generally identified by their crystal toxins which are easily visible under phase contrast microscope. In our study all the Bt isolates were found to contain only spherical crystal toxin (Fig.1).

Fig. 1. A Bt isolate from sugarcane soil showing spherical crystal toxin under phase contrast microscope (1000x magnification)

PCR screening of the 74 isolates of Bt identified in this study with cry8 gene universal primer revealed that six isolates, namely Bt 56, 57, 58, 59, 61 and 62 were positive (Fig 2). Since all the cry8 positive isolates were isolated from the same soil sample, we amplified a 370 bp band with another set of degenerate primer designed based on the conserved sequence of cry8 genes. This PCR amplicon from Bt 56, 58, 61 and 62 was sequenced and multiple sequence alignment carried out by CLUSTAL W revealed the gene sequences to be the same for all the isolates indicating they all could be the same isolate. The availability of cry8 positive Bt isolates opens the avenue for controlling white grubs through transgenic research. However, further studies on the toxicity of these isolates to white grubs, and cloning and sequencing of the entire gene are required to know whether the isolate identified in the present study contains crystal toxin gene that matches with cry8 holotype genes described earlier or it expresses a novel cry8 gene.

The number of Bt isolates obtained from the three locations (Table 1) appeared to be positively related to the number of soil samples collected. Thus, more extensive sampling of soils is likely to increase the probability of identifying new Bt isolates, including those with cry8 gene. The occurrence of Bt isolates

Fig. 2. PCR screening of Bt isolates with universal primers. M: marker; 56-61: Bt isolates; BB: Buibui strain of B. thuringiensis serovar japonensis
in soils from location 1 (Anaikatty), which is a forest area and not a true sugarcane crop ecosystem, indicated that the search for Bt isolates need not be restricted to sugarcane crop area alone but can be extended to other crop systems as well as natural systems, which could be a rich repository of isolates of the bacterium.

Acknowledgements

The authors thank Dr N. Vijayan Nair, Director, Sugarcane Breeding Institute, Coimbatore, for providing facilities to carry out this work. The authors also thank Dr M. Mohan, Senior Scientist, Division of Molecular Entomology, National Bureau of Agriculturally Important Insects, Bangalore, for providing the cry8 gene reference isolate. The authors also thank Neil Crickmore, Senior Lecturer in Molecular Genetics, Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom, for the technical guidance rendered in sequencing and multiple sequence alignment. The role of National Agricultural Innovation Project (NAIP) International training program under Human Resource Development Programme is also gratefully acknowledged.

References


Sankaranarayanan C, Somasekhar N, Singaravelu B (2006) Biocontrol potential of

entomopathogenic nematodes Heterorhabditis and Steinernema against pupae and adults of white grub Holotrichia serrata F. Sugar Tech 8(4):268-271.


