Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method

Jelvehgari, Mitra, Atapour, Fatemeh and Nokhodchi, Ali (2009) Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method. Archives of Pharmacal Research, 32 (7). pp. 1019-1028. ISSN 0253-6269

Full text not available from this repository.

Abstract

The present research work compares the effect of microsphere preparation technique on micromeritics and release behaviors of theophylline microspheres. Microspheres were prepared by oil-in oil (O1/O2) emulsion solvent evaporation method (ESE) using different ratios of anhydrous theophylline to cellulose acetate butyrate (CAB). Cyclohexane was used as non-solvent to modify the ESE technique (MESE method) and the effect of non-solvent volume on properties of microspheres was investigated. The obtained microspheres were analyzed in terms of drug content, particle size and encapsulation efficiency. The morphology of microsphere was studied using scanning electron microscope. The solid state of microspheres, theophylline and CAB were investigated using X-ray, FT-IR and DSC. The drug content of microspheres prepared by MESE method was significantly lower (15.54% ± 0.46) than microspheres prepared by ESE method (41.08 ± 0.40%). The results showed that as the amount of cyclohexane was increased from 2 mL to 6 mL the drug content of microspheres was increased from 15.54% to 28.71%. Higher encapsulation efficiencies were obtained for microspheres prepared by ESE method (95.87%) in comparison with MESE method (64.71%). Mean particle size of microsphere prepared by ESE method was not remarkably affected by drug to polymer ratio, whereas in MSES method when the volume of cyclohexane was increased the mean particle size of microsphere was significantly decreased. The ratio of drug to polymer significantly changed the rate of drug release from microspheres and the highest drug release was obtained for the microsphere with high drug to polymer ratio. The amount of cyclohexane did not significantly change the drug release. Although, x-ray showed a small change in crystallinity of theophylline in microspheres, DSC results proved that theophylline in microspheres is in amorphous state. No major chemical interaction between the drug and polymer was reported during the encapsulation process. © 2009 The Pharmaceutical Society of Korea.

Item Type: Article
Schools and Departments: School of Life Sciences > Chemistry
Subjects: Q Science > QD Chemistry
Depositing User: Tom Gittoes
Date Deposited: 21 Dec 2014 19:47
Last Modified: 21 Dec 2014 19:47
URI: http://sro.sussex.ac.uk/id/eprint/51822
📧 Request an update