Genomic landscapes and clonality of de novo AML

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/48624/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
toxic regimen might be larger in elderly patients with APL, since an older age remains a prominent negative prognostic factor because of the high death rate associated with both induction therapy and consolidation therapy. We would be grateful if the authors could provide information on the efficacy and safety of the regimen of ATRA plus arsenic trioxide among elderly patients in the current trial.

Yuji Miura, M.D.
Koichi Suyama, M.D.
Toshimi Takano, M.D.
Toranomon Hospital
Tokyo, Japan
yuji.miura@mac.com

No potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMc1309895

THE AUTHORS REPLY: With respect to elderly patients, the upper age limit in our study was under 71 years. Therefore, we can provide data on the 35 patients between the ages of 60.1 years and 70.2 years who were included in the trial. A total of 16 patients were assigned to receive ATRA plus arsenic trioxide, and 19 were assigned to receive ATRA plus chemotherapy. There were no significant between-group differences in the main presenting features (age, white-cell and platelet counts, fibrinogen level, and coagulopathy). The 24-month event-free survival rates were 100% in the group receiving ATRA plus arsenic trioxide and 84.2% in the group receiving ATRA plus chemotherapy (P=0.40). No patients died and 1 patient had a relapse at 27 months in the group receiving ATRA plus arsenic trioxide. In the group receiving ATRA plus chemotherapy, 3 patients died (1 during induction from the differentiation syndrome and 2 during consolidation from pulmonary embolism and bronchopneumonia). We are further investigating the important issue raised by Miura et al. by analyzing an extended series of elderly patients in our study with prolonged follow-up.

Francesco Lo-Coco, M.D.
Fondazione Santa Lucia
Rome, Italy
francesco.lo.coco@uniroma2.it
Sonia M. Orlando, B.Sc.
GIMEMA Data Center
Rome, Italy
Uwe Platzbecker, M.D.
Universität klinikum Dresden
Dresden, Germany

Since publication of their article, Dr. Lo-Coco reports having received honoraria as a speaker for Lundbeck, and Dr. Platzbecker’s disclosure form has been updated to include receiving honoraria as a speaker for Teva. No further potential conflict of interest relevant to this letter was reported.

DOI: 10.1056/NEJMc1309895

Genomic Landscapes and Clonality of De Novo AML

TO THE EDITOR: In reviewing the analysis of the genomic and epigenomic landscapes of de novo acute myeloid leukemia (AML) by the Cancer Genome Atlas Research Network (May 30 issue), we were struck by an apparent discrepancy in the reported clonal architecture of the AML samples as compared with that reported by Ding et al. (an average of one to two distinct clones identified vs. four or more). This discrepancy may reflect the limited depth of the sequencing analysis performed in the more recent study. More important, the authors do not reveal which mutations occur in the founding clone, as would be expected for an initiator of disease, and which occur in minor clones, which subsequently drive disease. For instance, FLT3 mutations that are present at diagnosis frequently disappear at relapse, which suggests that these mutations are unlikely to represent initiators of disease in AML. In contrast, DNMT3A mutations present at diagnosis appear to occur exclusively in the major AML clone, as would be expected in an initiator of AML, but are not, it seems, lost (or indeed gained) at relapse. Such information on these and other genes would allow the identification of initiating mutations that may serve as therapeutic Achilles’ heels and biomarkers of residual disease in AML.
We agree that it is important to understand whether mutations are responsible for the initiation of AML or cooperate with initiating mutations to cause disease progression or relapse.1,2 Whereas initiating mutations may be more likely to appear in founding clones, cooperating mutations might appear either in founding clones or subclones derived from founding clones. In our study, it was not possible to define the clonal architecture for all samples, both because AML genomes harbor a comparatively small number of mutations and because for 150 of 200 samples, only exome sequencing was performed. Nevertheless, we have used the data in Table S6 (available with the full text of our article at NEJM.org) to identify variants in significantly mutated genes that can be assigned with high confidence to either a founding clone or a subclone.

Mutations in some genes appear almost exclusively in founding clones, which suggests that they are disease initiators. These genes include \textit{RUNX1} (9 of 9 mutations in founding clones), \textit{NPM1} (3 of 3), \textit{U2AF1} (5 of 5), \textit{DNMT3A} (38 of 40), \textit{IDH2} (13 of 14), \textit{IDH1} (15 of 17), and \textit{KIT} (5 of 6). In contrast, mutations in \textit{NRAS} (1 of 12 in founding clones), \textit{TET2} (13 of 18), \textit{KRAS} (4 of 6), \textit{CEBPA} (3 of 5), \textit{WT1} (3 of 6), \textit{PTPN11} (4 of 8), and \textit{FLT3} (6 of 13), are often found in subclones, suggesting that they are often cooperating mutations. Many additional genomes will need to be tested to make these tentative assignments more definitive.

The Authors Reply: We agree that it is important to understand whether mutations are responsible for the initiation of AML or cooperate with initiating mutations to cause disease progression or relapse.1,2 Whereas initiating mutations may be more likely to appear in founding clones, cooperating mutations might appear either in founding clones or subclones derived from founding clones. In our study, it was not possible to define the clonal architecture for all samples, both because AML genomes harbor a comparatively small number of mutations and because for 150 of 200 samples, only exome sequencing was performed. Nevertheless, we have used the data in Table S6 (available with the full text of our article at NEJM.org) to identify variants in significantly mutated genes that can be assigned with high confidence to either a founding clone or a subclone.

Mutations in some genes appear almost exclusively in founding clones, which suggests that they are disease initiators. These genes include \textit{RUNX1} (9 of 9 mutations in founding clones), \textit{NPM1} (3 of 3), \textit{U2AF1} (5 of 5), \textit{DNMT3A} (38 of 40), \textit{IDH2} (13 of 14), \textit{IDH1} (15 of 17), and \textit{KIT} (5 of 6). In contrast, mutations in \textit{NRAS} (1 of 12 in founding clones), \textit{TET2} (13 of 18), \textit{KRAS} (4 of 6), \textit{CEBPA} (3 of 5), \textit{WT1} (3 of 6), \textit{PTPN11} (4 of 8), and \textit{FLT3} (6 of 13), are often found in subclones, suggesting that they are often cooperating mutations. Many additional genomes will need to be tested to make these tentative assignments more definitive.

The Authors Reply: We agree that it is important to understand whether mutations are responsible for the initiation of AML or cooperate with initiating mutations to cause disease progression or relapse.1,2 Whereas initiating mutations may be more likely to appear in founding clones, cooperating mutations might appear either in founding clones or subclones derived from founding clones. In our study, it was not possible to define the clonal architecture for all samples, both because AML genomes harbor a comparatively small number of mutations and because for 150 of 200 samples, only exome sequencing was performed. Nevertheless, we have used the data in Table S6 (available with the full text of our article at NEJM.org) to identify variants in significantly mutated genes that can be assigned with high confidence to either a founding clone or a subclone.

Mutations in some genes appear almost exclusively in founding clones, which suggests that they are disease initiators. These genes include \textit{RUNX1} (9 of 9 mutations in founding clones), \textit{NPM1} (3 of 3), \textit{U2AF1} (5 of 5), \textit{DNMT3A} (38 of 40), \textit{IDH2} (13 of 14), \textit{IDH1} (15 of 17), and \textit{KIT} (5 of 6). In contrast, mutations in \textit{NRAS} (1 of 12 in founding clones), \textit{TET2} (13 of 18), \textit{KRAS} (4 of 6), \textit{CEBPA} (3 of 5), \textit{WT1} (3 of 6), \textit{PTPN11} (4 of 8), and \textit{FLT3} (6 of 13), are often found in subclones, suggesting that they are often cooperating mutations. Many additional genomes will need to be tested to make these tentative assignments more definitive.