Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields

Saha, Shreya, Woodbine, Lisa, Haines, Jacqueline, Coster, Margaret, Ricket, Nicole, Barazzuol, Lara, Ainsbury, Elizabeth, Sienkiewicz, Zenon and Jeggo, Penny (2014) Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields. Journal of the Royal Society Interface, 11 (100). p. 20140783. ISSN 1742-5689

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (803kB) | Preview

Abstract

The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10–200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1–5 mGy X-rays.

Item Type: Article
Schools and Departments: School of Life Sciences > Sussex Centre for Genome Damage and Stability
Depositing User: Catrina Hey
Date Deposited: 04 Dec 2014 12:28
Last Modified: 07 Mar 2017 05:25
URI: http://sro.sussex.ac.uk/id/eprint/51496

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
DNA damage responses in mammalian cells and their contribution to human health disorders; the end-stageG0217MRC-MEDICAL RESEARCH COUNCILG1000050