The over-expression, purification and crystallisation of the alternative oxidase

Catherine Rebecca Elliott

DPhil

University of Sussex

January 2013
I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree.

Signature:...
For my Dad.
Acknowledgements

To begin, I would like to express my deep and lasting gratitude to Tony Moore for both the opportunity to undertake this thesis and unwavering guidance throughout, made delightful and gratifying by his tireless, boundless and infectious enthusiasm. Without his support, encouragement and energy this thesis simply would not be. To Mary Albury: your help, knowledge and friendship have quite literally kept me sane, especially after long nights in the lab and failed experiments – thank you. To David Whitehouse: thank you for your encouragement and stimulating conversations about plant biochemistry and teaching undergraduates. I am very grateful to Professors Kita and Iwata for welcoming me into their labs and for all the advice and instruction they provided. To Momi Iwata, Kikukatsu Ito, Yasutoshi Kido, Ewan Main and Darren Thompson, thank you for all your invaluable guidance on the topics of biophysics and structural biology. I would especially like to thank Luke Young and Julia Shearman for all their help and support in the Moore lab – especially for putting up with my inane ramblings. To all the wonderful students I’ve met along the way (in no particular order – Sarah, Amelia, JJ, Maria, Kirsty, Kyle, Lisa, Sherry, Dong Mei, Elodie and Ben) – thank you all for enriching my time at Sussex both academically and socially.

To Mum, Dad and Lucy – you have been wonderfully supportive during my studies and have offered me confidence and inspiration every step of the way. To my Dad especially, thank you for your proof-reading services (for free, no less!); you made what felt like an insurmountable task manageable. I would also like to thank my sorores caelestis (especially Laurie and Silvia) for nurturing my soul and filling my life with such musical beauty.

Finally, to my rock, Matt, I could not have done it without you. Thank you.
CATHERINE REBECCA ELLIOTT
DPhil
OVER-EXPRESSION, PURIFICATION AND CRYSTALLISATION OF THE ALTERNATIVE OXIDASE

SUMMARY

The alternative oxidase (AOX) is an integral monotopic membrane protein which branches from respiratory chain at the point of the Q-pool in the mitochondria of all flowers, some fungi, and some protists such as the human parasite Trypanosoma brucei.

The aim of this project is threefold: to establish an over-expression and purification protocol for recombinant Sauromatum guttatum alternative oxidase (SgrAOX); to use expressed SgrAOX for structural analysis such as crystallography; and finally to use in silico methods to model the alternative oxidase protein. Of these three, only the first and last have been attempted previously, with varying success. The second, namely structural analysis, has never been attempted with SgrAOX.

In order to achieve the aims of this project, primarily laboratory-based protein production were used, in conjunction with downstream analysis using structural biology techniques. The in silico modelling was carried out using a wide range of algorithms freely available on the World Wide Web.

Results of this project are: the determination of an over-expression system and purification protocols in two E.coli strains, producing enough protein to use for the second objective detailed above. While no crystal structure has been obtained, significant steps toward identifying a protocol for rAOX crystallisation have been made. Results from structural analysis support modelling predictions and give novel insights into the thermostability of the protein. New and detailed homology models have been created and critically evaluated, with a very recent crystal structure from our collaborators providing a unique set of data for model evaluation.

The outcome of this project has contributed towards the determination of conditions under which SgrAOX protein may form crystals, and therefore bringing the acquisition of a SgrAOX protein structure closer.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Summary</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>Account</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Chapter 1 – General Background

1.1 Respiration and the alternative oxidase
 1.1.1 Cellular energy and the respiratory chain 1
 1.1.2 The respiratory chain and the alternative oxidase 3

1.2 Distribution and function of the alternative oxidase 5

1.3 Structural biology of the alternative oxidase from experimental observations
 1.3.1 Identification of the alternative oxidase from thermogenic tissues.. 9
 1.3.2 Recombinant protein expression 10
 1.3.3 Catalytic cycle and active site of the alternative oxidase 12
 1.3.4 Regulation of alternative oxidase activity 15
 1.3.4.1 Genetics of the alternative oxidase 15
 1.3.4.2 Regulation by changes to the quaternary structure - homodimerisation 15
 1.3.4.3 Regulation by pyruvate and other α-keto acids 16

1.4 Predicted structural information from protein sequence data
 1.4.1 Modelling the alternative oxidase 18
 1.4.1.1 The Siedow-Umbach-Moore model 18
 1.4.1.2 The Andersson-Nordlund Model 19
 1.4.1.3 Similarities between AOX and other di-iron carboxylates 22
 1.4.1.4 Recent attempts to model the alternative oxidase 22

1.5 Elucidating the structure of the plant alternative oxidase experimentally
 1.5.1 Over-expression of recombinant alternative oxidase protein 23

1.6 Questions outstanding in the field of plant alternative oxidase research 26

1.7 The Aims of this project 27

Chapter 2 - Materials and Methods

2.1 Plasmid vectors and *Escherichia coli* strains 28
 2.1.1 Preparation of competent *E. coli* cells 28
 2.1.2 Transformation of competent *E. coli* cells 29

2.2 Protein expression and membrane isolation 30
2.2.1 Expression and membrane isolation from C41 30
2.2.2 Expression and harvest – FN102 31
2.3 Membrane solubilisation and purification 33
 2.3.1 Membrane solubilisation 33
 2.3.2 Further purification 34
2.4 Visualisation of recombinant protein 35
 2.4.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 35
 2.4.2 Western blotting 36
 2.4.3 Sample preparation – acetone precipitation 38
2.5 Protein Assays 40
 2.5.1 Protein estimation assays 40
 2.5.1.1 BCA protein concentration estimation method 40
 2.5.1.2 Lowry protein concentration estimation method 40
 2.5.2 Spectrophotometric activity assay 41
 2.5.3 Substrate reduction protocol 43
2.6 Crystallography 44
 2.6.1 Initial screening – hanging drop method 44
 2.6.1.1 Seeding and refinement 45
 2.6.2 Sitting drop method 46
2.7 Circular Dichroism 46
 2.7.1 Sample preparation using polyethylene glycol (PEG) precipitation 46
 2.7.2 Monitoring secondary structure – multiple wavelength scan 47
 2.7.3 Temperature melt CD 47
2.8 In silico modelling of the alternative oxidase 47

Chapter 3 - Modelling the alternative oxidase 50
3.1 The value of bioinformatics 50
 3.1.1 Sequence analysis 50
 3.1.2 Phylogeny 51
 3.1.3 Previous models of the alternative oxidase 52
 3.1.4 In silico approaches to modelling proteins with unknown structure 53
 3.1.4.1 Prediction of secondary structure 53
 3.1.4.2 Homology modelling 54
 3.1.4.3 Threading 56
 3.1.4.4 Limitations and evaluation of structure prediction and protein modelling 57
 3.1.5 Docking 57
3.2 Methodology 59
 3.2.1 Sequence analysis 59
 3.2.2 Phylogeny 59
 3.2.3 Homology modelling 60
 3.2.4 Threading 60
 3.2.5 Model evaluation 60
 3.2.6 Docking 61
 3.2.7 Generating a dimeric AOX model containing a di-iron 61
 3.2.8 Building a membrane-AOX model 62
3.2.9 Visualisation

3.3 Results
3.3.1 Sequence analysis
3.3.2 Phylogeny

Insert – Figure 3.1

3.3.3 Homology modelling
3.3.3.1 Generation of a dimeric AOX model containing di-iron centres
3.3.3.2 Generation of a membrane-AOX model
3.3.4 Threading
3.3.4.1 Threading – RaptorX and Phyre2
3.3.5 Docking

3.4 Discussion
3.4.1 Multiple alignment and phylogenetic analysis
3.4.2 Homology modelling vs. Threading
3.4.3 Validity, variations and value of the Δ9-desaturase and TAO homology models
3.4.4 Membrane-AOX model
3.4.5 Docking
3.4.6 Concluding remarks

Chapter 4 - Expression and purification of the alternative oxidase

4.1 Background
4.1.1 Considerations for designing an expression and purification protocol
4.1.1.1 Expression strains – C41 and FN102
4.1.1.2 Growth conditions
4.1.1.3 Membrane harvest and lysis
4.1.2 Factors affecting solubilisation and purification

4.2 Methodology
4.2.1 Expression strains
4.2.2 Strain-specific growth conditions, membrane harvest and cell lysis
4.2.3 Solubilisation
4.2.4 Purification
4.2.5 Protein activity assays
4.2.6 Visualisation of recombinant alternative oxidase

4.3 Results
4.3.1 Factors affecting expression
4.3.1.1 Expression strains
4.3.1.2 Growth conditions, membrane harvest and cell lysis
4.3.1.2.1 C41
4.3.1.2.2 FN102
4.3.2 Factors affecting solubilisation and purification
4.3.2.1 Factors affecting solubilisation
4.3.2.2 Buffers and additives
4.3.2.3 Purification
4.3.2.4 The effect of pyruvate on activity

viii
4.3.2.5 Downstream processing 113
4.3.2.6 Quantitation, visualisation and activity monitoring of recombinant alternative oxidase

4.4 Discussion 117
4.4.1 Strains and growth conditions 117
 4.4.1.1 C41 117
 4.4.1.2 FN102 118
 4.4.1.3 Cell lysis 119
4.4.2 Solubilisation 120
4.4.3 Purification 121
4.4.4 General factors affecting the over-expression, solubilisation and purification of recombinant *S. guttatum* alternative oxidase
 4.4.4.1 The effect of pyruvate on recombinant *S. guttatum* alternative oxidase 122
 4.4.4.2 Recombinant protein quantification 123
 4.4.4.3 Downstream processing – protein concentration 124
 4.4.4.4 Substrate preference 124
4.4.5 Isoform-specific differences in alternative oxidase protein activity 125
4.4.6 Concluding remarks 128

Chapter 5 - Structural Biology of the Alternative Oxidase
5.1 Background 130
 5.1.1 Primary and secondary structure of the alternative oxidase 130
 5.1.1.1 Determining secondary structure experimentally – circular dichroism 133
 5.1.2 Tertiary and quaternary structure of the alternative oxidase 134
 5.1.3 Structure-function relationships – mutants 136
 5.1.4 The nature of alternative oxidase membrane association 136
 5.1.5 Elucidation of the quaternary structure through crystallography 141
 5.1.6 The challenges of membrane protein crystallography 144
5.2 Methodology 145
 5.2.1 Circular dichroism 145
 5.2.2 Prediction of secondary structure 147
 5.2.3 *In silico* investigation of dimerisation site 147
 5.2.4 Crystallography 148
 5.2.5 Expression of mutant isoforms 149
 5.2.6 Variable temperature activity assays 149
5.3 Results 150
 5.3.1 Circular dichroism 150
 5.3.1.1 Wavelength scan 150
 5.3.1.2 Variable temperature 153
 5.3.2 Predicted secondary structure 155
 5.3.3 Identification of potential dimerisation sites 156
 5.3.4 Crystallography 158
 5.3.5 Mutants 158
 5.3.5.1 C172A 161
5.3.5.2 T179A 161
5.3.5.3 Y253F 161
5.3.6 Variable temperature activity assay 163
5.4 Discussion 163
 5.4.1 Secondary structure 163
 5.4.2 Crystallography 167
 5.4.3 Expression of mutant S.guttatum isoforms 170
 5.4.4 Identification of a possible dimer interface 171
 5.4.5 Concluding remarks 172

Chapter 6 – General Discussion
 6.1 Expression of recombinant S. guttatum alternative oxidase 173
 6.2 Structural studies of the S. guttatum alternative oxidase 174
 6.3 In silico modelling of the alternative oxidase – beyond the computer 178
 6.4 Readdressing the questions posed in Chapter 1 and consideration of future directions 180
 6.4 Concluding remarks 183

References 185

Appendix 219
Abbreviations used

AA – antimycin A
ADP – adenosine diphosphate
AF – ascofuranone
ALA – 5-aminolevulinic acid
AOX – alternative oxidase
APS – ammonium persulphate
ASA – solvent accessible surface area
ATP – adenosine triphosphate
BCA – bicinchoninic acid
BLAST – basic local alignment search tool
BSA – bovine serum albumin
$C_{12}E_8$ – dodecyl octaethylene glycol ether
CD – circular dichroism
CMC – critical micelle concentration
COX – cytochrome oxidases
C-terminal – carboxyl terminus
DDM – dodecyl maltoside
dH$_2$O – distilled water
DNA – deoxyribonucleic acid
DSSP – Define Secondary Structure of Proteins algorithm
DTT – dithiothreitol
DQ – duroquinone
DQH$_2$ – duroquinol
DUQ – decylubiquinone
DUQH$_2$ – decylubiquinol
E – redox potential
ε – molar extinction coefficient
e^- – electron
ECL – enhanced chemiluminescence
EDT-20 – N,N',N'-polyoxyethylene(10)-N-tallow-1,3-diaminopropane
EDTA – Ethylenediaminetetraacetic acid
EPR – electron paramagnetic resonance spectroscopy
ETC – electron transport chain
FADH$_2$ – flavin adenine dinucleotide (reduced form)
FT – flow through
FTIR – Fourier transform infrared spectroscopy
G or ΔG – Gibbs free energy
GFP – green fluorescent protein
H$^+$ – proton
HAT – Human African Trypanosomiasis
HCl – hydrochloric acid
HRP – horseradish peroxidase
IPTG – isopropyl β-D-1-thiogalactopyranoside
kDa – kilodalton
LA – luria agar
LB – luria broth
LCP – lipidic cubic phase
MMO – methane monooxygenase
MOPS – 3-(N-morpholino) propanesulfonic acid
MPL – Membrane Protein Laboratory
NADH – nicotinamide adenine dinucleotide (reduced form)
NMR – nuclear paramagnetic resonance spectroscopy
N-terminus – amine terminus
OD – optical density
OG – octylglucoside
OGS - octyl-gallate
PCT – pre-crystallisation test
PDB – Protein Data Bank
PEG – polyethylene glycol
PMSF – phenylmethanesulfonylflouride
PPT – pellet
PTOX – plastid terminal oxidase
RNR – ribonucleotide reductase
SDS – sodium dodecyl sulphate
SDS PAGE – sodium dodecyl sulphate polyacrylamide gel electrophoresis
SgAOX – Sauromatum guttatum alternative oxidase
SN – supernatant
SSE – secondary structure elements
Q/Q₁ – ubiquinone-1
QH₂/Q₁H₂ – ubiquinol-1
TAO – trypanosomal alternative oxidase
TBST – TRIS-buffered saline and TWEEN-20
TCA – trichloroacetic acid
TEMED – tetramethylethylenediamine
TRIS – tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid
The following papers form part of this thesis:

Chapter 1

General Background

1.1 Respiration and the alternative oxidase

1.1.1 Cellular energy and the respiratory chain

Fundamental to the functioning of every cell is the provision of energy in a readily utilisable form. This is provided by the universal energy currency, adenosine triphosphate (ATP), the hydrolysis of which releases 30.5kJmol$^{-1}$ of energy under physiological conditions (Gajewski et al., 1986). In eukaryotes, the majority of ATP is supplied during the process of respiration, taking place in the mitochondria and surrounding cytoplasm. During aerobic respiration, the energy harvested from consumed glucose is used to catalyse the phosphorylation of adenosine diphosphate (ADP) by inorganic phosphate (Pi), to make ATP. This catalysis is endergonic, and is the final step in a series of complex and intricate enzymatic interactions.

Ultimately, the process of ATP production begins in the cell cytoplasm with the sequential hydrolysis and decarboxylation of glucose, resulting in: the conversion of glucose to pyruvate; the substrate-level phosphorylation of ADP; and the reduction of nicotinamide adenine dinucleotide (NADH). The pyruvate produced during glycolysis is then decarboxylated and transported into the mitochondria as the substrate of Kreb’s cycle, the next stage of respiration. Although the Kreb’s cycle is ostensibly a process where the two-carbon substrate is converted to a six-carbon compound and then decarboxylated in a step-wise manner, important products are released – reduced NAD and reduced flavin adenine dinucleotide (FADH$_2$). It is these products which are necessary for the initiation of the final stage of respiration – oxidative phosphorylation – rather than the carbon compounds metabolised from the glucose molecule during glycolysis and Kreb’s.
Oxidative phosphorylation takes place on the inner membrane of the mitochondria, and is carried out by a group of enzymes collectively known as the respiratory or electron transport chain (ETC). In animals, the ETC is formed of a series of membrane-bound complexes, the roles of which are as follows and are illustrated in Figure 1.1 below. Complex I (NADH dehydrogenase), and Complex II (succinate dehydrogenase) strip electrons from NADH and succinate molecules (by way of reduced FADH$_2$) respectively. In addition, Complex I translocates protons across the inner mitochondrial membrane to the intermembrane space. The electrons from these complexes are then passed into a pool of ubiquinone (Q), which is mobile within the inner mitochondrial membrane. The ubiquinone becomes reduced to ubiquinol (QH$_2$), before becoming re-oxidised by Complex III (bc$_1$ complex), and the electrons gained from this reduction are transferred to Complex IV (cytochrome c oxidase) via the reduction and subsequent oxidation of cytochrome c, a small molecule which is able to move laterally along the membrane. It is cytochrome c oxidase that facilitates the final step of electron transfer – the four-electron reduction of oxygen to water.

Electron transfer through the ETC is facilitated by reducing iron ions, which are subsequently oxidised back to their original state (i.e. Fe$^{3+}$ + e$^-$ → Fe$^{2+}$ → Fe$^{3+}$) to allow passage of further electrons in the same manner. The iron ions are not found alone; they exist as metal-metal or metal-nonmetal clusters within domains of the respiratory complexes, as shown in the schematic below, Figure 1.2. Each subsequent complex (with the exception of Complex II, which feeds into the Q-pool directly rather than forming part of the linear chain) has a greater redox potential (i.e. a greater affinity for electrons, E) than the previous complex, thus ensuring the unidirectional flow of electrons through the chain. This is also true of the associated donors and acceptors, which are not found within the enzymes themselves. Reduced NADH – the initial electron donor – has a lower redox potential than oxygen – the final electron acceptor. Since redox potential is inversely proportional to free energy (ΔG; when the value of ΔE is positive, the value of ΔG is negative), when electrons are accepted by a complex with higher electron affinity, free
energy made is available. It is this relationship which accounts for the ability of Complexes I, III and IV to translocate protons across the inner membrane from the matrix to the intermembrane space which would otherwise be energetically unfavourable. This translocation of protons across the membrane establishes a large enough protonmotive force to enable the assembled protons to move back through the membrane, via the transmembranous enzyme, ATP synthase. It is this movement of protons that results in rotational catalysis of the ATP synthase, causing the phosphorylation of ADP and release of ATP, in an otherwise energetically unfavourable direction (Mitchell, 1961).

1.1.2 The respiratory chain and the alternative oxidase

In addition to the traditional electron transport chain, all plants, some fungi and some protists contain an additional oxidase known as the alternative oxidase. The alternative oxidase is a monotopic membrane protein, found in the inner-mitochondrial membrane and branching from the traditional electron transport chain at the point of the ubiquinone pool (Storey, 1976; Rich and Moore, 1976; Rich 1978). Intriguingly, the alternative oxidase (AOX) is non-protonmotive (Bendall and Bonner, 1971; Moore et al., 1978), and instead facilitates the four-electron reduction of oxygen to water and oxidation of ubiquinol to ubiquinone (Rich and Moore, 1976; Moore and Siedow, 1991). The alternative oxidase is insensitive to a number of respiratory inhibitors which are known to affect the other components of the respiratory chain such as cyanide (cytochrome c oxidase inhibitor; Keilin and Hartee, 1938; van Buuren et al., 1972) and antimycin A (cytochrome c reductase inhibitor; Chance and Williams, 1956; Rieske et al., 1967; for a concise review see Ikuma, 1972 and more recently Moore et al., 2013, in press). Instead, the alternative oxidase is sensitive to inhibition by hydroxamic acids such as salicylhydroxamic acid (Schonbaum et al., 1971), and propyl gallate (Siedow and Bickett, 1981). More recently, it has been confirmed that the Trypanosomal alternative oxidase, TAO, is sensitive to the antifungal agent ascofuranone (Yabu et al., 2003; Minagawa et al., 1996), which has proven to be a promising chemotherapeautic agent for the treatment of the Human African
Figure 1.1 – The basic electron transport chain of mitochondria. The complexes in order from left-to-right with PDB accession numbers: Complex I (NADH dehydrogenase; 3M9S Efremov et al., 2010), Complex II (succinate dehydrogenase; 2WDV Ruprecht et al., 2009), Q-pool, Complex III (cytochrome c reductase; 1BE3 Iwata et al., 1998), cytochrome c, Complex IV (cytochrome c oxidase; 1OCO Yoshikawa et al., 1998) and ATP synthase (1C17 and 1E79 – Rastogi and Girvin 1999 and Gibbons et al., 2000). Red arrows denote the movement of protons, while black arrows indicate electron flow and reactions occurring in the matrix. The alternative oxidase is located on the leaflet of the matrix-facing membrane between Complexes II and III.
Trypanosomiasis (HAT) also known as African sleeping sickness. The current treatments for HAT are either ineffective or toxic (cf Fairlamb, 2003).

1.2 Distribution and function of the alternative oxidase

The alternative oxidase is ubiquitous in all plants (McDonald et al., 2002), and is also found in several other species – including several human parasites (summarised below in Table 1.1). The function of AOX in each case varies depending on the species.

The role of the alternative oxidase in thermogenic plant tissues is well established – the heat released from the non-protonmotive reduction of oxygen to water is used to volatilise aromatic compounds found in the spathes, in order to attract insect pollinators (Meeuse, 1975; Meeuse and Raskin, 1988). The resulting smell is unsavoury to humans and often likened to rotting flesh, but attracts flies and other carrion insects which become
trapped for a short time in the base of the plants before being released, covered in pollen. A thermal image demonstrating the heat generated during this phase in a thermogenic lily found across the UK is shown below in Figure 1.3.

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Examples</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>Candida albicans</td>
<td>Veiga et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Pichia anomala</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlamydomonas reinhardtii</td>
<td></td>
</tr>
<tr>
<td>Protista</td>
<td>Trypanosoma brucei</td>
<td>Chaudhuri et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidium parvum</td>
<td>Suzuki et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Blastocystis hominis</td>
<td>Stechmann et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Williams et al., 2010</td>
</tr>
<tr>
<td>Archaebacteria</td>
<td>Novosphingobium aromaticivorans</td>
<td>Finnegans et al., 2003</td>
</tr>
<tr>
<td>Animalia</td>
<td>Crassostrea gigas</td>
<td>McDonald and Vanlerberghe,</td>
</tr>
<tr>
<td></td>
<td>Meloidogyne hapla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciona intestinalis</td>
<td>2004</td>
</tr>
</tbody>
</table>

Table 1.1 – A summary of the presence of AOX in several kingdoms.

The largest thermogenic lily, *Amorphophallus titanum*, is referred to colloquially as the “corpse” flower; one of its smaller relatives is known as the “dead horse” lily (*Helicodiceros muscivorus*).

However, the role of the alternative oxidase is less apparent in non-thermogenic plants, fungi, and other species, for which there have been several suggested functions of the AOX protein. According to the findings of several groups working with non-thermogenic and fungal models, the alternative oxidase appears not to be constitutively expressed, but rather expressed when the organism experiences stress (such as ageing in potato slices; Hiser and McIntosh, 1990), or disruption of the respiratory chain (such as the
Figure 1.3 – Thermal imaging of an *Arum maculatum* lily during thermogenesis. Image A shows an *A. maculatum* lily found in the grounds of the University of Sussex, UK. The brown-coloured spadix in the centre of the white and green spathe undergoes thermogenesis to volatilise aromatic compounds which attract insect pollinators. The heat generated during this phase is demonstrated in Image B, showing an infrared thermal image of the same plant captured by a FLIR E45 camera. The thermogenesis is driven by the non-protonmotive reduction of oxygen to water by the alternative oxidase enzyme. The images above are taken from Wagner *et al.*, (2008) with the author's permission.

effects of chloramphenicol in *Neurospora crassa*; Lambowitz *et al.*, 1989). More specifically in relation to non-thermogenic plants, it has been suggested by Bahr and Bonner (1972) and Lambers (1982) that the AOX could be an energy over-flow mechanism, deployed when other respiratory chain components cease to function normally. This has been supported by the findings of Moore *et al.* (1988), Miller *et al.* (1993) and Carré *et al.* (2011), showing that the AOX can be stimulated by both a highly-reduced Q-pool and the α-keto acid, pyruvate. A build up of pyruvate in the cell may indicate a halting
of the Kreb’s cycle, meaning that NADH is not being regenerated for use in the ETC. Without electron transfer continuing via the alternative oxidase, normal function of both glycolysis and the Kreb’s cycle would cease, suggesting that unused pyruvate may act as the molecular trigger for a feed-forward mechanism, stimulating alternative oxidase activity to ultimately reduce pyruvate levels (reviewed in detail by Finnegan et al., 2004). The nature of expression of alternative oxidase in times of stress therefore is temporary, in which respiratory efficiency is sacrificed for survival.

Another theory of the role of the alternative oxidase was suggested by Purvis and Shewfelt (1993), whereby the AOX acts as a mechanism for the removal of reactive oxygen species (ROS) generated within the organism, should the other respiratory chain components be unable to do so (for example, in the presence of inhibitors). This has been supported by findings suggesting that the alternative oxidase can reduce observable ROS numbers in plants cells in vivo, as reported by Maxwell et al. (1999) and Zheng et al. (2008).

In recent years, much research has been conducted to establish the function of the alternative oxidase in human parasites such as such as Trypanosoma brucei (causative agent of HAT) and Cryptosporidium parvum (causative agent of cryptosporidiosis, a common disease found world-wide, with outbreaks in the UK in recent years). In the case of the former, it was noted that trypanosomes appeared to express an atypical array of mitochondrial components when the organism was in the infectious bloodstream form. Grant and Sargent (1960; 1961) and Clarkson et al. (1989) noted that there were no cytochromes expressed, and moreover that the sole terminal oxidase was in fact a plant-like alternative quinol oxidase, branching at the point of the Q-pool. Subsequent studies have shown that inhibiting the function of the AOX in bloodstream form trypanosomes with the inhibitor ascofuranone leads to the death of the parasite (Minagawa et al., 1996; Nihei et al., 2002). In this case, the ability of the trypanosomal alternative oxidase to reduce oxygen through to water is thought to allow respiration to continue despite the lack of cytochromes.
(Chaudhuri et al., 2006) thus ensuring the survival of the parasite in the hostile environment of the host’s bloodstream.

The alternative oxidase is not expressed in humans, or indeed any higher mammals, so the TAO makes an ideal drug target. Current treatments for African Sleeping Sickness are often ineffective and dangerous to the patient. If effective treatments can be developed for AOX inhibition in those infected with Trypanosomes, then these treatments may well be suitable for therapeutic use against other parasites which rely on AOX for survival such as *C. parvum* and *Blastocystis hominis*, both of which cause disease in humans.

1.3 Structural biology of the alternative oxidase from experimental observations

1.3.1 Identification of the alternative oxidase from thermogenic tissues

Although it is now accepted that both cyanide-resistant respiration and heat producing capabilities in thermogenic plants are a result of the alternative oxidase, these two observable characteristics were not always thought to be linked. When Lamarck commented on the ability of certain plants to raise their own temperature above ambient (1778, as cited in Vanlerberghe and McIntosh, 1997), he did not propose any mechanism by which this heat could be generated. The first mechanism to be proposed was suggested some 160 years later by Van Herk, who postulated that the thermogenic capabilities of lilies could be explained by the presence of a non-cytochrome flavoprotein (1937, as cited in Vanlerberghe and McIntosh, 1997). This remained the best theory of heat generation on a molecular level until attempts were made to isolate what is now known to be the alternative oxidase, 50 years later.

Prior to initial attempts to isolate the molecule responsible for both cyanide-resistance and heat generation from thermogenic tissues, James and Elliott (1955) localized the cyanide-resistant respiration to the mitochondria. Subsequently, attempts to identify the cause of cyanide-resistance were made by Huq and Palmer (1978), who isolated mitochondria from the spadices of the lily *Arum maculatum*, commonly found in the UK in secluded woodland areas. Huq and Palmer’s analysis of the mitochondria revealed that
once the cyanide-resistant portion of the protein content had been isolated, no cytochrome could be detected; similarly, no EPR signal corresponding to iron could be identified. They concluded that the activity was likely due to a non-cytochrome flavoprotein, as Van Herk had suggested (1937, as cited in Vanlerberghe and McIntosh, 1997), and furthermore that no iron-sulphur clusters were present in the isolated species. Almost ten years later, mitochondria from *A. maculatum* were isolated by Bonner *et al.*, (1986) and their analysis of the *A. maculatum* mitochondria indicated that both the heat generation and cyanide-resistance was in fact provided by a quinol oxidase iron-containing protein, rather than a flavoprotein as previously suggested by Van Herk and Huq and Palmer. At the same time, Elthon and McIntosh (1986) were isolating the mitochondria from another thermogenic lily, *Sauromatum guttatum*, and observed that the activity of the quinol oxidase – the alternative oxidase – was approximately ten times more active in the days leading up to anthesis (flowering), and that at the end of this period the cytochrome pathway activity decreased by 92%. They postulated that the alternative oxidase must therefore be a constituent of the traditional electron transport chain, but that activity was regulated in order to prevent energy wastage through heat production when it was not required. Following on from this work, Rhoads and McIntosh (1991) presented the first alternative oxidase sequence, derived from *S. guttatum* mRNA found in thermogenic tissues, allowing expression of the alternative oxidase in recombinant systems.

1.3.2 Recombinant protein expression

Due to the observed instability and short enzyme life of alternative oxidases isolated from native tissues (as recorded in Moore and Siedow, 1991 amongst others), a key goal has been to express recombinant AOX isozymes with the intention of increasing life-span and improving stability. Therefore, in addition to the groups who have attempted to isolate AOX from thermogenic plant tissues, several have more recently expressed various recombinant alternative oxidases in yeast (*Schizosaccharomyces pombe*; Albury *et al.*, 1996) and bacteria (*Escherichia coli*; Kumar and Söll, 1992 and Fukai *et al.*, 1999). Much
of the work conducted using wild-type/mutant recombinant protein (Albury et al., 2001; Nakamura et al., 2005) has vastly increased our understanding of the kinetic and structural properties of the alternative oxidase (Moore, et al., 1995a; Berthold, et al., 2000). Use of the S. pombe system has provided a eukaryotic expression system, where the isozymes can be targeted to the mitochondria. However, purification from the yeast system has not been particularly successful due to the lower levels of protein expression observed. However, the use of various strains of E. coli have proven useful for purification studies, leading to the production of purified protein stable enough for use in crystallography (Kido et al., 2010), EPR (Berthold et al., 2002; Moore et al., 2008), FTIR (Maréchal et al., 2009), as well as circular dichroism (detailed in this thesis). While expression in a prokaryotic system does not allow for the interaction of the alternative oxidase with a eukaryotic electron transport chain, it does provide a mechanism for the production of larger quantities of more stable protein than could be extracted from native samples.

In order to distinguish the activity of the alternative oxidase expressed in bacterial membranes using spectroscopic assays, it has been necessary to inhibit the activity of Complex III using the antibiotic antimycin A as this shares the quinol substrate with the alternative oxidase (cf Hoefnagel et al., 1997). In order to avoid this, several groups have used haem-deficient strains of E. coli, which are unable to synthesise the haem found in Complex III. While this was initially used for the expression of Arabadopsis thaliana (Berthold, 1998 and Berthold et al., 2002), it was later used by Nihei et al (2003) to express TAO. The activity of the alternative oxidase, in all cases, allowed the recombinant cells to survive, despite lacking a major respiratory complex.

Combined observations of both native and recombinant protein have confirmed that the size of the alternative oxidase protein varies depending on the organism in which it is expressed (for example, 38kDa in S. guttatum versus 36kDa in trypanosomes), and it is known to associate with the matrix-facing leaflet of the inner mitochondrial membrane (Rich and Moore, 1976; Rasmusson et al., 1990). Both native and recombinant protein can be visualized with immunoblotting after SDS-PAGE electrophoresis using anti-AOX
antibodies (Elthon et al., 1989), confirming molecular mass from predictions made on the basis of protein sequence information (cf Berthold and Siedow, 1993).

1.3.3 Catalytic cycle and active site of the alternative oxidase

Catalytically, the alternative oxidase is known to reduce oxygen through to water, using reduced quinol from the Q-pool as the hydrogen donor (Rich and Moore, 1976; Moore and Siedow, 1991). Whilst the exact catalytic cycle has not been elucidated, it was thought that the pathway of electron transfer within the alternative oxidase is dissimilar to the electron transfers observed in other cytochrome and electron transport complexes. In the latter, the iron clusters at the core of the proteins are reduced and reoxidised by the passage of one electron at a time. However, a recently proposed mechanism suggests that the electron transfer during the oxidation of quinol and reduction of oxygen catalysed by AOX may occur in several steps (Moore et al., 2013), rather than one step as previously thought. As previously mentioned, EPR signals of such characteristic reduction and reoxidation are absent in the alternative oxidase; instead, EPR experiments indicate the presence of an iron-only centre (Berthold et al., 2002; Moore et al., 2008). Whilst initially the AOX was thought to be EPR-silent, EPR analysis of recombinant A. thaliana AOX was conducted for the first time in parallel mode (rather than perpendicular) by Berthold et al., (2002) which revealed the presence of a non-haem, non-sulphur diiron site in a mixed valent FeII/FeIII state. Experimentation using parallel-mode EPR has been subsequently repeated with recombinant TAO, intact A. maculatum mitochondria and native AOX extracted from A. maculatum mitochondria. Characteristic signals for diiron centres were confirmed in all three samples. (Moore et al., 2008).

The signals observed by both Berthold et al., (2002) and Moore et al., (2008) share similarities to signals observed in a family of proteins known as the diiron carboxylates. This family is a functionally diverse group containing a non-haem, diiron centre, and members include methane monooxygenase, ribonucleotide reductase and bacterioferretin. All contain four-helix bundles coordinating the diiron centre within the core of the catalytic
units (Berthold and Stenmark, 2003). Most of the members of this family are large, multidomain proteins unassociated with membranes, though some smaller members do exist, such as ferritin and ruberythrin (cf Berthold and Siedow, 1993; Nordlund and Eklund, 1995). Additionally, both the diiron carboxylates and the alternative oxidase lack a spectroscopic absorbance above 340nm (Berthold and Siedow, 1993). These experimental observations have lead to the inclusion of the alternative oxidase as a member of the diiron carboxylate family (Moore et al., 2008).

In order to identify the potential diiron binding residues of the active site of the alternative oxidase, sequence alignment and comparison of the AOX and the other diiron carboxylates was undertaken. Six key iron-binding residues were identified (Nordlund and Eklund, 1995), corresponding to known diiron binding motifs (E...ExxH repeated twice). The residues are not sequential, but are spread across the four-helix bundle in both the diiron carboxylates and the alternative oxidase. When the proteins are fully folded, the residues are brought close enough together to form a binding scaffold to ligate the diiron centre. The residues are shown below in Table 1.2, and are placed in a model below in Figure 1.4.

By way of confirmation, if any one of the six residues are mutated the activity of the plant alternative oxidase is completely diminished (Albury et al., 1998; Albury et al., 2002). This has been confirmed in other alternative oxidase isoforms, such as TAO (Ajayi et al., 2002; Nakamura et al., 2005). Furthermore, it is supported by recent findings from studies highlighting the necessity of iron to the functionality of the protein in plants (Affourtit and Moore, 2004) and other key organisms (such as Minagawa et al., 1990, using Hansenula anomala, now Pichia anomala). When inhibitors of ferric iron are present, activity of the alternative oxidase is inhibited, but when the inhibitor is removed, activity is completely restored.
<table>
<thead>
<tr>
<th>Residue and number</th>
<th>Helix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu178</td>
<td>1</td>
</tr>
<tr>
<td>Glu217</td>
<td>2</td>
</tr>
<tr>
<td>His220</td>
<td>2</td>
</tr>
<tr>
<td>Glu268</td>
<td>3</td>
</tr>
<tr>
<td>Glu319</td>
<td>4</td>
</tr>
<tr>
<td>His322</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1.2 – A list of the key residues involved in iron binding. Above are the six residues proposed to ligate the diiron centre of the alternative oxidase, based on the iron ligation motifs found in other diiron carboxylates. Numbering corresponds to *S.guttatum*.

Figure 1.4 – Multiple alignments of each of the four helices involved in iron binding. The multiple alignments above show areas of sequence similarity and the highly conserved iron-binding ligands in several diiron carboxylates and the alternative oxidase. AOX – alternative oxidase; MMO – methane monooxygenase; RUB – ruberythrin; BAC – bacterioferritin Key residues are highlighted in red.
1.3.4 Regulation of alternative oxidase activity
1.3.4.1 Genetics of the alternative oxidase

Genetically, the alternative oxidase protein in plants is the product of a single family of genes, ranging from a single gene to six genes encoded in the nuclear DNA (cf Polidoros et al., 2009). Transcription of these genes appears to be determined by the role that the alternative oxidase plays in the organism of interest – in thermogenic tissues expression is significantly increased when required for pollination, whereas in non-thermogenic plant tissues, expression is controlled by various abiotic stressors as demonstrated by Clifton et al. (2005) and Clifton et al. (2006). By comparison, the expression of the trypanosomal alternative oxidase is controlled developmentally, as it is only expressed during one stage in the organism’s life cycle (Chaudhuri et al., 1995).

In plants and fungi, there are two main families of AOX genes, which are associated with either inducible stress response (Aox1; cf Clifton et al., 2006) or constitutive expression (Aox2; Considine et al., 2002). Thermogenic plants, therefore, tend to contain the latter, while non-thermogenic plants usually contain the former, though this is not always the case. A recent finding indicates that the thermogenic lily A. maculatum contains mRNA from the Aox1 family (Ito et al., 2011), and moreover that the different mRNAs are found during different points during the developmental cycle of thermogenesis. Since the different mRNAs isolated from A. maculatum are known to give rise to protein isoforms of AOX, this may indicate that the isoforms are performing a variety of roles; though the nature of each isoform has not been established to date. In plant alternative oxidases, it is thought that the nuclear-encoded gene product is transported into the mitochondria in a mature, truncated form (cf Tanudji et al., 1999) after self-folding (Albury et al., 1996).

1.3.4.2 Regulation by changes to the quaternary structure – homodimerisation

Alternative oxidase activity appears to be regulated post-translationally by two different mechanisms which occur simultaneously in some tissues. In plants for example, activity is thought to be regulated in part by reduction and oxidation of the protein. When
the unit is oxidised and less active, two monomers are covalently linked through an intermolecular disulphide bond occurring between the highly conserved cysteine 122 residues (S. guttatum numbering; Rhoads et al., 1998). When this disulphide bond is reduced, the two monomers become linked non-covalently instead resulting in increased activity (Umbach and Siedow, 1993). In mitochondrial tissue from several plants (S. guttatum, Glycine max and Vigna radiata), Umbach and Siedow (1993) noted the presence of both the reduced and oxidised forms, indicating that the enzymes are able to switch between states – most likely as a result of oxidation and reduction of the quinone pool in the membrane which is known to have an effect on alternative oxidase activity in vivo (Moore and Siedow, 1991). In subsequent studies, it was observed that the activity of the alternative oxidase increases up to five times in the reduced state in mitochondrial tissues from soybeans (Umbach et al., 1994). Although the exact mechanism by which activity is increased is not known, it is possible that the helices are more stable in the active form. In addition, since the substrate (quinol) is hydrophobic, it may also be possible that the active form allows for greater membrane interaction and therefore increased access to the substrate.

However, this mechanism of regulation does not appear to be the case in organisms such as trypanosomes and fungi, which do not respond in the same way to the reduction and oxidation of the quinone pool. This may be due to the lack of a suitable analogous cysteine residue in the N-terminal region (Chaudhuri and Hill, 1996 and Fukai et al., 2002; Sakajo et al., 1991 respectively) of their alternative oxidase sequence, though they may be able to form dimers through non-sulphide interactions as indicated by the recent trypanosomal crystal structure which is homodimeric in nature.

1.3.4.3 Regulation by pyruvate and other α-keto acids

As previously discussed in Section 1.2, a build up of pyruvate in the mitochondria may indicate that the Kreb’s cycle has ceased to function normally, which would have an impact on electron transport. Therefore, in organisms where the alternative oxidase is
expressed in order to overcome the effects of disruption of the Kreb’s cycle or oxidative phosphorylation, it was anticipated that pyruvate could play a part in regulation of the AOX protein. In addition to enzyme reduction increasing activity in plant tissues as discussed above, the activity can also be increased by the addition of pyruvate to non-thermogenic recombinant alternative oxidase (Crichton et al., 2005; Carré et al., 2011). Pyruvate stimulation is also observed in recombinant alternative oxidases, such as A. thaliana, and also thermogenic recombinant alternative oxidases expressed in prokaryotic systems. It is thought that the OH group of the pyruvate interacts directly with the alternative oxidase, forming a thiohemiacetal species (Rhoads et al., 1998) with the same cysteine involved in non-covalent dimerisation, C122. While it was initially suggested that pyruvate increased the affinity of the alternative oxidase for its substrate (Umbach et al., 1994), it was later suggested that the formation of the thiohemiacetal in non-thermogenic alternative oxidase resulted in a conformational change which lead to increased alternative oxidase activity (Hoefnagel et al., 1997), as no increase in substrate affinity could be demonstrated kinetically. Stimulation of alternative oxidase activity by other α-keto acids has also been observed: AOX activity in both tomato (non-thermogenic) and sacred lotus (thermogenic) mitochondria can be stimulated by succinate, for example (Holtzapffel et al., 2003 and Grant et al., 2009 respectively). Similarly, alternative oxidase activity in soybean seedlings can be stimulated differentially by succinate, malate and pyruvate, with the former two stimulating activity to a lesser extent than the latter (Millar et al., 1993).

By contrast, AOX activity in mitochondria isolated directly from thermogenic tissues (Arum italicum, Hoefnagel et al., 1997; S. guttatum, Crichton et al., 2005; A. maculatum, Ito et al., 2011) appears to be insensitive to pyruvate, suggesting that the enzyme expressed in these tissues is possibly fully stimulated by endogenous pyruvate already bound to the protein, resulting in no observed increase in activity with the addition of pyruvate to the medium.

Stimulation of alternative oxidase activity by pyruvate – or indeed other α-keto acids – has not been reported in other species such as fungi and parasites In common with
observations regarding reduced and oxidised enzyme forms as discussed previously, the organisms which are insensitive to pyruvate lack the conserved cysteine residue (C122) which is found in other pyruvate-sensitive alternative oxidases (cf Carré et al., 2011).

1.4 Predicted structural information from protein sequence data
1.4.1 Modelling the alternative oxidase

To date, there is no crystallographic structural data for the plant alternative oxidase. Based upon sequence analysis, however, there have been two proposed models of the plant alternative oxidase, derived in different ways.

1.4.1.1 The Siedow-Umbach-Moore model

The SUM model was developed after the discovery of highly conserved iron-binding residues ([E]…[ExxH]x2) in the alternative oxidase sequence which were also present in other diiron carboxylates (Siedow et al., 1995) as represented in Figure 1.4 below. Structural data was available at the time for other members of the diiron carboxylate family; namely ribonucleotide reductase R2 (Nordlund and Eklund, 1993) and methane monooxygenase (Rosenzweig et al., 1993). The resemblance between the active site for both proteins had been commented on previously (Norlund et al., 1992) and this similarity formed the basis for first a model of the alternative oxidase four-helix bundle active site (Siedow et al., 1995) and then later the same year, the entire protein (Moore et al., 1995a). Emphasis was placed on the highly conserved iron binding residues, and hydrophobicity plots indicated that there were transmembrane helices present in addition to a helical bundle acting as the diiron binding scaffold. In addition, the crucial cysteine residue involved in the formation of the reduced active form (Umbach et al., 1994) was included in the model. The model is shown below in Figure 1.5a.
1.4.1.2 The Andersson-Nordlund Model

A second model of the alternative oxidase was proposed in 1999 by Andersson and Nordlund who performed homology modelling using another diiron carboxylate, Δ^9-desaturase, as a template. The structure had been solved after the creation of the SUM model (Lindqvist et al., 1996) and Andersson and Nordlund argued that the Δ^9-desaturase shared more sequence homology with the alternative oxidase in helical regions than the other diiron carboxylates. In addition, the AN model postulates that the regions of hydrophobicity observed by Moore et al. (1995a) were not indicative of transmembrane helices – rather that the protein was attached to only one leaflet of the membrane through two small helices in a manner similar to the attachment mechanism observed in prostaglandin H$_2$ synthase-1 (Picot et al., 1994). Andersson and Nordlund suggested that this would allow direct access to the active site for the quinol located within the membrane. This model has been recreated for this thesis (as shown below in Figure 1.5b) and is shown as a line drawing in Figure 1.5c also.
Figure 1.5a – The SUM model of the alternative oxidase. Taken from Moore et al., 1995a (reproduced with the author’s permission).
Figure 1.5b – A modified version of the AN model. Iron-binding residues are indicated (right, labelled) within the four helix bundle (left, numbers indicate helices 1-4).

Figure 1.5c – The Andersson Nordlund model of the alternative oxidase. The Figure shows a detailed representation of the Andersson and Nordlund (1999) model, including modifications by Berthold *et al.*, (2000). The Figure is taken from Albury *et al.*, (2009) and reproduced with the author’s permission.
1.4.1.3 Similarities between AOX and other diiron carboxylates

In addition to reported sequence similarity between diiron carboxylates (cf. Moore et al., 1995a and Andersson and Nordlund, 1999), similarities in biochemical characteristics were also noted. For example, methane mono-oxygenase (MMO) lacks a spectroscopic signal above 350nm, which is uncharacteristic for iron-containing proteins; similarly, MMO lacks a characteristic EPR signal found in other iron-containing proteins (Vincent et al., 1990; Wilkins 1992; and Lipscomb 1994). It was suggested that while the function of the diiron carboxylates – itself a functionally diverse family of proteins (Nordlund and Eklund, 1995) – differs from the function of the alternative oxidase, they could have similar structures, specifically the construction of the four-helix bundle common to all diiron carboxylates, where the helices act as a scaffold, bringing the iron-ligating residues in close proximity to form the active site (Andersson and Nordlund, 1999; Berthold et al., 2002).

1.4.1.4 Recent attempts to model the alternative oxidase

Further alignment and investigation of the alternative oxidase sequences found in the UniProt (www.uniprot.org) database has allowed modelling of both the whole alternative oxidase protein (AN model, as above and Albury et al., 2009) and small regions within the protein of particular biological interest, such as the substrate binding site (Albury et al., 2010). In the recent attempts to model the alternative oxidase as part of this thesis, a variety of different approaches were taken, such as homology modeling and threading, and comparisons of the generated models was conducted using knowledge-based evaluation. The limitations of such techniques are well understood, and the importance of suitable template choice and accurate alignment of template and target sequences was not overlooked.

1.4.2 Identification of other key residues

In addition to the six essential residues, other highly conserved residues have been identified, and mutated. Areas of particular interest are the substrate and inhibitor binding
regions, the oxygen pathway, and identification of any radicals formed close to the active site that may donate electrons for the purpose of oxygen reduction. A list of such identified residues, their putative roles, and their effect on activity where tested is summarised below in Table 1.3.

1.5 Elucidating the structure of the plant alternative oxidase experimentally
1.5.1 Over-expression of recombinant alternative oxidase protein

Of particular interest in this project has been over-expression of recombinant protein, rather than a focus on extraction of AOX from tissues where it is natively expressed. Extraction of protein from native tissues expressing alternative oxidase has been successful, and the choice to pursue expression using a recombinant system was decided based on the quantity of protein each extraction would provide. Native extraction, as noted by Moore and Siedow (1991) was difficult and samples often lost activity soon after solubilisation; stabilisation of native alternative oxidase (Zhang et al., 1996) was a major development in the definition of a purification protocol, and the first highly pure and stable AOX protein isolated from native tissue was prepared from *A. maculatum* tissue (Affourtit and Moore, 2004).

Instability in AOX isolated from native sources is in part due to the protein becoming more labile once released from the mitochondrial membrane; the same difficulties would be expected when solubilising recombinant protein from the vector membrane. However due to the greater quantities expressed using a recombinant system, less overall would be lost to instability, and perhaps having a higher concentration of protein may help to stabilise the protein molecules. Certainly for attempting to crystallise the alternative oxidase, large quantities of relatively stable protein would be required, and therefore recombinant expression offers an advantage over extraction of protein from native tissues. Similarly, tissues expressing alternative oxidase (such as from *A. maculatum*) are only available during certain times of the year, and this would be inhibitory to amassing sufficient quantities of protein.
<table>
<thead>
<tr>
<th>Residue</th>
<th>Effect</th>
<th>Role</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C172A</td>
<td>Slightly reduced activity; O₂ affinity increased</td>
<td>Regulatory cysteine</td>
<td>Albury et al., 2002; Critchton et al., 2010</td>
</tr>
<tr>
<td>T179A</td>
<td>Slightly reduced activity; O₂ affinity increased</td>
<td>Adjacent to E178; mutant is thought to change the distance of E178 to the diiron centre thus slowing down catalytic cycle</td>
<td>Critchton et al., 2010</td>
</tr>
<tr>
<td>H261</td>
<td>Not tested; expected activity loss</td>
<td>Putative quinone-binding</td>
<td></td>
</tr>
<tr>
<td>R262</td>
<td>Not tested; expected activity loss</td>
<td>Putative quinone-binding</td>
<td>Albury et al., 2010</td>
</tr>
<tr>
<td>Y253F</td>
<td>Reduced activity</td>
<td>Possible electron transport or quinol-binding</td>
<td></td>
</tr>
<tr>
<td>G242</td>
<td>Not tested; expected activity loss</td>
<td>Conserved, polar residue in hydrophobic pocket</td>
<td></td>
</tr>
<tr>
<td>N247</td>
<td>Not tested; expected activity loss</td>
<td>Conserved, polar residue in hydrophobic pocket</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3 – A list of conserved residues and their putative roles and expected effect on activity if altered. Residues are grouped according to effect on enzyme activity. Numbers correspond to *S. guttatum* sequence.

Generally speaking, there are well-documented difficulties associated with working with recombinant integral membrane proteins (Midgett and Madden, 2007), in particular proteins which do not overexpress to a high level. Therefore, there is a requirement for the development of a reliable and robust expression and purification protocol to allow
sufficient quantities of recombinant protein to be produced. Protein that is produced can be used for many purposes, such as structural elucidation, kinetic analysis, and assessing the impact that mutations have on the overall activity of the protein.

The laboratory of Professor Kita (University of Tokyo) has had much success when expressing recombinant TAO protein, mainly due to their use of a haem-deficient \textit{E.coli} expression strain (FN102), which is discussed in detail in Chapter 4.

1.5.2 Crystallography

To date, no crystallographic data is available for the plant alternative oxidase; however, the crystal structure of the Trypanosomal alternative oxidase has recently been solved to 2.8Å (Shiba \textit{et al.}, 2013; initial findings described in Kido \textit{et al.}, 2010). The structure was solved after more than a decade of trying to produce suitable crystals. Historically, crystallization of membrane proteins has been a difficult task (\textit{cf} Carpenter \textit{et al.}, 2008), and this is reflected in structural databases. For example, in the Protein Data Bank (www.rcsb.org/pdb/home/home.do) there over 74,000 protein structures derived from X-ray crystallography (as of January 2013), but very few of those structures (~600) are membrane proteins. Given that approximately 30\% (Bill \textit{et al.}, 2011) of the proteomes of living organisms are comprised of membrane proteins, there is clearly a mismatch in the number of membrane proteins known about and those having their structures solved. In part the difficulty in crystallising – and indeed purifying – membrane proteins is their apparent fragility in the absence of a lipophilic environment. Some proteins appear more stable in lower concentrations of the bi-lipid layer (for example Iwata \textit{et al.}, 1995 and Svensson-Ek \textit{et al.}, 2002), but this is not the case for most membrane proteins.

1.5.3 Circular dichroism

In lieu of crystallographic structural data, there are other techniques available that will supply information about the structure of a protein of interest. One such technique, circular dichroism (CD), utilises circularly polarised light to distinguish features of protein
secondary structure, such as α-helices and β-sheets. Given the predicted predominantly helical nature of the alternative oxidase, this technique is ideal for matching predictions to experimental observations. CD has been used to some success with other diiron carboxylates, such as ribonucleotide reductase (Stubbe, 2003), which is thought to utilise a radical or radicals for electron shuttling in a similar manner to the alternative oxidase; and of a much smaller member of the family, rubrerythrin (Wakagi 2003) which is more like the plant alternative oxidase in size. There exist a number of different algorithms available which allow determination of percentage secondary structure given circular dichroism and protein concentration, which are compared and evaluated in Chapter 5, along with the correlation between predicted secondary structure and secondary structure observed experimentally.

Circular dichroism also offers the advantage of investigating protein stability: for example how increased temperature or presence and absence of cofactors affects the stages of denaturation and disruption of secondary structure.

1.6 Questions remaining in the field of plant alternative oxidase research

In order to consolidate the information presented in this Introduction and shape the aims of this project the following questions have been posed and will be readdressed after considering the results presented in Chapters 3, 4 and 5.

- Is it possible to over-express recombinant *S. guttatum* alternative oxidase protein in a bacterial system?
- Is it possible to the purify the expressed protein, to provide relatively pure protein?
- Is it possible to crystallise recombinant *S. guttatum* alternative oxidase?
- Will recombinant *S. guttatum* alternative oxidase share a similar sensitivity to pyruvate as other AOX isoforms?
- What is the structure of *S. guttatum* AOX and is it similar to that of TAO and predictions made previously?
• Does recombinant *S. guttatum* expressed in a bacterial system form dimers and if so, is it possible to identify the mechanism of dimerisation?

• Is it possible to replicate and expand upon previous attempts to model the alternative oxidase, taking into consideration the large volume of new AOX sequences now available in databases?

• How do previous models of the alternative oxidase compare to the newly elucidated TAO structure?

1.7 The Aims of this project

To date, the structure of the plant alternative oxidase has remained elusive. While significant progress has been made towards a fuller understanding of the TAO, there is still much to be learned about the nature and structure of the plant alternative oxidase. Therefore, the aims of this project were threefold: to overexpress, purify and attempt to crystallise the plant alternative oxidase; to use the expressed protein to gain insight about the structure-function relationship of the alternative oxidase experimentally; and to carry out a comprehensive *in silico* analysis of the alternative oxidase.
Chapter 2

Materials and Methods

2.1 Plasmid vectors and *Escherichia coli* strains

In order to express recombinant alternative oxidase proteins, a library of plasmids was created (Dr Mary Albury, University of Sussex as listed below in Table 2.1), using the pET15b vector system (Novagen).

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Organism</th>
<th>Creator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SgAOX-pET15b</td>
<td>Sauromatum guttatum</td>
<td>Albury et al., 2001</td>
</tr>
<tr>
<td></td>
<td>(wild-type)</td>
<td></td>
</tr>
<tr>
<td>pTAO</td>
<td>Trypanosoma brucei</td>
<td>Fukai et al., 1999</td>
</tr>
<tr>
<td>SgAOX-GFP (pET28(a+)-derived GFP-8His fusion vector; Drew et al., 2001)</td>
<td>Sauromatum guttatum with green fluorescent protein tag</td>
<td>Dr Momi Iwata (Protein Membrane Laboratory, Diamond Light Source/Imperial College, London)</td>
</tr>
<tr>
<td>SgAOX-pET15b mutants: T179A, C172A, Y253F</td>
<td>S. guttatum</td>
<td>Dr Mary Albury (University of Sussex)</td>
</tr>
</tbody>
</table>

Table 2.1 – A list of plasmids used and their creators.

The pET15b system offers the advantages of an N-terminal 6-His tag and ampicillin resistance, as well expression being controlled by isopropyl β-D-1-thiogalactopyranoside (IPTG) induction.

2.1.1 Preparation of competent *E. coli* cells

Two strains of *E. coli* were frequently used – a C41 (DE3) cell line tailored for membrane protein expression, kindly provided by Professor John Walker (University of Cambridge; Mirroux and Walker, 1996); and a haem-deficient mutant strain, developed in the laboratory of Professor Kita (University of Tokyo, Fukai *et al.*, 2003).
Both major cell strains (C41 and FN102) were made competent using the same protocol, as follows. A streak of frozen, non-competent cell stock was plated out on Luria Agar (LA) plates containing the necessary additives (100μgm-1 ampicillin, and then 50μgm-1 5-amino levulinic acid (ALA, Sigma) and 50μgm-1 kanamycin for FN102 only) and the plates were incubated overnight at 37°C. A scrape of cells were used to inoculate 1ml of Luria Broth (LB, containing ALA if necessary). This was then incubated overnight at 37°C with shaking. Following incubation, the cell suspension was back-diluted 1:100 using fresh LB and incubated at 37°C until A\textsubscript{650} = 0.45-0.55. The suspension was then placed on ice for 5 minutes before centrifugation at 6,000 x g for 5 minutes at 4°C. The resultant pellet was the resuspended in \(\frac{1}{2} \) volume of ice cold, 0.1m CaCl\textsubscript{2}. The cell suspension was centrifuged as previously. The resultant pellet was then resuspended in 1:20 volume of ice cold, 75% 0.1m CaCl\textsubscript{2}, 25% glycerol. The competent cells were then frozen using dry ice, before being stored at -80°C in 200μl aliquots until needed.

2.1.2 Transformation of competent *E. coli* cells

Both major cells trains were transformed using the same protocol. Frozen cells were thawed out on ice, and then 100μl of cells were aliquoted to separate eppendorfs. Depending on the plasmid used 0.1 and 1μl of plasmid DNA was then added to the cells to be transformed. One tube per plasmid was used as a negative control, and contained only cells and no plasmid. The tubes were then mixed gently and placed on ice for 30 minutes. Following incubation on ice, the cells were then heat-shocked at 42°C for 90 seconds, before being placed back on ice for 5 minutes. After chilling on ice, 800μl of LB (containing no additives) was added to each tube, and the tubes were incubated at 37°C for 1 hour in a water bath. After incubation, the cells were centrifuged at 15,000 x g for 2 minutes, 4°C, and after centrifugation, 750μl of LB was removed from each tube and discarded. The remaining \(\sim 150\mu l \) was used to gently resuspend the cell pellet. The resuspended pellet was spread out on LA plates containing relevant selective antibiotics; typically 100μgm-1 ampicillin for C41 cells containing the *Sauromatum guttatum* AOX (SgAOX-pET15b) plasmid and mutants; FN102 containing SgAOX-pET15b and mutants required 100μgm-1 ampicillin, 50μgm-1 kanamycin, and 100μgm-1 ALA; C41 cells
containing the GFP-tagged *S. guttatum* were supplemented also with 50μgml⁻¹ kanamycin. Finally, the plates were then incubated overnight at 37°C.

2.1.3 Preparation of transformed glycerol cell stocks

In order to preserve transformed stocks of cells, glycerol stocks were made using cells from a fresh transformation. A loopful of transformed cells was used to inoculate 5ml of LB containing necessary additives and the culture was incubated overnight at 37°C with shaking. After incubation, sterile glycerol was added to a final concentration of 10% (v/v). The glycerol-cell mixture was then aliquoted into appropriate volumes before freezing in dry ice, then stored at -80°C.

2.1.4 Isolation of plasmid DNA

Plasmid DNA was prepared using a Qiagen Midi kit (Qiagen) following the manufacturer’s instructions. No changes were made to the protocol. Final purified plasmids were resuspended in distilled water and stored at -20°C until required. Prior to freezing, samples of purified plasmid were electrophoresed on an agarose gel (0.8%, Melford) at 75 volts (Biorad Powerpac 200) for 1-2 hours. The gels were cast containing ethidium bromide dye (Sigma), and fluorescence UV light was captured using a charge-coupled device.

2.2 Protein expression and membrane isolation

The recombinant protein expressed in both *E. coli* strains was associated with the bacterial membrane, so membranes were harvested in order to isolate the recombinant protein.

2.2.1 Expression and membrane isolation from C41

The method of expressing recombinant alternative oxidase using the C41 *E. coli* was based upon a protocol from Berthold *et al.* (2002) with some minor adaptations. Rationale for protocol changes are described more fully in Chapter 4.

A single colony of transformed cells (as described above in Section 2.1.2) was used to inoculate an LB starter culture (20ml broth per 1L of main culture) containing the strain-specific additives (typically 100μgml⁻¹ ampicillin, 0.2% glucose, 0.125% FeSO₄), which
was the incubated at 37°C overnight with shaking. Following incubation, the whole cell suspension was used to inoculate the main culture (LB, 100μgml⁻¹ ampicillin, 0.2% glucose, 0.125% FeSO₄). The main culture was then incubated at 30°C for 4 hours. After incubation, the culture flasks were transferred to a pre-cooled 18°C incubator, and left to acclimatise for one hour with shaking. Following the one-hour acclimatisation, the cells were induced using a final concentration of 25-100μM IPTG, and then incubated for 18 hours at 18°C. After 18 hours, the cell culture was centrifuged at 8,000 x g for 6 minutes using a JA-10 rotor in a Beckman JX centrifuge in order to separate the cells from the broth. After centrifugation, the cell pellets were resuspended using 50mM TRIS-HCl, pH 7.5, 10mM pyruvate. An approximate ratio of 20ml TRIS:1g of wet pellet was used for the resuspension. The resuspended cell solution was then supplemented with 100mM PMSF in order to reduce protease activity before homogenisation using a glass homogeniser. The cells were then lysed, using either the French Press (two passes at 10k psi; SLM Aminco FA-078 with a FA-032 cell) or sonication (coarse probe at 14 microns, 30 seconds per ml of cell suspension). Following lysis, the cell debris was removed by centrifugation at 20,000 x g (Beckman JX centrifuge, JA-20 rotor) for 15 minutes. The centrifugation step was repeated if the pellets were very loose at the end of the first spin. The supernatant was retained and ultracentrifuged at 200,000 x g for 2 hours in order to pellet the bacterial membranes (Beckman Avanti XP centrifuge, 70Ti or 70.1Ti rotor). After ultracentrifugation, the supernatant was discarded (though a sample was usually retained for testing the efficiency of lysis), and the pellets resuspended in 50mM TRIS-HCl, pH 7.5, 10mM pyruvate (with additives if required) before homogenisation. Membrane samples were then snap-frozen in liquid nitrogen before storage at -80°C.

2.2.2 Expression and harvest – FN102

The protocol for expression of recombinant alternative oxidase is based on Fukai et al., 2003 with several adaptations. The rationale for the adaptations is described in Chapter 4.

A single colony of transformed cells was used to streak LA, 100μgml⁻¹ ampicillin, 50μgml⁻¹ kanamycin and 100μgml⁻¹ ALA. The plate was then incubated for 12 hours at 37°C. After incubation, a single bacterial colony was used to inoculate an LB starter culture
(10ml broth per 1L of main culture) supplemented with 100μgml⁻¹ ampicillin, 50μgml⁻¹ kanamycin and 100μgml⁻¹ ALA. The starter culture was then incubated at 37°C for 4-6 hours. Following incubation, the starter culture was centrifuged at 5,000 x g for 5 minutes in order to remove the ALA from the broth. The resultant cell pellets were resuspended in LB containing no additives, and the centrifugation/resuspension step was repeated twice more. The OD₆₅₀ of the final resuspended pellet was taken (LKB Pharmacia 4050 Ultrospec II), and enough cell suspension was added to each main culture flask to make the OD₆₅₀ = 0.01. The main culture broth (S-broth) contained the following reagents (gL⁻¹): 10g bacteriological peptone (Oxoid), 5g yeast extract (Melford), 5g casamino acid (Oxoid), 10.4g di-potassium hydrogen orthophosphate (Fisher), 3g potassium di-hydrogen orthophosphate (Fisher), 0.74g trisodium citrate (Sigma), 2.5g ammonium sulphate (Sigma), 0.05g magnesium sulphate (Sigma), 0.025g iron sulphate (Sigma), 0.025g iron chloride (Sigma), 0.1g carbenicillin (Sigma/Melford) and 2g glucose (Sigma). The last five reagents were added after autoclaving, and the glucose was autoclaved separately.

After inoculation of the main culture, the flasks were incubated at 30°C with shaking, and the OD₆₅₀ was monitored. When OD₆₅₀ reached 0.1, the main culture was induced using between 25-100μM IPTG. Following induction, the main cultures were incubated at 30°C for 8-14 hours (to allow for cultures expressing less active alternative oxidase protein to grow sufficiently). After incubation, the cells were pelleted by centrifugation at 8,000 x g for 6 minutes. The resultant cell pellets were then resuspended in 50mM TRIS-HCl, pH 7.5, 10mM pyruvate (with 20% sucrose if performing a sucrose gradient to isolate inner membrane), and supplemented with 100mM PMSF and a Roche Complete Protease inhibitor cocktail tablet (1 tablet per 50ml cell suspension) and then homogenised. After homogenisation, the cells were lysed using either the French Press (two passes at 10k psi; as above in Section 2.2.1) or sonication (coarse probe at 14 microns, 30 seconds per ml of cell suspension; as above in Section 2.2.1). The cell debris was then removed by centrifugation at 20,000 x g (Beckman JX centrifuge, JA-20 rotor) for 15 minutes. The centrifugation step was repeated if the pellets were very loose at the end of the first spin.

To prepare the bacterial membrane, the supernatant was ultracentrifuged at 200,000 x g for 1 hour at 4°C (Beckman Avanti XP centrifuge, 70Ti or 70.1Ti rotor). To prepare the
inner membrane fraction, the supernatant was laid over an equal volume of TRIS-HCl, pH 7.5, 10mM pyruvate, 40% sucrose (provided that the cell pellets had been resuspended with TRIS containing 20% sucrose), and ultracentrifuged at 200,000 x g for 1 hour at 4°C. Following the first ultracentrifugation step, the middle layer (often slightly yellow in hue) was extracted, and mixed with an excess of 50mM TRIS-HCl, pH 7.5, 40% sucrose, and ultracentrifuged once more at 200,000 x g for 1 hour at 4°C. The pellets obtained were then resuspended in 50mM TRIS-HCl, pH 7.5 (with 20% sucrose if isolating the inner membrane) before homogenisation. Following homogenisation, membrane samples were snap-frozen using liquid nitrogen, before storage at -80°C.

2.3 Membrane solubilisation and purification

In order to free the expressed recombinant alternative oxidase from the membrane, a solubilisation step is necessary. Separating the membrane from the protein is required before purification can be carried out.

2.3.1 Membrane solubilisation

Frozen membrane samples (prepared as described above) were thawed out on ice. For small-scale solubilisation (for condition screening), an equal volume of solubilisation buffer (Table 2.2) was added in a dropwise manner to the membrane sample. The buffer and membrane were mixed gently before incubation on ice for 30-60 minutes. For larger-scale solubilisation (for preparatory purposes), approximately 8mg (for inner membrane) or 6mg (for whole membrane) of protein was used per 1ml of solubilisation buffer (Table 2.2). The buffer was added to the membrane in a dropwise fashion. The mixture was then left stirring on ice for 30-60 minutes. After incubation on ice, the membrane-buffer solution was ultracentrifuged at 200,000 x g (Beckman TL-100 Ultracentrifuge with a TLA100.3 rotor) for 30-60 minutes at 4°C. The supernatant (soluble fraction) was removed for further purification, and the pellet (insoluble fraction) was resuspended in 50mM TRIS-HCl, pH 7.5 and retained to assess the efficiency of solubilisation.
<table>
<thead>
<tr>
<th>Optional additive</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-300mM NaCl</td>
<td>Recommended additive for downstream affinity purification; limits non-specific interactions with the metal ions of the affinity resin</td>
</tr>
<tr>
<td>1-5mM DTT</td>
<td>Can be used to keep the sample under reducing conditions, and limits formation of dimers</td>
</tr>
<tr>
<td>10mM pyruvate</td>
<td>In the case of the S. guttatum recombinant protein, pyruvate (max. concentration 10mM) appears to stabilise the protein.</td>
</tr>
<tr>
<td>20/40% (w/v) sucrose</td>
<td>Required when isolating inner membranes through sucrose-gradient ultracentrifugation.</td>
</tr>
<tr>
<td>1% (w/v) DDM</td>
<td>In solubilisation trials this proved to be the best detergent and concentration for the S. guttatum alternative oxidases.</td>
</tr>
<tr>
<td>1.4% (w/v) OG</td>
<td>Recommended detergent and concentration for recombinant TAO proteins; can be used in conjunction with DDM for S. guttatum recombinant proteins. During early detergent screening, it was noted that OG repeatedly reduced recombinant AOX activity and as such OG was not screened to the same extent as DDM.</td>
</tr>
<tr>
<td>5-20% (v/v) glycerol</td>
<td>Appears to stabilise the recombinant protein once it has been removed from the membrane; should be incorporated into the solubilisation buffer.</td>
</tr>
</tbody>
</table>

Table 2.2 – A list of optional additives. The optional additives listed above may be used to supplement the standard 50mM TRIS-HCl, pH 7.5 buffer for solubilisation and membrane isolation.

2.3.2 Further purification

The recombinant alternative oxidase proteins were 6-His tagged in order to purify using affinity chromatography. Two main types of affinity resin were used; His-Select nickel affinity resin (Sigma) and His-Select cobalt affinity resin (Sigma). Table 2.3 below lists equilibration, wash and elution buffers used during the purification process.

The soluble fraction (prepared as detailed above in Section 2.2) was retained on ice while the affinity resin was equilibrated. Both types of resin (cobalt and nickel) were equilibrated by first removing the storage slurry, then using 5x resin bed volume of equilibration buffer either at room temperature (batch method) or at 4°C (column method). After equilibration, the solubilised membrane sample was applied to the resin. In batch purification (small scale), this was typically ~600μl of solubilised membrane sample on a
50-100μl resin bed volume. For column (large scale) purification, up to 15ml of solubilised membrane sample was used on a bed volume of 3-6ml. The solubilised membrane sample was allowed to bind by gentle mixing for 1 hour at 4°C (batch method) or simply gravity flow (column method) at 4°C. The resultant flow-through after a low-speed spin (batch method) or gravity flow (column method) was retained and labelled as the flow-through fraction.

Following binding of the sample to the resin, the resin was then washed in stages using 5-10x the resin bed volume of wash buffer (see Table 2.3 below). In each case, the flow-through was retained and labelled as the wash fraction. After washing, the protein was eluted from the resin using elution buffer. In total, 2-3 (batch) or 5-20 (column) applications of 5x the resin bed volume were applied, and the separate flow-throughs were retained as the elution fractions. During elution using the column method, the imidazole concentration was gradually increased.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Optional additive</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibration and wash buffer</td>
<td>Glycerol (5-20%)</td>
<td>Keeps the protein stable once solubilised.</td>
</tr>
<tr>
<td></td>
<td>100mM MgSO₄</td>
<td>Appears to keep the protein stable and active during purification</td>
</tr>
<tr>
<td></td>
<td>Detergent (0.5%</td>
<td>Keeps the protein soluble during purification</td>
</tr>
<tr>
<td></td>
<td>DDM, 0.5% OG)</td>
<td></td>
</tr>
<tr>
<td>Elution buffer</td>
<td>20-250mM Imidazole</td>
<td>For elution purposes; disrupts the binding between the 6His-tag and metal ions.</td>
</tr>
</tbody>
</table>

| Table 2.3 – optional additives for purification buffers (50mM TRIS-HCl, pH 7.5, 10mM pyruvate). |

2.4 Visualisation of recombinant protein

2.4.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE)

In order to visually assess the quality of prepared samples, and to gauge purity of purified recombinant protein, SDS PAGE was used (Laemmli, 1970).

Gels were cast using the BioRad Mini-Protean system (10cm x 8cm x 1mm gels) using the buffers listed below in Table 2.4a. Final acrylamide concentration was achieved using the matrix shown in Table 2.4b. The resolving reagents were mixed gently in a side-arm conical flask, and de-gassed if necessary before pouring. The resolving gel was allowed to polymerise for 30 minutes, whilst overlayed with butan-saturated water to
prevent drying out. After setting, the stacking gel was applied along with a well-comb. The stacking gel was allowed to polymerise for 20 minutes before the apparatus was disassembled.

The protein samples were then mixed with 2x loading dye (Table 2.4a) at a 1:1 ratio, vortexed, and heated at 90°C for 6 minutes. The dye-sample mixture was then loaded into the sample wells along with a rainbow marker (Amersham FullRange Rainbow Markers) and the electrophoretic rig was submerged in 1x SDS-running buffer (Table 2.4a). A current was then applied to the system for approximately 1 hour, 150 volts, or until the dye front reached the bottom of the rig at which point the rig was disassembled and the gels were rinsed briefly in distilled water before either Western blotting or staining using GelCode Blue (Thermo Scientific) following the manufacturer’s instructions. Stained gels were destained with distilled water overnight before being dried (BioRad 583 Gel Dryer).

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Reagents</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS buffer for resolving gel</td>
<td>1.5M TRIS-HCl, pH 8.8</td>
<td></td>
</tr>
<tr>
<td>TRIS buffer for stacking gel</td>
<td>0.5M TRIS-HCl, pH 6.8</td>
<td></td>
</tr>
<tr>
<td>Loading dye (2x)</td>
<td>0.1M TRIS-HCl, pH 6.8, 10mM EDTA, 2% (w/v) SDS, 5% (w/v) glycerol, 0.05% (w/v) bromophenol blue</td>
<td>No β-mercaptoethanol used. Can be supplemented with up to 5mM DTT if reducing conditions are required.</td>
</tr>
<tr>
<td>SDS Running (tank) buffer (10x)</td>
<td>0.25M TRIS, 1.92M glycine, 0.03M SDS.</td>
<td>10x stock diluted when required to 1x with distilled water.</td>
</tr>
</tbody>
</table>

Table 2.4a – Buffers required for SDS PAGE.

2.4.2 Western blotting

In order to better visualise the bands containing recombinant alternative oxidase protein on SDS PAGE gels, it was often necessary to perform Western blotting using primary antibodies raised against *S. guttatum* alternative oxidase (Elthon *et al.*, 1989).
SDS PAGE gels were run as described above (Section 2.4.1), and rinsed briefly in distilled water. The gels were then transferred to a small amount of chilled 1x transfer buffer (see Table 2.5 below). Meanwhile, an 8x10cm nitrocellulose filter (pore size of 0.45nm, Protran, Whatman) was also equilibrated in 1x transfer buffer, along with blotting paper and sponges of the same size. A blotting cassette was assembled (see Figure 2.1 below) and placed into the transfer rig along with two ice packs. The blotting tank was then filled with the remainder of the chilled 1x transfer buffer. A current (typically 100V for 1 hour with stirring) was applied to the rig, during which time the temperature of the tank was monitored. If temperature of the buffer in the tank rose above 30°C, fresh chilled 1x transfer buffer was added to the tank, and the ice packs were replaced in order to prevent damage to the nitrocellulose membrane.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Final % acrylamide – resolving gel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.5%</td>
</tr>
<tr>
<td>30% polyacrylamide</td>
<td>7.5ml</td>
</tr>
<tr>
<td>Resolving buffer</td>
<td>7.5ml</td>
</tr>
<tr>
<td>10% SDS</td>
<td>300μl</td>
</tr>
<tr>
<td>10% APS</td>
<td>300μl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20μl</td>
</tr>
<tr>
<td>dH₂O</td>
<td>14.38ml</td>
</tr>
<tr>
<td>Total</td>
<td>30ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stacking gel – 5% acrylamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% polyacrylamide</td>
</tr>
<tr>
<td>Stacking buffer</td>
</tr>
<tr>
<td>10% SDS</td>
</tr>
<tr>
<td>10% APS</td>
</tr>
<tr>
<td>TEMED</td>
</tr>
<tr>
<td>dH₂O</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Table 2.4b – Final acrylamide concentration matrix.
Following transfer, the nitrocellulose membrane was washed briefly in 1x TBST (Table 2.5) and then submersed in block solution (Table 2.5) and allowed to equilibrate with gentle shaking for 15 minutes. After equilibration, primary anti-AOX antibody was added to the block solution containing the nitrocellulose to a dilution of 1:5000. The solution and membrane were then incubated at room temperature with gentle shaking for 1 hour. After incubation, the membrane was washed using 1x TBST briefly six times, followed by 6x 5 minute washes with shaking. Following washing, a fresh 20ml aliquot of block solution was added to the membrane along with the secondary antibody (rabbit anti-mouse with a HRP conjugate, Dako BioProducts at a 1:20,000 dilution). The membrane and block were then incubated for a further hour at room temperature with gentle shaking. Following the incubation, the membrane was washed as described previously. After washing, the membrane was placed in 1x blot rinse (Table 2.5) for 15 minutes. The membrane was then gently blotted dry using blotting paper and transferred to a piece of Saranwrap for exposure to the Enhanced Chemiluminescence reagents (Amersham ECL Detection Kit, GE Healthcare) at a ratio of 1:1 for solutions 2 and 1, for 3 minutes and 1 minute respectively.

The membrane was then blotted dry once more before being covered in a single layer of Saranwrap and placed in an extremity cassette (DuPont Ultravision). After securing the membrane in place in the cassette, a single piece of x-ray film (Fujifilm Super RX Medical X-ray film) was placed on top of the wrapped membrane and exposed for between 10 seconds and 1 hour. The exposed films were then developed using a (Konika SRX-101A) auto-rad developer and the positions of the protein markers were noted immediately after developing.

2.4.3 Sample preparation – acetone precipitation

Cold (-20°C) acetone was added to the sample in a ratio of 4:1 and mixed thoroughly, following which the sample was incubated at -20°C for 1 hour. Following incubation, the sample was centrifuged at 13,000 x g for 10 minutes (Eppendorf Centrifuge 5415R). After centrifugation, the acetone was carefully aspirated from the pellet, and the pellet was left to air-dry for 30-40 minutes, to avoid over-drying of the pellet. The dried pellet was then resuspended in 2x loading dye and heated for 6 minutes at 90°C before
being loaded onto an SDS PAGE gel, and electrophoresed as described in Section 2.4.1 above.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Reagents</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer buffer, 10x</td>
<td>1.92M glycine, 13mM TRIS,</td>
<td>1x working solution made using 8 parts cold distilled water, 1 part methanol, 1 part 10x TB stock</td>
</tr>
<tr>
<td></td>
<td>pH 7.2</td>
<td></td>
</tr>
<tr>
<td>TBST, 10x</td>
<td>140mM NaCl, 20mM TRIS,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 7.6, 0.1% (v/v) Tween-20</td>
<td></td>
</tr>
<tr>
<td>Block solution</td>
<td>2% (w/v) Marvel milk powder, 3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w/v) BSA in 1x TBST</td>
<td></td>
</tr>
<tr>
<td>Blot rinse, 10x</td>
<td>10mM TRIS, 5mM ETDA,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 7.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.5 – Western blotting buffers.

Figure 2.1 – A diagrammatic representation of the transfer cassette. Orientation of the components of the transfer cassette are shown relative to one another. The arrow indicates the direction of the current.
2.5 Protein Assays

A variety of assays were used to assess the protein concentration and activity of prepared samples.

2.5.1 Protein estimation assays

Both of the following methods were used to ascertain protein concentration in any samples prepared; the method used is indicated in the results sections of each Chapter as appropriate.

2.5.1.1 BCA protein concentration estimation method

Protein concentration was estimated using a Pierce BCA protein assay kit (Thermo Scientific, adapted from Smith et al., 1985), following the manufacturer’s instructions. No changes were made to the protocol, which is summarised as follows. For samples containing substances likely to affect the estimation assay, an acetone precipitation step was required, and was carried out as described above in Section 2.4.3. 100μl of diluted (or resuspended) sample (1:20, 1:50 or 1:100 to dH₂O), standard was added to 100μl of 5% SDS in 0.1M NaOH. Samples were prepared in triplicate and standards (BSA at 0.1, 0.2, 0.4, 0.6, 0.8 and 1mgml⁻¹) in duplicate. Blanks (containing water) were also prepared in duplicate. 1ml of BCA working reagent (50:1 of solutions A:B from the kit) was then added to each tube before vortexing. The samples were then incubated for 30 minutes at 37°C. After incubation, the absorbance at 562nm of each standard and sample was then measured spectrophotometrically; the absorbance of the standards was used to plot a standard curve from which the concentration of the unknown samples could be extrapolated.

2.5.1.2 Lowry protein concentration estimation method

This alternative method for estimating protein concentration was used whilst in Professor Kita’s laboratory, at the University of Tokyo and is based on Lowry et al. (1951).

Several different BSA concentration standards were prepared in distilled water. Samples of protein of unknown concentration were then prepared in two different dilutions (either 1:250, 1:100 or 1:50) with a dilution of 1:50 being used for low concentration
samples. Each of the standards and protein samples had a total volume of 500μl. A 1:1:100 solution was then made of 2% copper (II) sulphate (penta hydrate), 4% potassium sodium tartrate and 4% sodium carbonate (dissolved in 0.2M sodium hydroxide and 2% sodium dodecyl sulphate) respectively. 500μl of this solution was then added to each of the standards and protein samples, following which 50μl of phenol reagent (Wako) was added. Each tube was vortexed immediately after the phenol reagent was added.

The standards and protein samples were then left at 37°C for 30 minutes before the absorbance of each solution was monitored at 700nm using a spectrophotometer (Shimadzu UV-1201).

2.5.2 Spectrophotometric activity assay

Activity assays were required to assess the functional capability of the expressed recombinant protein, using a variety of substrates. In each case, a 10mm quartz (Hellma, Suprasil) cuvette was used.

Using a Cary 400 UV spectrophotometer1 (Varian) connected to the Varian spectrophotometer computer suite (CaryWin UV) a scanning wavelength baseline (Scan) was taken to ensure that the sample cuvette and assay buffer (Table 2.6a) did not absorb significantly at the wavelength used to monitor substrate depletion/product formation. Using the Kinetics program, a single wavelength was monitored (Table 2.6b) throughout the duration of the assay. To begin with, only buffer was placed in the cuvette, followed by sample once a flat line was observed. Following addition of sample, substrate was added to initiate the reaction. Additions were made quickly and accurately, allowing the stir-bar to complete the mixing of any substances added to the cuvette. Initial rates were monitored and the reaction was allowed to progress sufficiently before addition of inhibitors or other solutions where appropriate (Table 2.6b). Data collected from each assay was imported into an Excel spreadsheet for further analysis. In order to calculate substrate consumption, the following calculation was used, where \(\varepsilon = \) molar extinction coefficient of the oxidised substrate.

1 When at University of Tokyo, Shimadzu UV-3000 was used
Buffer	**Composition**
50mM TRIS | 50mM TRIS-HCl, pH 7.5, 10mM pyruvate
Yeast Medium A | 0.3M mannitol, 1mM MgCl$_2$, 5mM K$_2$HPO$_4$, 10mM KCl, 20mM MOPS, pH 7.2 (with KOH)

Table 2.6a – Buffers used for spectrophotometric assays.

<table>
<thead>
<tr>
<th>Additive</th>
<th>Rationale</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q$_1$H$_2$ (ubiquinol-1)</td>
<td>Substrate</td>
<td>Working concentration 150μM, ε = 15,000 M$^{-1}$ cm$^{-1}$ at 278nm</td>
</tr>
<tr>
<td>DQH$_2$ (duroquinol)</td>
<td>Substrate</td>
<td>Working concentration 250μM, ε = 2,150 M$^{-1}$ cm$^{-1}$ at 283nm</td>
</tr>
<tr>
<td>DUQH$_2$ (decylyubiquinol)</td>
<td>Substrate</td>
<td>Working concentration 200μM, ε = 4140 M$^{-1}$ cm$^{-1}$ at 289nm</td>
</tr>
<tr>
<td>OGS (octyl-gallate)</td>
<td>Inhibitor of the alternative oxidase</td>
<td>Working concentration 1μM</td>
</tr>
<tr>
<td>AA (antimycin A)</td>
<td>Inhibitor of the bc$_1$ complex</td>
<td>Working concentration 4μM</td>
</tr>
<tr>
<td>AF (ascofuronone)</td>
<td>Inhibitor of the alternative oxidase (cf Minagawa et al., 1996)</td>
<td>Variable working concentration used to determine effect of concentration on inhibition</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>Apparent stabilising effect on recombinant S. guttatum alternative oxidase; boosts activity</td>
<td>Working concentration up to 10mM. Added to either the assay medium or during membrane harvest</td>
</tr>
</tbody>
</table>

Table 2.6b – Substrates, inhibitors and stabilisers compatible with spectrophotometric assays. In the case of decylubiquinol, the extinction coefficient is taken from Rich (1984).
2.5.3 Substrate reduction protocol

The quinol family of substrates required for alternative oxidase activity must be in the reduced state. They were reduced in-house, using the following protocol (based on Rich, 1981).

Three aliquots of sodium dithionite (Sigma) were prepared by dissolving sodium dithionite in 50ml of distilled water; the quantity of sodium dithionite required is in proportion to the quantity of oxidised substrate used (typically four times as much sodium dithionite as substrate). Oxidised substrate (i.e. 0.25g of duroquinone or 10mg of quinone) was dissolved in 50ml diethyl ether, resulting in a transparent yellow-orange solution. The substrate solution and one aliquot of sodium dithionite were mixed vigorously in a glass separating funnel for 3 minutes in order to allow the dithionite to begin reducing the substrate. After mixing, the solution was allowed to separate into the aqueous phase (containing the water and spent dithionite) and ether phase (containing the partially reduced substrate) and the aqueous phase was carefully discarded to avoid excessive loss of the ether phase. A second sodium dithionite aliquot was added to the ether phase remaining in the separating funnel; this was mixed for 3 minutes, allowed to separate into the aqueous and ether phases, before the aqueous phase was discarded. This was repeated once more using the remaining aliquot of sodium dithionite.

Following the final discarding of the aqueous phase, the funnel and substrate were washed twice using 100ml of saturated sodium chloride (to remove any excess water from the ether phase) and again the aqueous phase was discarded. The ether phase was then removed from the separating funnel, and passed through a second funnel lined with filter paper containing 30g of anhydrous sodium sulphate powder (to remove any traces of water) and collected in a glass beaker. Either a conical funnel or a Büchner funnel and vacuum pump can be used.

A microlance needle was used to make a single hole in the caps of several eppendorf tubes. The filtered ether phase was then transferred to the eppendorf tubes in 1ml aliquots. The tubes were then placed in a heated gyratory evaporator (Savant Speedvac SC110) on low heat (approximately 30°C) until the ether phase had been evaporated, leaving behind a small white residue in each tube (reduced substrate). Each individual tube
was then sealed using Parafilm M (Alcan) and placed in a light-tight dessicator at room temperature until required.

In order to prepare the reduced substrate for spectrophotometric activity assays, the substrate were resuspended gently in 1ml of acidified ethanol (10mM hydrochloric acid), and the concentration was determined spectrophotometrically using the extinction coefficient of the substrate in ethanol at a specific wavelength (see Table 2.6b).

The resuspended reduced substrate was then stored at -80°C after use. The resuspended substrate remained stable for a maximum of 3 months when stored at -80°C. The substrate concentration was verified before each subsequent use by measuring the absorbance of the substrate at the substrate-specific wavelength (as detailed in Table 2.6b) and dividing this value by the extinction coefficient (also detailed in Table 2.6b) and the pathlength of the cuvette (which was always 1cm).

2.6 Crystallography

Purified recombinant protein was used for crystallographic screening. Prior to screening, a pre-crystallisation test (PCT) was carried out to establish whether the protein sample was within the optimal concentration and purity range. The PCT kit used for all tests was supplied by Molecular Dimensions. After carrying out the PCT and adjusting the protein concentration if necessary, screens were set up as follows.

2.6.1 Initial screening – hanging drop method

Initial screening was carried out in the laboratory of Dr. Darren Thompson, University of Sussex. Protein and screen solutions were kept at 4°C throughout the process of setting up the screen. The hanging drop method was used in the initial screening process, with 24-well plates (Molecular Dimensions) and plastic coverslips (Molecular Dimensions). Each well was lightly hand-greased using silicon grease (DuPont). Following greasing, 600-1000μl of screen solution was added to the bottom of each well. See Table 2.6.1 for kits used. 1μl of screen solution was taken from each well, and tip-mixed with 1μl of protein sample on a coverslip. The coverslip was then inverted and placed on top of the relevant well immediately, forming an air-tight seal with the grease. Once filled, the plate(s) were stored at 4°C or room temperature and viewed under a standard light
microscope every 3-4 days for 30-60 days after the screen was set up. Formation of precipitation, microcrystals and larger crystals were recorded and photographed.

2.6.1.1 Seeding and refinement

After conditions producing microcrystals were identified using the initial screening kits, further refinement was carried out along with seeding trials. The conditions (detailed in the product information) were adapted by adjusting pH, precipitant concentration, and salt molarity. Stock solutions of all the components were made, and mixed to create a non-

<table>
<thead>
<tr>
<th>Kit (manufacturer)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemStart (Molecular Dimensions), 48 conditions</td>
<td>Sparse-matrix kit developed for membrane proteins</td>
</tr>
<tr>
<td>MemSys (Molecular Dimensions) 48 conditions</td>
<td>Developed from the most successful conditions from MemStart</td>
</tr>
<tr>
<td>MemGold (Molecular Dimensions) 48 conditions</td>
<td>Non-sparse matrix based on the most successful conditions from MemStart and MemSys</td>
</tr>
<tr>
<td>Protein Screen I (Molecular Dimensions) 50 conditions</td>
<td>Sparse-matrix, general protein crystallography screen</td>
</tr>
<tr>
<td>Protein Screen II (Molecular Dimensions) 48 conditions</td>
<td>Sparse-matrix, general protein crystallography screen</td>
</tr>
</tbody>
</table>

Table 2.7 – Crystallographic screening kits used.

-sparse matrix. Depending on the complexity of the conditions required, either 24 or 96-well plates were used. Screens were then set up in duplicate as previously described (hanging drop method), or using the sitting drop method (described below in Section 2.6.3). In both cases, the crystals from the relevant successful screen were crushed and mixed using a fine gauge acupuncture needle and then streaked through a drop of protein-solution mix in order to initiate seeding. Plates were then sealed and one plate was incubated at 4°C and the other at room temperature. The plates were monitored every 3-4 days for 30-60 days after being set up.
2.6.2 Sitting drop method

In addition to the hanging drop method, the sitting drop method was utilised when working in the laboratories of Professor So Iwata (Membrane Protein Laboratory – Imperial College, London and Diamond Synchrotron facility, Didcot) and Professor Kita (Graduate School of Medicine, University of Tokyo).

The protein sample and screen conditions were kept at 4°C whilst being prepared. In contrast to the hanging drop method, 96-well sitting drop plates (Fisher) were used. Due to the reduced well size, 100μl of screen solution was placed into each well. 0.5μl of screen solution was then placed into the small vapour shelf at the top of the well. To this, 0.5μl of protein sample was added, and mixed gently using the pipette tip. To seal the plate, shireseal was applied. Once sealed, the plates were again incubated at either room temperature or 4°C and monitored every 3-4 days for 30-60 days after being set up.

During screening trials at the Diamond Synchrotron facility, a Cartesian robot was used to aid the setting up of several 96-well sitting drop plates (Innovadyne). In this case the well volume used was 80μl, but the sitting drop volumes were 100nl of protein mixed with 100nl of screen solution. The process was automated.

2.7 Circular Dichroism

Circular dichroism (CD) was used to assess the secondary structure of recombinant alternative oxidase. CD experiments were carried out using a Jasco J715 spectrophotometer, connected to Jasco Spectra Manager software suite and fitted with a Jasco Peltier-type temperature regulation system in the laboratory of Dr. Ewan Main (University of Sussex).

2.7.1 Sample preparation using polyethylene glycol (PEG) precipitation

Protein samples for CD experiments were prepared by first precipitating the sample using PEG. A stock solution of 50% (w/v) PEG-6000 (Sigma) was added dropwise to the protein sample, and gently mixed after each addition until the solution became opaque. The sample was then centrifuged at 13,000 x g for 30 minutes at 4°C. The supernatant was removed and retained. The pellet was allowed to air dry for 10-30 minutes at room temperature, before storage at -80°C until required. In order to test the efficacy of the
precipitation, the supernatant was assayed using the techniques described above in Section 2.5.2; if there was significant activity measured, the precipitation was repeated by recombining the supernatant and the pellet, and then the dropwise addition of 50% PEG 6000 (Sigma). The solution was then centrifuged at 13,000 x g for 30 minutes at 4°C. The supernatant was retained and re-assayed. This process was repeated until no activity was observed in the supernatant.

2.7.2 Monitoring secondary structure – multiple wavelength scan

Dried and frozen pellets (as described above) were thawed on ice, and resuspended to an appropriate volume with the relevant buffer. Typically, using a 1mm cuvette, 250μl of dH₂O containing 0.04% DDM was used to resuspend a single pellet. The buffer alone was then added to the cuvette, and a baseline reading (scanning from 300-180nm) was taken to ensure no excessive absorption was observed in this range. The same settings for scanning were applied to the baseline as to the experimental scans, described below.

The resuspended pellet was then transferred to a clean cuvette (Hellma, Suprasil, 1mm), and absorbance across wavelengths of 300-180nm was recorded with a wavelength pitch of 0.1nm. Scans were performed in triplicate and an average taken. Data was then imported into a Gnumeric spreadsheet for further analysis.

2.7.3 Temperature melt CD

Initial multiple wavelength scanning CD indicated that the alternative oxidase was mainly alpha helical in structure. In order to assess how stable the α-helices were, temperature melt experiments were performed. As detailed in Section 2.7.2, PEG precipitated protein was resuspended in the relevant buffer, and placed into a clean cuvette. Absorbance was measured at 222nm and temperature increments of 1°C from 10-90°C or decrements of 1°C between 90-10°C. Data was exported as a Gnumeric spreadsheet for further analysis.

2.8 In silico modelling of the alternative oxidase

A variety of in silico analyses were performed and these are described in detail in Chapter 3. Below in Table 2.8 the algorithms used are listed, along with the function of the
algorithm or program. The algorithms were either accessible via a web interface, or downloaded and run from either a Windows or Linux (Ubuntu) machine. Image manipulation throughout the project was performed with the GNU Image Manipulation Program (GIMP; http://www.gimp.org/) and LibreOffice Draw.

<table>
<thead>
<tr>
<th>Software</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoDock</td>
<td>Protein/molecule docking software</td>
</tr>
<tr>
<td>BioSerf</td>
<td>Automated \textit{ab initio} homology modelling</td>
</tr>
<tr>
<td>CFSSP</td>
<td>Chou and Fasman (1974) secondary structure prediction algorithm</td>
</tr>
<tr>
<td>ClustalW</td>
<td>Multiple sequence alignment</td>
</tr>
<tr>
<td>DeepView</td>
<td>Molecular visualisation software</td>
</tr>
<tr>
<td>Dichroweb</td>
<td>Analysis of circular dichroism data</td>
</tr>
<tr>
<td>GOR</td>
<td>Garnier-Osguthorpe-Robinson (1978) secondary structure prediction algorithm</td>
</tr>
<tr>
<td>Hex</td>
<td>Protein/molecule docking software</td>
</tr>
<tr>
<td>HHPred</td>
<td>Protein homology detection and structure prediction</td>
</tr>
<tr>
<td>JPred3</td>
<td>Protein secondary structure prediction</td>
</tr>
<tr>
<td>NJPlot</td>
<td>Phylogenetic tree drawing software</td>
</tr>
<tr>
<td>PHYLIP</td>
<td>Phylogenetic tree drawing software</td>
</tr>
<tr>
<td>Phyre2</td>
<td>Protein threading server</td>
</tr>
<tr>
<td>PROFphd</td>
<td>Protein tertiary structure prediction</td>
</tr>
<tr>
<td>PROSITE</td>
<td>Curated database of protein domains, families and functional sites</td>
</tr>
<tr>
<td>PSIPRED 3.0</td>
<td>Protein tertiary structure prediction</td>
</tr>
<tr>
<td>PyMOL</td>
<td>Molecular visualisation software</td>
</tr>
<tr>
<td>RaptorX</td>
<td>Protein threading server</td>
</tr>
<tr>
<td>SeaView</td>
<td>Multiple alignment viewer and editor</td>
</tr>
<tr>
<td>SwissModel</td>
<td>Homology modelling server</td>
</tr>
<tr>
<td>Treeview</td>
<td>Phylogenetic tree viewing software</td>
</tr>
<tr>
<td>VMD</td>
<td>Visual Molecular Dynamics; a Molecular visualisation software</td>
</tr>
</tbody>
</table>

\textit{Table 2.8 - Software used during the \textit{in silico} analysis of the \textit{S. guttatum} alternative oxidase. For references, see Chapter 3.}

The numbering of residues referred to in this thesis is taken from the \textit{S. guttatum} alternative oxidase protein (UniProt accession number P22185) unless otherwise stated. The other main sequence used in the \textit{in silico} modelling of the alternative oxidase was the Trypanosomal alternative oxidase (TAO; UniProt accession number Q26710, from \textit{Trypanosoma brucei brucei}). Lists of all sequences used can be found in Appendix 1. The accession numbers of any crystal structures used (accessed via the Protein Data Bank,
PDB) are listed in the body of the text. At the time of submission, the crystal structure of the TAO had been recently submitted to the PDB (PDB code 3VV9, Shiba et al., 2013). However, the structures themselves were not accessed via the PDB, but came directly from the research laboratory or Professor Kita at the University of Tokyo some time before publication.
Chapter 3

Modelling the alternative oxidase

3.1 The value of bioinformatics

In the absence of structural data, *in silico* analysis of protein sequence may be performed. With careful selection of algorithms and informed interpretation of their output, meaningful and empirically evaluated predictions are possible – from the inference of evolutionary relationships (McDonald and Vanlerberghe, 2006), to predicted secondary structure (Moore and Siedow, 1991) and models generated where homologous protein structure exists (Andersson and Nordlund, 1999). Models of either structure or sequence relationship may then be used to generate hypotheses about the structure-function relationship of a protein, the family to which it belongs, and the evolutionary relationship it may share with other protein families (Gomes *et al.*, 2001; Berthold and Stenmark, 2003).

The scope of this Chapter is to revisit previous *in silico* alternative oxidase analysis, and reassess alignments, phylogeny and models in light of new sequence and structure data. For the first time, molecular docking has been attempted, with positive results.

3.1.1 Sequence analysis

The first AOX sequence to be published was that of *S. guttatum* in 1991 (Rhoads and McIntosh, 1991). A filtered\(^2\) Basic Local Alignment Search Tool (BLAST, Altschul *et al.*, 1990) search of the UniProt Knowledgebase (http://www.uniprot.org; Uniprot Consortium, 2012) using the *S. guttatum* sequence (UniProt accession number P22185) reveals 607 sequences with similarities ranging from 90% down to 25%. Of the 607 sequences, only 33 have been reviewed and annotated manually. 89% of the 607 sequences are eukaryotic in origin, and the remaining 11% are found in prokaryotic genomes.

\(^2\) An E value cut-off of 1 was applied
Previous sequence analysis of alternative oxidase sequences (Moore et al., 1995a) led to the identification of highly conserved residues across both plant and fungal species and earlier (Moore and Siedow, 1991) use of the Garnier-Osguthorpe-Robson (GOR; Garnier et al., 1978) algorithm predicted a primarily helical protein (51%) with 10% β-sheet, 16% β-turn and the remaining 23% attributed to random coil. However, bioinformatic analysis of the alternative oxidase sequences alone did not provide information beyond predicted secondary structure elements, such as metal binding motifs – information which was incredibly important, as the cofactor required for alternative oxidase activity was not known at the time (Moore and Siedow, 1991). Only after the inclusion of sequences from another family of proteins, the diiron carboxylates, did multiple local alignment analysis reveal the presence of several iron binding motifs universally conserved within the alternative oxidase sequences (cf Siedow et al., 1995; Moore et al., 1995a; Andersson and Nordlund, 1999) and ultimately the classification of the alternative oxidase as a non-haem, diiron protein (Siedow et al., 1995; Moore et al., 1995a; Berthold et al., 2002).

3.1.2 Phylogeny

Structure-specific phylogenetic analysis of the alternative oxidase with respect to the diiron carboxylates suggested that the alternative oxidase and the diiron carboxylate family have a common ancestor, most likely a primitive oxygen reductase (Gomes et al., 2001). Further phylogenetic analyses were conducted without the inclusion of diiron carboxylate sequences; instead, sequences from plastid terminal oxidases (PTOX) were used in the analysis. PTOX proteins, a family of terminal oxidases expressed in plastid organelles such as chloroplasts, are thought to play an essential role in the desaturation of carotenoids (Carol et al., 1999; Josse et al., 2000; Carol and Kuntz, 2001). Furthermore, when expressed in E.coli membranes, PTOX confers the same cyanide-resistant respiration observed in tissues expressing alternative oxidase which is inhibited by addition of the AOX-inhibitor octyl-gallate (Josse et al., 2000). Sequence similarity between the AOX and
PTOX families is very low (25%; Josse et al., 2000) despite some similarities in function (as terminal oxidases) and catalytic mechanisms (quinol:oxygen oxidoreductases). However, the iron-binding motifs identified in both the diiron carboxylates and the alternative oxidase are retained in PTOX, suggesting similarity in structure (Carol et al., 1999).

Several analyses suggest that AOX and PTOX have a common ancestor of bacterial origin, but that they entered into eukaryotic taxa through different routes shortly after divergence. The alternative oxidase entered into the eukaryotic lineage through the endosymbiotic relationship between proteobacteria, which resulted in the creation of the mitochondria; conversely, the PTOX entered into the plant lineage through the endosymbiotic relationship between cyanobacteria, resulting in the creation of organelles like the chloroplast (Finnegan et al., 2003; McDonald and Vanlerberghe, 2006). Phylogenetic analysis of AOX sequences from protozoa, including apicomplexan parasites such as *T. brucei* and *C. parvum* suggests that the parasitic alternative oxidases are descended from the eukaryotic mitochondrial alternative oxidases (Roberts et al., 2004; Williams et al., 2010).

A particularly popular and adaptable program for generating both multiple alignments and phylogenetic trees is ClustalX (Thompson et al., 1994), which allows the user to stipulate which scoring matrices to use for alignments and tree-building. This is particularly useful when analysing distantly related sequences, where certain matrices (such as BLOSUM50 and BLOSUM40) are specifically designed to accurately align more distantly related sequences (Henikoff and Henikoff, 1993).

3.1.3 Previous models of the alternative oxidase

There have been two previous attempts to model the alternative oxidase. In 1995 Moore *et al.* proposed a model in which the active site was located at the centre of four small helices, with two transmembrane helices anchoring the molecule to the membrane (Figure 1.5a). The second model, generated by Andersson and Nordlund (1999) and later
refined by Berthold et al. (2002), proposed instead a four helix bundle acting as a scaffold to the active site; by contrast the attachment to the membrane was not via transmembrane helices but by a shorter helix laying parallel to the lipid layer rather than perpendicular to it (Figure 1.5b). The second model is accepted as the most accurate to date. The two models were derived using different methods. In the former, information from hydrophobicity plots, sequence alignment and identification of known iron-binding motifs were combined in a knowledge-based approach to model the AOX without a template. In the latter, homology modelling was used instead, with model evaluation based on existing knowledge of the protein. In between the publication of the first model and the conception of the second, more sequences were made available of both alternative oxidase proteins and diiron carboxylates, on which the second model was based.

3.1.4 In silico approaches to modelling proteins with unknown structure

When attempting to predict or model the structure of a protein of novel or unknown structure, there are several approaches that can be taken. Ideally, as many as possible should be pursued and the results compared in order to select the most accurate model based on both statistical analysis and whether the model compares favourably to existing experimental data. Of particular relevance to this project are knowledge-based approaches (such as secondary structure prediction), homology modelling and threading.

3.1.4.1 Prediction of secondary structure

Prediction of secondary structure from sequence data was first explored in the 1960s. For example, Guzzo (1965) noted the recurrence of certain amino acid residues (namely proline, glutamic acid, aspartic acid and histidine) within structurally-characterised helical regions of myoglobin and alpha- and beta-haemoglobin. It was suggested that the occurrence of these residues in sequence data may be useful in predicting the nature of local secondary structure from a protein sequence (such as where the helices begin and end, for example). A notable early example which both expanded upon and improved Guzzo’s
work, whilst taking into account critical analysis from Prothero (1966), was the prediction of alpha-helical regions within proteins (cf Kotelchuck and Scheraga, 1969). Additionally, the prediction method incorporated early theoretical work from Zimm and Bragg (1959) regarding the physical transition that polypeptides undergo when shifting from random coil structures to alpha-helical structures and the implication of this theory to the formation of secondary structure. The linking of the Zimm-Bragg coil-helix transition theory to specific amino acids involved in structure determination was a very important step towards the modern structure prediction algorithms in use today.

Early secondary structure algorithms created by Chou and Fasman (1974) and Garnier et al. (1978) utilised the quantified propensity for each amino acid to be involved in any given secondary structure element, although the calculation was implemented differently in both algorithms. As the number of structures in databases have increased, along with computing power, prediction algorithms have evolved and improved. Some more recent approaches to the prediction of secondary structure such as PSI-PRED (Jones, 1999; Buchan et al., 2010) and PHD (Rost and Sander, 1993) utilise feed-forward artificial neural networks to refine results and improve accuracy. Others, such as the PredictProtein (Rost et al., 2004) and Jpred3 (Cuff et al., 1998; Cole et al., 2008) servers apply multiple algorithms to the sequence of interest, after aggregating information from structural and sequence databases based on sequence similarity. Reported accuracy of modern algorithms varies (see Section 3.1.4.4 below); for novel proteins and those which are underrepresented in the database however, accuracy may be lower than expected compared to proteins where many homologous sequences and structures are known and defined.

3.1.4.2 Homology modelling

Building a three-dimensional model of a protein of unknown structure is beyond the scope of secondary structure prediction algorithms. In order to generate a coordinate map for the atoms in a protein, protein structures with sequences of acceptable similarity can be used as templates in the process of homology modelling. This concept is based on the
recognition that whilst protein sequences from a common ancestor mutate and evolve differently, structure often remains conserved (Chothia and Lesk, 1986; Martí-Renom et al., 2000). A comprehensive comparison of how much sequence similarity is required to guarantee identical structures in any two given sequences (Sander and Schneider, 1991) revealed that the similarity threshold was length-dependent, with longer sequences requiring less similarity than shorter sequences. The resulting Sander-Schneider threshold states that at least 25% identically aligned residues must exist across sequences 80+ residues in length in order to confidently state that the fold (tertiary structure) will be the same.

Therefore, the first stage of homology modelling is the selection of a suitable template sequence with greater than 25% similarity to the target sequence of unknown structure. This can be undertaken by the user through manually-evaluated multiple sequence alignments performed with programs such as ClustalX (Jeanmougin et al., 1998) using sequences identified after execution of a BLAST search (or similar) and retrieved from databases such as UniProt or GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Ideally, the sequence with the lowest E value and highest similarity should be chosen, although modelling one protein on several similar proteins provides the user with the opportunity to select the most accurate model. Alternatively, a template can be chosen using web-based interfaces such as SwissModel (http://swissmodel.expasy.org/; Schwede et al., 2003) and HOMA (http://www-nmr.cabm.rutgers.edu/HOMA/; Srinivasan et al., 1993), which perform the multiple alignment and sequence-retrieval automatically with minimal user input.

After suitable template sequences have been chosen, models can be built. During this process, the atoms of the residues in the target sequence are overlaid, segment by segment, onto the atoms of the template structures, to create a set of Cartesian coordinates for the target sequence. Areas with particularly low similarity to the template or few structural templates, such as loop regions, require careful consideration when modelling. Programs such as MODELLER (Sali and Blundell, 1993), for example, use libraries of
known loop sequences and structures to select the most appropriate loop structure, taking account of the spatial constraints of both the surrounding structure and the loops themselves.

Following its generation, the model must be evaluated. In order to evaluate a model, the energy required for the protein to exist in that particular conformation must be calculated and compared to other possible conformations. Model accuracy may be determined statistically; for example the ProSA algorithm (accessible via a web server, ProSA-web: https://prosa.services.came.sbg.ac.at/prosa.php; Wiederstein and Sippl, 2007) provides a measure of structure or model quality given its atomic coordinates, in the form of a standard deviation-derived z-score. In order to generate a z-score, the algorithm calculates an approximation of the potential mean force (PMF) for a protein given the distance between all pairs of Cα atoms (Sippl, 1990). The z-score in this case essentially represents the deviation of the energy distribution for the uploaded protein from the theoretical energy distribution of the same protein were it in a random conformation (Sippl, 1993). The z-score for the uploaded protein can then be compared to z-scores calculated for all current protein structures in the PDB (Wiederstein and Sippl, 2007), thus allowing the user to assess whether the z-score of the uploaded protein is within an acceptable range of z-scores for other proteins of known structure and similar size.

3.1.4.3 Threading

Protein threading is an alternative approach to homology modelling in instances where less than 25% sequence similarity exists between the target and template sequence. Based on fold-recognition, threading algorithms initially construct multiple alignments, comparing the sequence of unknown structure to those in the databases with known structure. The sequence of unknown structure is then threaded onto existing structures, residue by residue, often with iterative refinement. The added advantage of threading over homology modelling is that multiple structures are compared, as opposed to single templates chosen by the user in homology modelling. Examples of popular threading
algorithms include Phyre2 (Kelley and Sternberg, 2009), RaptorX (Peng and Xu, 2011; Källberg et al., 2012) and HHPred (Söding, 2005; Söding et al., 2005), all of which are available freely via online servers (see Section 3.2.4 below for URLs). The resulting model may be evaluated using the same software as for homology models, such as ProSA-web.

3.1.4.4 Limitations and evaluation of structure prediction and protein modelling

Whilst predicting secondary and tertiary structure is a useful tool when investigating a protein of unknown structure, the techniques used are not without limitations (Wallner and Elofsson, 2005; Ginalska, 2006). The number of sequences available in databases has increased significantly in the last decade due to improvements in DNA and protein sequencing, but some classes of protein remain under-represented. As such, training sets for automated multi-template secondary structure predictions (PHD and PSI-PRED, for example) are likely to biased towards classes of proteins which are well-represented in the databases. Similarly, with homology and threading modelling techniques, novel proteins with no close relatives are unlikely to be modelled accurately. This limitation is particularly relevant to proteins such as the alternative oxidase, where only the structures of distant relatives are available. The only solved structure in the alternative oxidase family is that of TAO (PDB code 3VV9, Shiba et al., 2013). In order to encourage improvements in prediction and modelling reliability and accuracy, projects such as the Critical Assessment of Techniques for Protein Structure Prediction (CASP, http://predictioncenter.org/; Moult et al., 1995) allow for the overall performance of different approaches to be established. This information is particularly useful for those carrying out structure prediction and modelling, as it highlights the limitations of the techniques and allows for objective appraisal of predicted structures and generated models.

3.1.5 Docking

Molecular docking is the process by which the likelihood of a receptor (R, i.e. protein) and ligand (L, i.e. substrate) forming an energetically stable – and therefore
favourable – interaction is determined. In addition to calculating the probability of a ligand-receptor interaction, cautious interpretation of the results of a docking algorithm may suggest the strength of the interaction. The extent to which the ligand and receptors change conformation in order to achieve the overall best fit is known as the ‘induced fit’ model. While molecular docking is particularly useful in the field of rational drug discovery, in this project it is a useful tool to assess predicted substrate-binding sites.

There are two main methods by which calculations pertaining to receptor-ligand interactions may be performed; shape complementarity or by simulation of the docking process. In the former, the proposed binding surface of the receptor is given informational descriptors based on the solvent-accessible surface area (ASA). The ASA is given in Angstroms squared (Å²) and derived using information and algorithms first developed in the 1960s and 1970s (cf Bondi, 1964; Lee and Richards, 1971; Shrake and Rupley, 1973) which used experimentally obtained crystallographic data to determine the van der Waals radii and therefore surface area of residues and atoms within proteins. Following calculation of ASA, the ligand is given descriptors based on its similarity to the receptor molecule when both molecules are rigid (Shoichet et al., 1991; Shoichet and Kuntz, 1991; Helmer-Citterich and Tramontano, 1994). This approach requires assumptions to be made about the molecules; namely that they are in a fixed and rigid state, and that the van der Waals radii/surfaces are accurate from predictions. Therefore, whilst the output from these docking predictions can be obtained with relative speed, they may not accurately reflect the changes in conformation that take place during the process of ligand-receptor interaction, as both molecules adopt minimal-energy conformations to allow an energetically favourable interaction that will not immediately decay.

The second approach is that of simulating the interaction process, starting with the ligand and receptor separated by a physical distance. A finite number of changes are then made to the conformation and physical proximity of the ligand and the receptor; after each such change (or move), the energy in the system (i.e. between the two molecules) is calculated. When the combination with the tightest fit and lowest energy is observed, then
the state of induced fit has been achieved. As a result, this process is far more time consuming, since a very large energy landscape consisting of many possible conformations needs to be calculated and matched. There are many thousands of degrees of freedom generated when both receptor and ligand are flexible, which requires far more computing power to solve than docking simulations where both molecules are rigid. Many docking programs are available as web-based interfaces, such as Hex (http://hexserver.loria.fr/; Macindoe et al., 2010) and GRAMM-X (http://vakser.bioinformatics.ku.edu/resources/gramm/grammx; Tovchigrechko and Vakser, 2006) as well as plug-ins for molecular visualisation programs such as AutoDock (Morris et al., 2009) which can be used with PyMOL.

3.2 Methodology
3.2.1 Sequence analysis

All protein sequences were taken from the UniProtKB database. Suitable candidates for alignment of the alternative oxidase family were selected using a BLAST search based upon the *S. guttatum* alternative oxidase protein sequence (UniProt accession number P22185). FASTA protein Sequences were then retrieved via the UniProt server interface. Alignments were performed using ClustalX (Thompson et al., 1994) and evaluated manually. When aligning the diiron carboxylate sequences to the *S. guttatum* alternative oxidase, the alignment was performed manually. The alignment files (in *.aln format) were viewed and edited using either Clustal X or SeaView (Gouy et al., 2010).

3.2.2 Phylogeny

Alignments produced and refined using ClustalX were converted into bootstrapped phylogenetic tree files (in *.phb format), using the neighbour joining method. Trees were viewed in NJ Plot (Perrière and Gouy, 1996) and PHYLIP via the Mobyle server, http://www.mobyle.pasteur.fr/ (Felsenstein, 1989). In order to construct a reliable phylogenetic tree, sequences with sufficiently high sequence homology were indentified
using a BLAST search. In the interest of maintaining a balance between plants, fungi, parasites and prokaryotes a limit of 10 was placed on the number of sequences used from any given phyla.

3.2.3 Homology modelling

Homology modelling was carried out using the Swiss-MODEL modelling server (http://swissmodel.expasy.org/). All features were used, including automated mode and template identification. The *S. guttatum* amino acid sequence (P22185) was modified by the removal of residues 1-63, which are not present in the final expressed protein. Models based directly on Δ9-desaturase (P22337; 1OQ4; chain A) and TAO (Q26710; 3VV9; Shiba *et al.*, 2013) and structures were generated in alignment mode after manual alignment of sequences in SeaView.

3.2.4 Threading

Threading was carried out using the programs and servers listed below in Table 3.1, using a truncated *S. guttatum* sequence lacking residues 1-63 as described above. The user-defined parameters are stated where they differ from default parameters.

3.2.5 Model evaluation

Models were evaluated quantitatively using the ProSA-web server (Wiederstein and Sippl, 2007), from uploaded *.pdb files.
3.2.6 Docking

Docking of a ubiquinone-1 molecule to the alternative oxidase homology model based on TAO was completed using the Hex server (Macindoe et al., 2010) and AutoDock as a PyMOL plugin (Morris et al., 2009). Few user-defined parameters were available via the Hex server, so all but the correlation type (which was changed to “shape and electrostatic”) were left on their default settings. The AutoDock grid was adjusted to contain the whole monomeric protein.

3.2.7 Generating a dimeric AOX model containing a diiron active site

Using the same method as described in Section 3.2.3 above, a second homology model of *S. guttatum* AOX based on TAO was generated using the coordinates of the chain forming the second monomer (chain A) in the dimeric TAO crystal structure. The two homology models were then merged into a single PDB file. In a similar manner, the coordinates for the four iron ions (two per monomer) were taken from the TAO PDB file and merged with the dimer PDB file. To assess the validity of both the dimer PDB and iron-containing models, each model was aligned to the TAO crystal structure.

<table>
<thead>
<tr>
<th>Program/server</th>
<th>User-defined parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyre2 (Kelley and Stenberg, 2009) www.sbg.bio.ic.ac.uk/phyre2/</td>
<td>Intensive mode</td>
</tr>
<tr>
<td>RaptorX (Peng and Xu, 2011; Källberg et al., 2012) http://raptorx.uchicago.edu/</td>
<td>Multi-template refinement</td>
</tr>
<tr>
<td>BioSerf, including GenThreader (Jones, 1999) and MODELLER (Sali and Blundell, 1993) http://bioinf.cs.ucl.ac.uk/bio_serf/public_job/</td>
<td>None available</td>
</tr>
<tr>
<td>HHpred (Söding, 2005; Söding et al., 2005) http://toolkit.tuebingen.mpg.de/hhpred</td>
<td>Current and “on hold” PDB libraries</td>
</tr>
</tbody>
</table>

Table 3.1 – Threading software used, with parameters changed from default.
3.2.8 Building a membrane-AOX model

The dimeric homology model of *S. guttatum* based on the TAO template (as described above in Sections 3.2.3 and 3.2.7) was solvated using the solvate command in Visual Molecular Dynamics (VMD; Humphrey *et al*., 1996). Water molecules were removed above the Z plane where the membrane was to be placed. A membrane patch was built using the membrane modelling script in VMD and the dimer model was placed into the membrane according to the solvation limits generated previously to produce a membrane-AOX model. Finally, using the beta-field command in VMD, lipid molecules within 0.6Å of the protein were marked and removed from the model. The model was solvated once more and any water molecules which appeared between the membrane and the protein were removed.

3.2.9 Visualisation

All molecular visualisation was performed using DeepView (Version 4.1; Guex and Peitsch, 1997) and PyMOL (Version 1.4.1, Schrödinger, LLC).

3.3 Results

3.3.1 Sequence analysis

A multiple alignment was constructed using all 606 sequences identified during an automated BLAST search using the *S. guttatum* AOX sequence (excluding any E values above 1) against the UniProt database. A truncated version is shown overleaf in Figure 3.1.

3.3.2 Phylogeny

Phylogenetic trees were constructed from manually reviewed multiple alignments and assessed for accuracy based on the closeness with which species clades were formed. An example bootstrapped tree is shown below in Figure 3.2.
Figure 3.1 – A multiple sequence alignment of alternative oxidase sequences. This Figure shows a truncated multiple alignment of alternative oxidase sequences. UniProt Accession numbers are given along with species names (see Appendix 1 for a list of all sequences used). TP = thermogenic plant, NP = non-thermogenic plant, A = amoeba, F = fungi, PB = proteobacteria. Helices are indicated by numbered cylinders, based on the S. guttatum alternative oxidase homology model using TAO as a template. Red arrows indicate the four highly conserved iron-binding Glu residues (178, 217, 268 and 319) and blue arrows indicate the 2 highly conserved His residues (220 and 322) which form the secondary iron ligation sphere. The region highlighted by the blue bracket indicates the previously identified His-Arg pair involved in quinone-binding and the residues highlighted by the green bracket indicates the three-residue region thought to be responsible for determining pyruvate-sensitivity (cf Crichton et al., 2005; Ito et al., 2011). The yellow diamonds indicate the potential dimer interface residues as identified in Section 5.3.3 and listed in Table 5.8.
3.3.3 Homology modelling

Two homology models were successfully produced; one based directly on the Δ⁹-desaturase structure (1OQ4) and one based on the recently-solved TAO crystal structure (Shiba et al., 2013). Both models are illustrated in Figures 3.3a and 3.3b respectively. PDB coordinate files for both models can be found on the compact disc in the back of this thesis in the “Homology Models” directory; the homology model of S. guttatum alternative oxidase using TAO as a template is named “HM1.pdb” and the homology model of S. guttatum alternative oxidase based on Δ⁹-desaturase is named “HM2.pdb”. For each model z-scores as determined by ProSA-web are shown below in Table 3.2, along with QMEAN4 scores generated by the Swiss-MODEL server. The z-scores for both models are within the range of z-scores for other proteins of similar length and known structure (see Section 3.1.4.2). Two graphical representation of this agreement (as provided by the ProSA-web analysis output) can be found in Appendix 1 for reference.

An overlay of the homology model based on Δ⁹-desaturase and the homology model based on TAO is shown below in Figure 3.4a, and both homology models and their respective templates are shown below in Figure 3.4b.

The distance between the 6 iron-binding residues (Glu178, 217, 268, 319 and His220, 322) was measured in both homology models and is shown below in Table 3.3 below.

<table>
<thead>
<tr>
<th>Model template</th>
<th>z-score</th>
<th>QMEAN4 score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ⁹-desaturase (chain A)</td>
<td>-1.41</td>
<td>0.14</td>
</tr>
<tr>
<td>TAO (chain B)</td>
<td>-3.93</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 3.2 – Quantitative analysis of two S. guttatum homology models. This Table demonstrates the z-score (ProSA-web) and QMEAN4 score (Swiss-MODEL) for each homology model.
Figure 3.2 – Phylogenetic tree of several AOX sequences. This Figure shows a small bootstrapped, unrooted phylogenetic tree generated by ClastalX (neighbour joining method). Clades are indicated with square brackets, with the exception of *N.nucifera*, which is a thermogenic plant (marked with an asterisk).
Figure 3.3a – Homology model of *S. guttatum* alternative oxidase using Δ⁹-desaturase (1OQ4) as a template. Helices previously predicted to be membrane-associated (*cf* Andersson and Nordlund, 1999) are shown in the grey box in the top image.
Figure 3.3b – Homology model of *S. guttatum* alternative oxidase using TAO as a template. Helices predicted to be membrane-associated are shown in the grey box in the top image.
Figure 3.4a – An overlay of the homology models based on Δ⁵-desaturase (grey) and TAO (rainbow).
Figure 3.4b – A comparison of each template used to generate homology models of *S. guttatum* AOX and the homology model created. This Figure shows: A – Δ⁹-desaturase (1OQ4 chain A); B – the *S. guttatum* homology model based on Δ⁹-desaturase; C – TAO (chain B); and D – the *S. guttatum* homology model based on TAO. All orientations show the length-ways view through the four-helix bundle coordinating the diiron active site (red spheres in A and C).
<table>
<thead>
<tr>
<th>Residue pairs</th>
<th>Distance in Å between residue pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ⁹-desaturase-based</td>
</tr>
<tr>
<td>E178 → E217</td>
<td>3.4</td>
</tr>
<tr>
<td>E178 → H220</td>
<td>3.6</td>
</tr>
<tr>
<td>E178 → E268</td>
<td>8.0</td>
</tr>
<tr>
<td>E178 → E319</td>
<td>4.5</td>
</tr>
<tr>
<td>E178 → H322</td>
<td>7.8</td>
</tr>
<tr>
<td>E217 → H220</td>
<td>3.4</td>
</tr>
<tr>
<td>E217 → E268</td>
<td>3.8</td>
</tr>
<tr>
<td>E217 → E319</td>
<td>4.6</td>
</tr>
<tr>
<td>E217 → H322</td>
<td>5.8</td>
</tr>
<tr>
<td>H220 → E268</td>
<td>3.4</td>
</tr>
<tr>
<td>H220 → E319</td>
<td>4.6</td>
</tr>
<tr>
<td>H220 → H322</td>
<td>7.3</td>
</tr>
<tr>
<td>E268 → E319</td>
<td>5.6</td>
</tr>
<tr>
<td>E268 → H322</td>
<td>4.8</td>
</tr>
<tr>
<td>E319 → H322</td>
<td>4.8</td>
</tr>
<tr>
<td>Fe → Fe</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.3 – A comparison of residue-to-residue distances in the two *S. guttatum* homology models and the TAO structure. This Table lists the distances between the 6 iron-binding residues (Glu178, 217, 268, 319 and His220, 322) and iron ions in both the Δ⁹-desaturase-based and TAO-based homology models alongside the same distances observed in the TAO structure (PDB code 3VV9, Shiba *et al.*, 2013).

3.3.3.1 Generation of a dimeric AOX model containing diiron centres

Alignment and overlay of the generated dimeric AOX model (containing one diiron centre per monomer, see Section 3.2.7) with the dimeric TAO template was absolute, with no deviations between the structures. The dimeric *S. guttatum* AOX model is shown below in Figure 3.5. A PyMOL session file can be found on the CD in the back of this thesis containing this generated structure (“Dimer.pse”).
3.3.3.2 Generation of a membrane-AOX model

The dimeric membrane-AOX model is shown below in Table 3.6a. The protein lies approximately 14Å into a single leaflet of the membrane. Figure 3.6b shows the surface of the dimeric homology model with hydrophobic residues highlighted in red (left) and aromatic residues identified as possibly membrane-interacting are shown in green (right); these Figures were generated in an effort to define how deep into the membrane the protein should be placed. The aromatic residues shown in Figure 3.6b are listed in Table 3.4 and may be responsible for membrane-binding in \textit{S. guttatum} alternative oxidase. PyMOL session files can be found on the CD in the back of this thesis containing the dimeric \textit{S. guttatum} alternative oxidase protein in a membrane patch (“Membrane.pse”).

<table>
<thead>
<tr>
<th>Residue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>W160</td>
</tr>
<tr>
<td>F165</td>
</tr>
<tr>
<td>F166</td>
</tr>
<tr>
<td>W232</td>
</tr>
<tr>
<td>Y233</td>
</tr>
<tr>
<td>F259</td>
</tr>
</tbody>
</table>

Table 3.4 – A list of the aromatic residues predicted to interact with the membrane in \textit{S. guttatum} AOX.

The residues correspond to the model shown above in Figure 3.6b.
Figure 3.5 – A representation of the dimeric *S. guttatum* homology model. The iron ions of the diiron centres are shown in red.
Table 3.6a – The dimeric *S. guttatum* homology model embedded in a membrane patch. Phospholipids are shown here in grey with water molecules at the membrane surface shown in red. The iron ions of the active site are shown as red spheres.
Figure 3.6b – A surface representation of the *S. guttatum* dimeric homology model. Hydrophobic residues are shown in red (left) and aromatic residues are shown in green (right). The dashed white line indicates the proposed placement of the protein in the membrane with C and M indicating the cytosol and membrane sides respectively. The bottom two images represent the portion of the protein embedded in the membrane as viewed from inside the membrane. The orientations of the models shown here are the same as those shown in Figure 3.5.
3.3.4 Threading

Results from each threading algorithm are shown below in Table 3.5.

<table>
<thead>
<tr>
<th>Program/server</th>
<th>Templates identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyre2</td>
<td>Identified 73 putative templates; two consensus models built</td>
</tr>
<tr>
<td>RaptorX</td>
<td>Identified 39 putative templates</td>
</tr>
<tr>
<td>BioSerf/GenThreader/MODELLER</td>
<td>Unable to identify suitable template</td>
</tr>
<tr>
<td>HHPred</td>
<td>Unable to identify suitable template</td>
</tr>
</tbody>
</table>

Table 3.5 – A list of models generated from each threading algorithm.

3.3.4.1 Threading – RaptorX and Phyre2

RaptorX identified 39 possible templates on which \(S.\ guttatum \) was then modelled. None of the models produced replicated the necessary physical proximity of the iron-binding residues (Glu178, 217, 268, 319 and His220, 322; approximate ideal proximity was based on Table 3.3 above). Phyre2 identified 73 templates on which \(S.\ guttatum \) AOX could be modelled and subsequently two consensus models were produced. In one model, the aforementioned iron-binding residues were not proximal to one another, but in the second model (shown in Figure 3.7 below) 5 of the 6 residues were proximal (based on Table 3.3) with Glu178 more than 10Å away from all but one of the other 5 residues.

3.3.5 Docking

Use of the AutoDock PyMOL plugin resulted in the generation of 10 possible substrate-protein interaction conformations, with free energy states between -6.33kcal/mol and -4.23kcal/mol. The docking grid encompassed the whole monomeric homology model (Figure 3.3b), but all ten substrate-protein interactions were predicted to occur in the space between helices one and four. The two positions closest to the active site are shown in Figure 3.8 below in green (left, -5.38kcal/mol free energy on binding and 9.2Å from the iron centre) and yellow (right, -4.88kcal/mol free energy on binding and 7.7Å from the iron centre).
centre). The highest-scoring position (-6.33kcal/mol free energy on binding) lies 12.3Å from the iron centre.

A possible substrate-binding site (Figure 3.9, left) has been suggested as a result of docking, found between the membrane-associated helices one and four. A PyMOL session file (“Cavities.pse”) can be found on the CD at the back of this thesis.

Figure 3.7 – A representation of the consensus model generated by Phyre2.
Figure 3.8 – A diagrammatic representation of the potential docking of ubiquinol-1 in *S. guttatum* AOX by AutoDock. The two docked molecules (in green, left and yellow, right) represent the two positions closest to the diiron catalytic centre (9.2 Å and 7.7 Å respectively). The six iron-binding residues (Table 3.3) are shown in blue with the diirons shown in red.
Figure 3.9 — A diagrammatic comparison of two possible substrate binding sites. One possible substrate-binding cavity identified through docking with Autodock (left, in magenta) is compared to the inhibitor-binding site identified by Shiba et al. (2013; right, in blue).
3.4 Discussion

3.4.1 Multiple alignment and phylogenetic analysis

In agreement with previous findings *cf* Moore *et al.*, 1995 and more recently Williams *et al.*, 2010), there is a large amount of conservation observed across proposed helical regions when large numbers of alternative oxidase sequences are aligned (Figure 3.1). The 6 iron-binding residues (Glu178, Glu217, His 220, Glu268, Glu319 and His322) are wholly conserved in all alternative oxidase sequences to date. Sequence variation is observed outside of the helical regions, whilst residues directly up- and down-stream of the 6 iron-binding residues appear to be mostly conserved. Interestingly, there is a high level of variation in the region previously identified as responsible for determining pyruvate sensitivity which is in agreement with previous findings (Crichton *et al.*, 2005; Carré *et al.*, 2011; Ito *et al.*, 2011).

When 100 of the aligned sequences with greater than 60% similarity were used (distributed as evenly as possible between plant, fungi, bacterial and protists) to create a bootstrapped phylogenetic tree, many of the species did not form consistent clades. This suggests that there were errors in the initial iterations of tree construction, perhaps as a result of a relatively low similarity threshold applied across a large number of sequences. By gradually reducing the number of sequences, trees with more appropriate clade patterns could be generated, such as the bootstrapped tree shown above in Figure 3.2. Interpretation of the tree suggests that the modern thermogenic plants found in Australasia (*S. renifoli* and *N. nucifera*) diverged from the common ancestor less recently than the European araceae (*A. conicinna*, *A. maculatum* and *D. vulgaris*), with the *S. guttatum*, native to Asia and Africa diverging after the Australasian species, but before the European species. However, in contradiction with previous phylogenetic analyses of alternative oxidase sequences Roberts *et al.*, 2004; Williams *et al.*, 2010), it appears that the AOX proteins found in protist parasites (*Trypanosoma* and *Cryptosporidium* species) may be more closely related to prokaryotic AOX proteins than to plant AOX proteins; moreover, the fungal and parasite sequences are more distantly related to the proteobacterial sequences than the plant
sequences are to the proteobacterial sequences. Because the sequences were selected for similarity and familiarity, it is accepted that there is inherent bias and therefore interpretations are made with caution.

3.4.2 Homology modelling vs. threading

Several models were produced using both homology modelling and threading. Empirically, the z-scores for the two homology models (Table 3.2, Figures 3.3a and 3.3b) are within an acceptable range (Appendix 1) and the arrangement of the six iron-binding residues in three dimensions is consistent with previously proposed alternative oxidase iron-binding models (Table 3.3). By contrast, the QMEAN4 scores (Table 3.2) are low (0.14 for the homology model based on Δ₈-desaturase and 0.25 for the homology model based on TAO) on a scale where 0 is indicative of a poor model, and 1 is indicative of a very good model. However, low QMEAN4 scores are not unusual for membrane proteins, which are under-represented in the databases used as training sets for algorithms such as SwissMODEL (Benkert et al., 2011). Furthermore, accurate calculation of energy distribution in membrane protein models is difficult when the molecules of the membrane are not included in the dataset, so comparison to the energy distribution of other non-membrane-associated protein models of a similar sequence length is not favourable.

A manual assessment of the models shows no disallowed backbone conformations. Empirically and heuristically, the homology model based on the TAO structure must be selected as the most accurate model, as there is the greatest degree of sequence similarity between the target and the template (40%). Models generated using threading techniques were of poorer quality, as none managed to satisfy the proximity required of the iron-binding residue positions relative to one another in the final structure. This is likely to be due to poor template identification. Even using a scoring matrix such as BLOSUM40, which is particularly useful for aligning distantly related sequences, did not lead to any templates on which an accurate model could be based. This is a result of poor sequence similarity between the alternative oxidase and the most closely related family, the diiron
carboxylates (<30%). The accepted iron-binding motifs, \((\text{Ex}_n\text{ExxH})_2\), are distributed throughout the entire sequence and even with iterative alignment the motifs from several diiron carboxylate sequences are not aligned with those in the alternative oxidase sequence using a BLOSUM40 scoring matrix. At the time of writing, the TAO structure is not available through any of the databases that the threading software discussed herein search, so it is not possible to definitively state whether inclusion of the structure would improve the results of the threading. However, given that the similarity of the two sequences is above the 25% Sander-Schneider threshold, there is a reasonable probability that the threading process would be improved significantly.

3.4.3 Validity, variations and value of the \(\Delta^9\)-desaturase and TAO homology models

Whilst modelling the alternative oxidase on \(\Delta^9\)-desaturase is inherently inaccurate due to the low sequence similarity, it was the best model available at the time – especially taking into account the even greater degree of dissimilarity between the alternative oxidase and the other diiron carboxylates (10-20% similarity). This model was used extensively to construct crude representations of both the active site and other important regions such as the quinone binding pocket (cf Albury et al., 2009). The limitations of the model based on \(\Delta^9\)-desaturase were accepted; namely the lack of appropriate membrane associated helices and the low accuracy in the loop regions, where the template-target sequence similarity was <1%. Nevertheless, when used with a caveat of empirical limitation, it was a useful tool for physical visualisation of theoretical concepts such as the impact of residue mutation in a three-dimensional space. When the TAO structure was made available before publication, the quality of the working alternative oxidase model improved, especially when modelling virtual mutations and proposing a physical mechanism for the alternative oxidase catalytic cycle (Moore et al., 2013) – which may then be presented with an increased level of confidence.

As illustrated in Figure 3.4a above, there is one important difference between the homology model based on the \(\Delta^9\)-desaturase and TAO templates; the presence of two extra
helices in the TAO-based model. All previous models of the alternative oxidase predicted the presence of four longer helices, with one helix approximately half the length of the others, which was thought to anchor the protein in the membrane in a manner similar to that of prostaglandin H\(_2\)-synthase (Andersson and Nordlund, 1999). The extra helices present in the TAO structure, lie below the main four-helix bundle and do not constrain the active site, nor contain any of the iron-binding residues; as such, the previous prediction of a diiron active site coordinated by a four-helix bundle is accurate. The role of the extra helices has not been verified experimentally, although distribution of several aromatic residues (Table 3.4) would indicate that helices 1 and 4 are serving as an anchor to keep the alternative oxidase within the membrane. For reference, an overlay of the model based on \(\Delta 9\)-desaturase and the model based on TAO are illustrated in Figure 3.4a. While the main areas of overlay deviation occur in the unstructured loop regions, the placement of the helices relative to one another is also somewhat dissimilar. Furthermore, the distances between the iron-binding residues for each homology model (Table 3.3) could perhaps indicate that the diiron centre observed in the diiron carboxylate family is not identical to the diiron centre of the alternative oxidase family. This is perhaps some novel evidence that the alternative oxidase, initially placed in the diiron carboxylate family (cf Berthold et al., 2002) may not belong fully to that family. In fact, the alternative oxidase family has recently recognised officially as a family in its own right (EC 1.10.3.11).

It is worth noting that despite previous predictions that the alternative oxidase may have \(\beta\)-sheet or turn secondary structure elements (cf Moore and Siedow, 1991, and Table 5.8, Chapter 5), the TAO crystal structure does not have any \(\beta\) secondary structure elements at all. Since alpha helices are well represented in the databases from which propensity scoring tables are generated (Chou and Fasman, 1974; Garnier et al., 1978), this is not the reason why the predictions have been somewhat inaccurate in the past. The degree of variability in secondary structure predictions in Table 5.8 may indicate that the alternative oxidase secondary structures potentially contain residue sequences that are somewhat atypical compared to other residue-structure correlations.
3.4.4 Membrane-AOX model

In the membrane-AOX model (Figure 5.6) generated using VMD and PyMOL, the protein has been placed approximately 14Å into the membrane. This differs from the membrane-TAO model proposed by Shiba et al. (2013), in which the protein is placed 8Å into the membrane. Given the relatively even distribution of hydrophobic residues toward the solvent accessible surface of both TAO and the homology model of S. guttatum alternative oxidase based on TAO, there is no clear indication from these residues where the protein should sit in the membrane. However, there is a very hydrophobic, surface-accessible cavity in TAO – in which an ascofuranone-derivative molecule has been co-crystallised in each of the four chains presented in the crystal structure – approximately 7Å above the membrane-solvent boundary. This cavity, which is also present in the TAO-based S. guttatum homology model (Figure 3.9, right), could potentially allow a quinol-homologue substrate to pass into it, would therefore perhaps be more likely found closer to the membrane-solvent interface, rather than some 7Å above it. In light of this, the membrane-AOX model developed as part of this project has been heuristically modelled to allow the solvent-accessible entrance to the cavity to be placed inside the membrane, rather than outside.

3.4.5 Docking

In addition to the hydrophobic cavity identified in the TAO crystal structure, a second possible substrate binding region has been identified (Figure 3.9) through molecular docking. It was possible to model the interaction between the alternative oxidase and ubiquinol in this proposed binding pocket. The simulated docking outcomes with the lowest energy scores (as illustrated above in Figure 5.6) all place the ubiquinone-1 molecule with the quinone ring in approximately the same orientation (parallel to the membrane), suggesting perhaps that the substrate may be aligned as such in vivo. It is accepted that the accuracy of docking algorithms may decrease in the case of the alternative oxidase, as the binding site is likely to be embedded within the membrane in vivo, but is partly solvent-
exposed in the homology model. Therefore, calculated physical interactions (particularly electrostatic and hydrophobic interactions) may not be as realistically calculated as required. Bearing this limitation in mind, the outcome of the docking experiments is of interest and would be useful for further refining the exact substrate-residue interactions which take place in the substrate binding pocket.

Interestingly, the newly identified substrate binding pockets do not appear to incorporate any of the proposed quinone-binding motifs as suggested previously, such as the HR pair (H261, R262) and the quinone-binding triad element (LxxxHxxT, corresponding to L137, H141 and T144; Fisher and Rich, 2000). In the TAO-based homology model, the HR pair is greater than 5Å away from both of the proposed substrate binding pockets, and the triad element (L137, H141 and T144) are located in an unstructured region, the position of which varies between chains in the TAO crystal structure. In light of this, the inclusion of the alternative oxidase in group of quinone-binding proteins possessing the HR pair and triad element may need to be reconsidered.

3.4.6 Concluding remarks

It has been possible to model the S. guttatum alternative oxidase on both the distantly-related, diiron carboxylate Δ⁹-desaturase, and the more closely related member of the alternative oxidase family, TAO. Whilst using TAO as a template for homology modelling undoubtedly produces the most accurate outcome, the homology model based on Δ⁹-desaturase provided a useful tool in the absence of a more accurate model. In light of the two newly-identified potential substrate-binding sites, investigation of the key residues within these sites should be carried out using mutagenesis studies to further elucidate the structure-function relationship of these regions. The presence of a four-helix bundle providing a scaffold from which iron-binding can take place had been previously predicted, and therefore remains an essential part of the model, whilst the presence of two membrane-associated – and possibly substrate-associated – helices would suggest that the nature of the
membrane-protein interaction is key to the structure and function of the *S. guttatum* alternative oxidase.
Chapter 4

Expression and purification of the alternative oxidase

4.1 Background

The aim of this part of the project was to define a protocol for the over-expression, solubilisation and purification of recombinant *S. guttatum* alternative oxidase in a prokaryotic expression system.

Alternative oxidase protein has been extracted from native tissues (*cf* Huq and Palmer, 1978; Berthold and Siedow, 1993; Affourtit and Moore, 2004), but the instability and short lifespan of the protein following liberation from the mitochondrial membrane (*cf* Moore and Siedow, 1991) limits the experimental scope of using protein isolated from such tissues. Therefore, in order to conduct experiments where stable, long-lived protein is required, it has been necessary to implement the provision of alternative sources of AOX protein, specifically through recombinant protein expression. Previous attempts to express recombinant alternative oxidase have used both eukaryotic (Albury *et al*., 1996) and prokaryotic (*cf* Kumar and Söll, 1992; Berthold *et al*., 2002; Kido *et al*., 2010) expression systems, in the form of *Schizosaccharomyces pombe* and *E. coli* respectively. The *S. pombe* expression system has been used successfully as a strain for production of mutated alternative oxidase proteins (Crichton *et al*., 2010) in addition to wild-type *S. guttatum*. This eukaryotic system is ideal for this expression to monitor activity, as the AOX protein product is targeted to the inner mitochondrial membrane and expressed functionally alongside the traditional respiratory chain complexes.

Whilst the *S. guttatum* alternative oxidase has been expressed successfully in a eukaryotic system, extensive expression in a prokaryotic host has not been previously attempted. Other AOX isoforms such as *A. thaliana* and *T. brucei* (*cf* Berthold, 1998; Fukai *et al*., 1999 respectively) have been expressed in prokaryotic hosts however and the
protocols described have formed the basis for expression of *S. guttatum* AOX in specialist *E. coli* strains as described in this Chapter.

In order to ensure a reproducible *S. guttatum* recombinant protein yield can be achieved using a prokaryotic expression system, the previously described expression protocols (Berthold, 1998; Fukai et al., 1999; Nihei et al., 2003) have been adapted where necessary to account for isoform-specific differences in protein behaviour. Furthermore, it was necessary to define solubilisation and purification protocols for the production of *S. guttatum* recombinant alternative oxidase – which had not been attempted before.

4.1.1 Considerations for designing an expression and purification protocol

4.1.1.1 Expression strains – C41 and FN102

As previously stated, a protocol for expression of recombinant *S. guttatum* alternative oxidase in yeast has been successfully defined (Albury et al., 1996). However, the system was not designed to produce protein which can be readily purified. As a result, an additional system may be used to complement this eukaryotic system; namely the use of the gram-negative bacterium *E. coli*. Simple genetics and a short doubling time mean this is an ideal candidate for protein expression (*cf.* Russo, 2003; Terpe, 2006). Furthermore, if the recombinant alternative oxidase is targeted to the bacterial cytoplasmic membrane, it may be separated from the contents of the cell with careful application of cell lysis, solubilisation and finally purification.

Expression of recombinant protein using prokaryotic systems has been a long-established method for the bulk production of proteins of interest for either medical, industrial or research purposes. Much of the early development of this technique was carried out using *E. coli* (*cf.* Cohen et al., 1972; Morrow et al., 1974) and following the advancement of such protocols and techniques, there exists today a plethora of well-tested and well-documented prokaryotic expression systems for use in protein expression experiments, such as for the over-expression of AOX. Some *E. coli* strains are particularly well-suited to expressing different classes of protein and for this project two strains were
chosen – one strain modified for the general over-expression of membrane proteins (C41), and the other a haem-deficient mutant strain (FN102) with fewer respiratory complexes than other *E. coli* strains.

Historically, over-expression of membrane proteins in standard BL21 (DE3)/T7 RNA polymerase systems has resulted in cell death due to over-expression, causing undesirable effects such as membrane degradation (Dong *et al*., 1995; Grisshammer and Tate, 1995). Similarly, over-expression of globular proteins has been linked to expression-related toxicity (Studier *et al*., 1990; George *et al*., 1994) in the same system. Work carried out by Miroux and Walker (1996) aimed to identify *E. coli* strains which were capable of over-expressing membrane and globular proteins, without succumbing to the toxic effects associated with over-expression. Through numerous rounds of over-expression of the membrane-spanning oxoglutarate-malate carrier protein in BL21 (DE3), Miroux and Walker (1996) were able to isolate surviving cells, which they named C41, that were able to grow to high densities and express significant quantities of protein as inclusion bodies. Further rounds of over-expression of other membrane-bound proteins in the newly-selected C41 strain indicated that the strain was capable of over-expressing membrane proteins (such as the F$_1$F$_0$ subunit of ATPase, Arechaga *et al*., 2000) without falling prey to the toxic effects observed in the other BL21 (DE3) cell lines.

A second *E. coli* strain known as FN102 was also chosen for this project, but for different reasons. When expressing recombinant AOX in either yeast (*S. pombe*, as previously described) or bacteria, the protein is targeted to the membrane and is incorporated as a functional (unless mutated; see Chapter 5) protein. As a result, the recombinant protein works in tandem with the respiratory chain present in the organism – and this can be problematic when attempting to ascertain the proportion of activity of the cells that is a direct result of the alternative oxidase. Whilst a suitable solution has been developed in yeast systems (such as the use of complex-specific inhibitors during activity assays, Albury *et al*., 1996), in bacterial systems (where more respiratory complexes are present naturally), the issue is compounded. However, the development of several strains
lacking the ability to synthesise haem A – and therefore to synthesise fully functioning cytochrome c oxidase (COX) proteins – have offered a solution to this particular issue (Avissar and Beale, 1989; Kumar and Söll, 1992). Furthermore, when AOX is functionally expressed in haem-deficient strains, it 'rescues' the strain, acting as the final electron acceptor and allowing respiration to continue. Therefore, with no COX activity present, the proportion of alternative oxidase activity should be easier to quantify, which has proved advantageous to parts of this project. Additionally, haem-deficient strains have been used successfully previously to express alternative oxidase proteins (cf. Berthold, 1998; Chaudhuri et al., 1998; Fukai et al., 2003) of both plant and parasite origin.

For these reasons, the FN102 strain (as provided by Professor Kita, Tokyo University) was used alongside the C41 strain in order to provide two prokaryotic expression systems, both used in conjunction with a modified pET15b plasmid (Dr Mary Albury, as described in Chapter 2). For the ease of downstream purification of the recombinant AOX a six-histidine tag was encoded at the N-terminal of the recombinant gene sequence inserted into the pET15b vector. The plasmid also encoded for ampicillin resistance, for the purposes of transformant selection and competition reduction. The mitochondrial leader sequence had been removed for expression in E. coli, leaving only the mature protein encoded, which was thought to be inserted into the bacterial membranes as though it were mitochondrial in nature. The pET15b plasmid allowed for protein over-expression through the T7 promoter mechanism (Studier and Moffatt, 1986), and also controllable protein expression through the lac operon system (cf. Jacob and Monod, 1961 and Hanson et al., 1998) using IPTG as a lactose homologue.

4.1.1.2 Growth conditions

It is generally accepted that E. coli cultures grow optimally at around 37°C, which corresponds to efficient enzyme functionality. E. coli are relatively hardy however and may also be grown at temperatures below 37°C if required. For example, growing at 30°C slows growth during the exponential phase and prevents premature entry into the stationary phase,
whilst growing at 18°C after induction slows the exponential growth to a greater extent, but also reduces protein aggregation and increases protein solubility (cf. Sørensen and Mortensen, 2005).

The media required for growth of transformed C41 and FN102 cells is strain-specific. For C41, standard Miller Luria Broth supplemented with the plasmid-specific selective antibiotic ampicillin (100μg/ml), 0.2% glucose as an additional carbon source and 0.125% iron sulphate was recommended (Berthold, 1998). As shown previously, the availability of iron during protein expression is essential for the formation of functionally active alternative oxidase protein (cf Affourtit et al., 2004). By contrast, a sodium chloride-free tryptone-peptone buffered growth media was recommended for successful growth of transformed FN102 cells (Nihei et al., 2003, see Chapter 2, Section 2.2.2 for exact composition). Other supplements added include two iron sources (iron sulphate and iron chloride) to ensure sufficient iron for inclusion into the recombinant alternative oxidase protein; and magnesium sulphate, which had previously been identified as important for maintaining AOX stability (Nihei et al., 2003). In this case, the plasmid-specific selective antibiotic carbenicillin was used in place of ampicillin with no noted negative effects on growth efficiency (Nihei et al., 2003). Additionally, all agar plates and starter cultures for the growth of FN102 cells required the addition of ALA to enable the synthesis of haem-complexes prior to the expression of alternative oxidase. A critical step in the growth protocol for the FN102 strain is the removal (by centrifugation) of the ALA from the starter culture prior to inoculation of the main culture medium (Nihei et al., 2003).

For both the C41 and FN102 strains, identifying an optimal IPTG concentration is vital (Hansen et al., 1998; Kilikian et al., 2000), as this directly limits or optimises protein expression. Previous expression protocols (Berthold, 1998; Chaudhuri et al., 1998; Fukai et al., 2003; Nihei et al., 2003) stipulate varying IPTG concentrations for different AOX isoforms, ranging from 25μM-100μM.
4.1.1.3 Membrane harvest and lysis

Whilst for both FN102 and C41 strains the recommended centrifugation speed for pelleting the bacterial cells after the growth was 8,000 × g (Berthold 1998; Fukai et al., 1999; Fukai et al., 2003), the technique for lysis varies. Berthold (1998) and Fukai et al. (2003) performed lysis using a French Press, whilst Fukai et al. (1999) performed lysis using sonication. When lysing transformed cells with recombinant alternative oxidase targeted to the cytoplasmic membrane, it is particularly important that the cell membranes should be broken into smaller sections, but not eradicated entirely in order to avoid AOX inactivation through premature removal of the lipophilic membrane environment required for protein stability.

4.1.2 Factors affecting solubilisation and purification

The extraction of intrinsic proteins from the membrane requires disruption of the lipid layer and this is most often achieved using detergents. In the case of the alternative oxidase, the association with the membrane is thought to be monotopic (Rich and Moore, 1976), with aromatic residues (see Chapter 5, Section 5.3.3) potentially playing a role in anchoring the protein to the membrane.

Previously, n-octyl-β-D-glucoside (OG; Nihei et al., 2003) and deoxybigCHAP (Affourtit and Moore, 2004) have been used to liberate recombinant TAO and native A. maculatum from E. coli and mitochondrial membranes respectively. However, as S. guttatum alternative oxidase had not been previously solubilised from bacterial host membranes, alternative detergents and combinations thereof were tested experimentally. Stronger detergents were considered with caution; sodium dodecyl sulphate (SDS), for example, would potentially lead to protein aggregation and denaturation. By comparison, milder non-ionic detergents such as n-Dodecyl β-D-Maltopyranoside (DDM) and detergents in the polyoxyethylene series are capable of disrupting membranes with limited damage to proteins and have previously been used to solubilise the membrane-bound respiratory enzyme cytochrome c oxidase (Rosevear et al., 1980). Similarly, the non-ionic
and mild detergent OG has previously been successfully used to solubilise functional membrane-bound respiratory complexes from native tissues (Baron and Thompson, 1975) as well as functionally-active recombinant TAO (Nihei et al., 2003). However, other milder detergents shorter chain polyoxylethylene detergents (C₈E₄ or C₈E₅) can often be more inactivating to some recombinant proteins than DDM and other polyoxylethylene detergents with chains of intermediate length (C₁₂-C₁₄) (Maire et al., 2000).

For the purposes of solubilisation, it is essential to ensure that the final detergent concentration is equal to or slightly greater than the detergents critical micelle concentration (CMC), as this permits the detergent molecules to form micelles. This process facilitates the disruption of the membrane as well as providing a hydrophobic environment in which the liberated recombinant protein may be sequestered, thus reducing the risk of losing protein conformation (i.e. the exposure of a membrane-bound protein to a hydrophilic environment) and therefore function. The CMCs of most commonly used detergents are well characterised (cf Maire et al., 2000). Maintaining the concentration of the chosen detergent at or just above its CMC during solubilisation is advised, but following solubilisation the detergent concentration may be decreased to limit micelle size in order to allow for the detergent to be removed downstream.

Following solubilisation of native A. maculatum alternative oxidase (cf Hoefnagel et al. 1997; Affourtit and Moore, 2004) and recombinant TAO (Nihei et al., 2003) continued presence of detergent in suspension and purification buffers was required to retain protein activity. The requirement for detergent post-solubilisation is not uncommon for membrane proteins and given the relatively small mass of the alternative oxidase, it is not unreasonable to expect that the solubilised recombinant protein will be localised within the detergent micelles formed during solubilisation. Additionally, the alternative oxidase substrates are hydrophobic in nature (cf Hoefnagel et al., 1997) and would be sequestered to the core of the protein where the active site is found. As a result, it may be that the AOX not only requires a hydrophobic local environment but also close association with lipophilic structures such as membrane and detergent micelles. An additional lipophilic substance,
glycerol, has previously been added to solubilisation and purification buffers of the TAO (Nihei et al., 2003) and is thought to help retain protein activity by limiting conformational flexibility (cf Sousa, 1995).

Another additive which had been previously identified as essential for recombinant TAO stability post-solubilisation is magnesium sulphate (Nihei et al., 2003). The requirement for Mg$^{2+}$ ions in other membrane-bound proteins (such as ATPase, cf Cohen and Thompson, 1975) has been documented, although the exact nature of protein stabilisation by Mg$^{2+}$ ions is not known. One possible interaction that may be particularly relevant to the alternative oxidase is the adsorption of the Mg$^{2+}$ ions onto any negatively charged, solvent-accessible side chains (specifically charged amide groups), thus reducing excessive interaction of these side chains with water (cf Collins, 2006).

Crucially, the importance of the addition of pyruvate to buffers used for natively-expressed AOX (Carré et al., 2011) and recombinant plant alternative oxidase proteins would indicate that the presence of pyruvate in solubilsation and purification buffers may be essential for recombinant alternative oxidase stability. Whilst the exact mechanism by which pyruvate stabilises the alternative oxidase is unknown, it has been suggested that the pyruvate may interact with the cysteine-122 residue (cf Carré et al., 2011), which according to recent modelling (see Chapters 3 and 5) would most likely be solvent-facing. In the previously defined purification protocol for TAO (Nihei et al., 2003), pyruvate was not added to any of the extraction, solubilisation or purification buffers due to the apparent insensitivity of TAO to pyruvate (Chaudhuri et al., 2005). Therefore, the addition of pyruvate to extraction, solubilisation and purification buffers should be considered specific to the extraction of recombinant plant alternative oxidases and potentially other AOX isoforms from species which show pyruvate sensitivity.
4.2 Methodology

Transformation, bacterial growth, cell harvest, membrane solubilisation and recombinant alternative oxidase protein purification was carried out as detailed in Chapter 2, with experimental variations described below.

4.2.1 Expression strains

Modified pET15b plasmids containing the wild-type (*S. guttatum*) gene (as described in Chapter 2) were transformed into C41 and FN102 cells using the previously defined heat shock method (Chapter 2, Section 2.1.2) and grown for a maximum of 12 hours at 37°C on the appropriate LA plates.

4.2.2 Strain-specific growth conditions, membrane harvest and cell lysis

C41

Transformed C41 cells were grown as described in Chapter 2, Section 2.2.1 with no modifications after initial determination of optimal IPTG concentration (minimum 25μM, maximum 100μM). Re-suspension of the cell pellets after growth (harvest) was performed in 50mM TRIS-HCl, pH7.4 in both the presence and absence of sodium chloride (minimum 50mM, maximum 300mM), DTT (minimum 1mM, maximum 5mM) and 10mM pyruvate.

FN102

Transformed FN102 cells were grown as described in Chapter 2, Section 2.2.2 after initial experimentation with starter culture growth times (minimum 2 hours, maximum 8 hours), main culture growth times following induction (minimum 4 hours, maximum 16 hours) and varying IPTG concentration (minimum 25μM, maximum 100μM). Re-suspension of cell pellets after growth (harvest) was performed in 50mM TRIS-HCl, pH7.4 in both the presence and absence of pyruvate (minimum 1mM, maximum 100mM). Isolation of both crude membrane and inner membrane was investigated, based on Kido *et al.* (2010). To determine the effect of ALA on growth, starter cultures were grown in the
presence and absence of ALA, and in one case ALA was not removed prior to main culture inoculation using the starter culture.

4.2.3 Solubilisation

Several detergents were investigated (see Table 4.10 below) using the basic method as described in Chapter 2, Section 2.3.1. Solubilisation time (minimum 30 minutes, maximum 60 minutes) and centrifugation time (minimum 30 minutes, maximum 60 minutes) were varied to determine optimal conditions. Centrifugation speed was kept constant.

4.2.4 Purification

To determine the effect of detergent and glycerol concentration, various concentrations were investigated as follows: DDM – minimum 0.5%, maximum 1%; OG – minimum 0.5%, maximum 1.4%; C_{12}E_8 (octaethylene glycol monododecyl ether) – minimum 0.5%, maximum 1%; glycerol – minimum 2.5%, maximum 20%. Similarly, to determine the effect of the presence or absence of 200mM magnesium sulphate, 200mM iron sulphate, 150mM zinc sulphate and 10mM pyruvate these reagents were either included in the purification buffers, or omitted. Small-scale purifications (to test the effect of detergent, glycerol or salt concentration for example) were carried out using the batch method, whilst larger-scale preparative purification was carried out using the column/gravity flow method (Chapter 2, Section 2.3.2).

4.2.5 Protein activity assays

In order to maintain reproducibility, all activity assays were carried out using the spectrophotometric (see Chapter 2, Section 2.5.2) method. A number of substrates were used (duroquinol, ubiquinol-1 and decylubiquinol) depending on availability. The substrate used to obtain the results shown below in Section 4.3 is indicated in each Table information.
4.2.6 Visualisation of recombinant alternative oxidase

SDS PAGE and Western blotting analysis was carried out exactly as described in Chapter 2, Section 2.4.

4.3 Results

Specific and total activity shown in the Tables in this Section are those of wild-type recombinant protein and have been ascertained using ubiquinol-1 as substrate and the BCA method of protein estimation (see Chapter 2, Section 2.5.1.1) from a single preparation unless otherwise stated. The results of over-expression of the various mutants is discussed in Chapter 5; this Chapter is mainly concerned with the over-expression of wild-type (S. guttatum) alternative oxidase.

4.3.1 Factors affecting expression

4.3.1.1 Expression strains

It was possible to express active recombinant alternative oxidases from both the C41 and FN102 strains, as shown below in Table 4.1:

<table>
<thead>
<tr>
<th>Strain</th>
<th>Average specific activity of membrane (μmols/min/mg)</th>
<th>Average protein produced from 5L grow-up (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C41</td>
<td>0.5 (0.05)</td>
<td>60 (13.8)</td>
</tr>
<tr>
<td>FN102</td>
<td>1 (0.1)</td>
<td>20 (2.2)</td>
</tr>
</tbody>
</table>

Table 4.1 – Average specific activity and total wild-type recombinant protein produced per strain. This Table shows activity produced following the Berthold (1998) protocol; 35mM duroquinol substrate. Averages were taken over 5 preparations and standard deviation is shown in brackets.
4.3.1.2 Growth conditions, membrane harvest and cell lysis

4.3.1.2.1 C41

Two methods were used to grow C41 cells expressing recombinant *S. guttatum* based on methods by Berthold (1998) and Fukai *et al.* (1999), the results of which are summarised in Table 4.2 below.

<table>
<thead>
<tr>
<th>Method</th>
<th>Average specific activity (μmol/min/mg)</th>
<th>Average total protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berthold, 1998</td>
<td>0.5 (0.05)</td>
<td>60 (13.8)</td>
</tr>
<tr>
<td>Fukai et al., 1999</td>
<td>0.1 (0.03)</td>
<td>8 (1.5)</td>
</tr>
</tbody>
</table>

Table 4.2 – Average protein activity of membrane-bound recombinant *S. guttatum* AOX. This table shows average protein activity of the membrane-bound recombinant *S. guttatum* AOX and total protein as grown using the two previously described methods using 35mM DQH$_2$ as substrate. Averages were taken over 5 preparations and standard deviation is shown in brackets.

The Berthold (1998) growth method required little refinement. The growth curves in Figure 4.1 show optical density across a number of preparations, which demonstrates the reproducibility of the growth protocol.

The only change from the Berthold growth protocol was a deviation from the recommended incubation temperature post-induction due to difficulties controlling the temperature of the incubators. When the ambient temperature in the laboratory was high (i.e. in summer), the cooling system on the incubator was unable to chill the flasks to the required temperature of 18°C. The consistently achievable temperature was between 19°C and 20°C, which is under the 21°C temperature threshold recommended for incubation of proteins prone to aggregation or insolubility (*cf.* Baneyx, 1999). Activity and protein concentration from preparations carried out over the winter period (where 18°C was easily achieved) and summer period were compared to ensure that the increase of 2°C did not negatively impact protein expression or protein activity. Two membrane preparations carried out during summer months (exhibiting specific activities of 0.42μmol/min/mg and
0.48μmol/min/mg and total protein of 52mg and 55mg respectively) were comparable to two membrane preparations carried out during winter months (where specific activities were 0.46 and 0.51 μmol/min/mg and total protein of 55mg and 55mg respectively). Average total activity for the summer preparations was 25μmol/min, and average total activity for the winter preparations was 27μmol/min.

Final IPTG concentrations of 25, 50, 75 and 100μM were investigated and the results are shown below in Table 4.3.
Table 4.3 – The effect of IPTG concentration on cell protein concentration and activity of recombinant *S. guttatum* AOX expressed in C41. 35mM duroquinol was used as substrate.

<table>
<thead>
<tr>
<th>IPTG Concentration (μM)</th>
<th>Total protein in membrane fraction (mg)</th>
<th>Specific activity of membrane fraction (μmols/min/mg)</th>
<th>Total activity of membrane fraction (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>0.12</td>
<td>3.00</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>0.08</td>
<td>1.76</td>
</tr>
<tr>
<td>75</td>
<td>23</td>
<td>0.07</td>
<td>1.61</td>
</tr>
<tr>
<td>100</td>
<td>19</td>
<td>0.03</td>
<td>0.57</td>
</tr>
</tbody>
</table>

4.3.1.2.2 FN102

As predicted, there was a difference in growth times for FN102 cells expressing recombinant *S. guttatum* alternative oxidase and published figures for FN102 cells expressing TAO (Fukai *et al.*, 2003). Whilst the overnight (12-hour) plate colonies grew satisfactorily (typically 10-50 small colonies per plate), the starter cultures inoculated from the plate colonies consistently took >5 hours to reach optimal optical density for inoculation into the main culture media (optical density of 0.1 at 650nm). Similarly, once the main culture had been inoculated to an optical density of 0.01, the cultures required several hours (minimum of 2, maximum of 8) to reach an optical density of 0.1 and therefore induction density. Growth after induction of FN102 was not as rapid as observed in the C41 strain (see Figure 4.1), although it was not significantly reduced. This is shown below in Figure 4.2.

Figures 4.3a and 4.3b below illustrate the effect that the inclusion and subsequent removal or non-removal of ALA has on the growth curves for FN102 cells. In this experiment ALA was added at the beginning of the starter culture step and then either removed or left in the media prior to inoculation of a larger volume of media. In addition, the cultures were either induced (+ IPTG condition) or not induced (- IPTG condition) to see whether this had a noticeable effect on growth in the presence and absence of ALA.
Figure 4.2 – The growth of three cultures of FN102 cells transformed with S. guttatum AOX-containing plasmids. Cells were induced at ▼ and harvested at ▽.
Figure 4.3a – The effect of ALA on growth curves. Comparison of growth curves where ALA was either removed or left in the main culture medium and the effect of subsequent addition or non-addition of IPTG. Induction times of the +IPTG conditions where ALA was not removed and where ALA was removed are indicated by ▽ and ▼ respectively,
Figure 4.3b - The effect of the presence and absence of ALA in the starter culture on subsequent growth curves. This Figure illustrates the effect of adding no ALA to the starter culture compared to adding ALA to the starter culture and subsequent addition or non-addition of IPTG. Induction times for the +IPTG condition where ALA was removed and ALA was not present are indicated by ▼ and ▽ respectively.

Activity measurements were taken from the samples shown above (membrane-bound recombinant AOX only) after harvest (optical density at harvest not shown in Figures 4.3a and 4.3b) and are shown in Table 4.4 below. Final IPTG concentrations of 25, 50, 75 and 100µM were investigated and the results are shown below in Table 4.5.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Specific activity (μmols/min/mg)</th>
<th>Total activity (μmols/min)</th>
<th>Total protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ ALA, no removal, + IPTG</td>
<td>0.72</td>
<td>7.92</td>
<td>11</td>
</tr>
<tr>
<td>+ ALA, no removal, - IPTG</td>
<td>0.002</td>
<td>0.024</td>
<td>12</td>
</tr>
<tr>
<td>+ ALA, removal, + IPTG</td>
<td>1.10</td>
<td>14.3</td>
<td>13</td>
</tr>
<tr>
<td>+ ALA, removal, - IPTG</td>
<td>0.001</td>
<td>0.012</td>
<td>12</td>
</tr>
<tr>
<td>- ALA, + IPTG</td>
<td>0.11</td>
<td>0.88</td>
<td>8</td>
</tr>
<tr>
<td>- ALA, - IPTG</td>
<td>0.00</td>
<td>0.00</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4.4 – The effect of ALA on activity of membrane-bound recombinant AOX. This Table shows the effect on activity of membranes isolated from FN102 cells +/- ALA, +/- ALA removal, and +/- IPTG (200ml cultures).

<table>
<thead>
<tr>
<th>IPTG Concentration (µM)</th>
<th>Total protein in membrane fraction (mg)</th>
<th>Specific activity of membrane fraction (μmols/min/mg)</th>
<th>Total activity of membrane fraction (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>12</td>
<td>0.03</td>
<td>0.36</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0.11</td>
<td>0.89</td>
</tr>
<tr>
<td>75</td>
<td>6</td>
<td>0.07</td>
<td>0.47</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>0.12</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 4.5 – The effect of IPTG on activity of membrane-bound recombinant AOX. This Table shows the effect of IPTG concentration on total and specific activity of subsequent membrane fraction of recombinant *S. guttatum* alternative oxidase in FN102 cells. 35mM duroquinol was used as substrate.

4.3.2 Factors affecting solubilisation and purification

4.3.2.1 Factors affecting solubilisation

In order to solubilise the membrane fraction, and release the recombinant *S. guttatum* AOX from the lipid layer, it was necessary to establish the localisation of the protein within the cell matter. This was achieved using Western blotting in conjunction with activity assays of the relevant fractions. The results are summarised below in Table 4.6.
and Figure 4.4. Data shown is taken from single preparations of both C41 and FN102 strains typical of other preparations.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Specific activity (µmol/min/mg)</th>
<th>Total activity (µmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane C41</td>
<td>0.48</td>
<td>26</td>
</tr>
<tr>
<td>Supernatant C41</td>
<td>0.001</td>
<td>0.035</td>
</tr>
<tr>
<td>Membrane FN102</td>
<td>0.9</td>
<td>18</td>
</tr>
<tr>
<td>Supernatant FN102</td>
<td>0.002</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 4.6 – Activity distribution in membrane and supernatant fractions from membrane harvest.

The detergents tested and the corresponding activities (all taken from the same preparation of membrane-bound recombinant S. guttatum AOX expressed in FN102) are shown below in Table 4.7, comparing activity in the soluble (supernatant) and insoluble (pellet) fractions. The accompanying SDS PAGE gel in Figure 4.5 shows the effect of the detergents in Table 4.7 on sample composition.

DDM was further tested in varying concentrations, with differing incubation and centrifugation run times and speeds. The results are summarised below in Tables 4.8a and 4.8b. A Western blot showing the soluble and insoluble fraction following solubilisation with 1% DDM is shown below in Figure 4.6.

<table>
<thead>
<tr>
<th>Specific activity (µmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detergent</td>
</tr>
<tr>
<td>1% DDM</td>
</tr>
<tr>
<td>1% DDM, 200mM NaCl</td>
</tr>
<tr>
<td>1% DDM, 20mM MgSO₄</td>
</tr>
<tr>
<td>0.1% TRITON X-100</td>
</tr>
<tr>
<td>1.4% OG</td>
</tr>
<tr>
<td>0.1% DeoxyBigCHAP</td>
</tr>
<tr>
<td>3% Digitonin</td>
</tr>
<tr>
<td>0.1% Tween-20</td>
</tr>
</tbody>
</table>

Table 4.7- The effect of detergent on activity post membrane solubilisation. All measurements refer to a single preparation of membrane-bound S. guttatum AOX expressed in FN102, using the Lowry (1951) estimation method.
Figure 4.4 – Presence of recombinant AOX during each stage of harvest on SGS-PAGE gel and Western blot. In this Figure, an SDS-PAGE gel (top) and Western blot (bottom) show the presence of the recombinant *S. guttatum* alternative oxidase in the membrane (1) and supernatant (8) fractions during and following membrane harvest: recombinant protein present in the unlysed culture (4); re-suspended cell pellet following initial centrifugation (6); lysed cells (sonication); (5); and top (2) and bottom (3) ultracentrifuge fractions. (-) indicates a gap between lanes 6 and 7. Samples shown are recombinant *S. guttatum* alternative oxidase expressed in C41, using the Berthold (1998) growth and harvest protocol. All lanes contain 15 μg of protein. The dark bands present at approximately 76kDa are most likely dimeric recombinant *S. guttatum* alternative oxidase protein.
Figure 4.5 – SDS-PAGE gel of solubilisation of recombinant membrane-bound AOX by various detergents. This Figure of an SDS PAGE gel shows the resultant soluble (SN) and insoluble (PPT) fractions following solubilisation with detergents. Lanes: Mr. Marker 1. Membrane; 2. SN Tween-20; 3. PPT Tween-20; 4. SN TritonX-100; 5. PPT TritonX-100; 6. SN DeoxyBigChap; 7. PPT DeoxyBigChap; 8. SN Digitonin; 9. PPT Digitonin. All lanes contain protein from the same preparation of membrane-bound recombinant *S. guttatum* AOX expressed in FN102. Concentration of detergents listed reflects those in Table 4.7 above.
Table 4.8a – The effect of final DDM concentrations on specific activity. Activities shown correspond to solubilisation with DDM on membrane samples from the same membrane preparation (recombinant \textit{S. guttatum} AOX expressed in C41). 35mM duroquinol was used as substrate.

<table>
<thead>
<tr>
<th>Final % of DDM (w/v)</th>
<th>Specific activity (µmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.023</td>
</tr>
<tr>
<td>0.75</td>
<td>0.018</td>
</tr>
<tr>
<td>1</td>
<td>0.531</td>
</tr>
<tr>
<td>1.5</td>
<td>0.130</td>
</tr>
<tr>
<td>2</td>
<td>0.274</td>
</tr>
</tbody>
</table>

Table 4.8b – The effect of incubation and spin time on activity of solubilised membrane. This Table shows the effect of incubation time and centrifugation spin time on activity of recombinant \textit{S. guttatum} AOX-containing membrane sample expressed in C41 and solubilised with 1\% (w/v) DDM. 35mM duroquinol was used as substrate.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Activity (µmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incubation time (mins)</td>
</tr>
<tr>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>30</td>
<td><30</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
4.3.2.2 Buffers and additives

Several metal-based buffer additives were tested in order to either stabilise the recombinant protein or otherwise maintain activity during solubilisation and purification. The additives investigated are detailed in Table 4.9 below, illustrating the effect of each additive in the solubilisation buffer.

<table>
<thead>
<tr>
<th>Additive</th>
<th>Specific activity (μmols/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>100mM MgSO$_4$</td>
<td>0.498</td>
</tr>
<tr>
<td>200mM ZnSO$_4$</td>
<td>0.001</td>
</tr>
<tr>
<td>150mM FeSO$_4$</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Table 4.9 – Effect of metal sulphates on specific activity of solubilised recombinant *S. guttatum* AOX.

This Table details the effect on specific activity of solubilised protein by the addition of various metal-based additives to the purification and assay buffers. Data corresponds to solubilised recombinant *S. guttatum* AOX expressed in C41 from a single membrane preparation. 35mM duroquinol was used as substrate.

The effect of glycerol concentration on alternative oxidase activity is shown below in Table 4.10.

4.3.2.3 Purification

A number of conditions were tested when purifying recombinant protein and the most effective is summarised below in Figure 4.7. A purification table (Table 4.11) is shown below. SDS PAGE and Western blots showing the membrane, flow-through, wash and eluate fractions using the protocol shown in Figure 4.7 is shown below in Figure 4.8, along with an early attempt at purification for comparison.
<table>
<thead>
<tr>
<th>% Glycerol</th>
<th>Specific Activity (μmol/min/mg)</th>
<th>Total Activity (μmol/min)</th>
<th>Total Protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>1.43</td>
<td>49.3</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>0.32</td>
<td>7.04</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>0.31</td>
<td>7.13</td>
<td>23</td>
</tr>
<tr>
<td>7.5</td>
<td>0.30</td>
<td>5.7</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>0.31</td>
<td>7.13</td>
<td>23</td>
</tr>
<tr>
<td>Membrane</td>
<td>1.00</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>0.24</td>
<td>4.32</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>4.75</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>0.17</td>
<td>3.74</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 4.10 – The effect of final glycerol concentration on activity of solubilised membrane samples. This table shows the effect of glycerol concentration on solubilised recombinant *S. guttatum* AOX expressed in FN102 compared to the membrane fractions from which they were solubilised. Samples were solubilised using 50mM TRIS pH 7.5, 100mM MgSO₄, 10mM pyruvate, 1% DDM and 35mM duroquinol was used as substrate.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Specific activity (μmol/min/mg)</th>
<th>Total activity (μmol/min)</th>
<th>Total protein (mg)</th>
<th>Purification factor</th>
<th>% recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>0.91</td>
<td>29.7</td>
<td>32.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soluble</td>
<td>0.93</td>
<td>29.5</td>
<td>31.5</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>Pooled eluate</td>
<td>20.6</td>
<td>14.6</td>
<td>0.71</td>
<td>22.6</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 4.11 – Purification table for recombinant *S. guttatum* AOX expressed in FN102. This purification table shows activities observed when following the purification protocol as given below in Figure 4.5. Purification factor refers to the factor increase of specific activity compared to the specific activity of the membrane. % recovery refers to the percentage of total activity compared to the total activity of the membrane faction. Activities shown here correspond to samples on SDS-PAGE gel and Western shown below in Figure 4.8.
Figure 4.7 – Purification workflow. This Figure summarises the final buffer combinations used during the stages of purification for recombinant *S. guttatum* AOX expressed in FN102.
Figure 4.8 – SDS-PAGE gel and Western blots of purified recombinant *S. guttatum* AOX expressed in FN102. A: Western blot showing early attempts at purification (FT flow-through, W wash, E eluate) compared to later attempts (B and C) using the protocol shown above in Figure 4.6. Samples shown in parts B and C correspond to activities listed in Table 4.11 (Mr = marker). The dark bands present between the 76kDa and 52kDa markers are most likely dimeric recombinant *S. guttatum* alternative oxidase protein.
4.3.2.4 The effect of pyruvate on activity

Membrane-bound *S. guttatum* alternative oxidase expressed in FN102 was assayed in the absence and presence of pyruvate. Table 4.12a demonstrates the difference in activity observed in the absence of pyruvate and the presence of 10mM pyruvate in either the assay buffer, the extraction buffer, or both. 150mM Q₁H₂ was used as the substrate, and inhibition of at least 95% by 100nM ascofuranone was demonstrated in each assay.

<table>
<thead>
<tr>
<th></th>
<th>Protein (mg/ml)</th>
<th>Total protein (mg)</th>
<th>Specific activity (µmols/min/mg)</th>
<th>Total activity (µmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane (-)</td>
<td>3.5</td>
<td>5.6</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Membrane (+A)</td>
<td>3.5</td>
<td>5.6</td>
<td>0.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Membrane (+E)</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Membrane (+AE)</td>
<td>1.9</td>
<td>1.9</td>
<td>3.0</td>
<td>5.7</td>
</tr>
</tbody>
</table>

*Table 4.12a – The effect of pyruvate on recombinant *S. guttatum* AOX expressed in FN102*. This Table demonstrates the effect on activity of the absence of pyruvate (-), 10mM pyruvate added to the assay buffer (+A), 10mM pyruvate added to the extraction buffer (+E) and 10mM pyruvate added to both extraction and assay buffers (+AE).
Table 4.12b below shows the effect of differing the pyruvate concentration in the assay buffer only. The membrane sample assayed had a concentration of 3.5mg ml\(^{-1}\) and a total protein of 5.6mg.

The effect of adding 10mM pyruvate to the assay buffer alone when assaying various purification fractions was also monitored and the results are shown below in Table 4.13.

Figure 4.9 below shows the absorbance at 278nm of recombinant membrane-bound S. guttatum alternative oxidase in the presence of 150μM Q\(_{1}\)H\(_{2}\) substrate.

<table>
<thead>
<tr>
<th>Pyruvate added (mM)</th>
<th>Specific activity (μmols/min/ mg)</th>
<th>Total activity (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
<td>3.2</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>3.2</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 4.12b – The effect of pyruvate concentration on activity of recombinant S. guttatum AOX expressed in FN102. The Table demonstrates the effect on specific and total activities when adding pyruvate to the assay buffer. Protein concentration was estimated using the Lowry (1951) method.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total protein (mg)</th>
<th>Specific activity (μmols/min/mg)</th>
<th>Total activity (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>5.6- , 1.9+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Soluble</td>
<td>0.44- , 0.26+</td>
<td>0.02</td>
<td>3.8</td>
</tr>
<tr>
<td>Eluate</td>
<td>0.02- , 0.01+</td>
<td>0.12</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Table 4.13 – The effect of pyruvate on activity during each stage of purification. This Table shows the effect of adding 10mM pyruvate to the assay buffer alone when assaying various fractions of recombinant S. guttatum AOX protein expressed in FN102. Protein concentration was estimated using the Lowry (1951) method.
Figure 4.9 – Spectrophotometric trace of the specific activities of recombinant *S. guttatum* AOX protein samples expressed in FN102. This trace shows specific activity (the numbers above each absorbance slope represents specific activity in μmols/min/mg) for several recombinant *S. guttatum* alternative oxidase fractions: A membrane isolated in the absence of pyruvate with no pyruvate added to the assay buffer (Table 4.12a); B membrane isolated in the absence of pyruvate with 10mM pyruvate added to the assay buffer (Table 4.12a); C membrane isolated in the presence of 10mM pyruvate with 10mM pyruvate also present in the assay buffer (Table 4.12a).

4.3.2.5 Downstream processing

In order to concentrate the purified protein several methods were tested as summarised below in Tables 4.14a and 4.14b.
<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>All activity lost, protein precipitated</td>
</tr>
<tr>
<td>Ammonium sulphate precipitation</td>
<td>Some of the protein activity retained, although trace (NH₄)₂SO₄ was undesirable for downstream protocols and negatively impacted on protein life-span</td>
</tr>
<tr>
<td>PEG precipitation</td>
<td>Most of the protein activity retained, and PEG easy to remove via centrifugation. See Table 4.13b below</td>
</tr>
<tr>
<td>Ultrafiltration (centrifuge method)</td>
<td>Protein consistently precipitated on filter, and significant protein amount and activity lost</td>
</tr>
<tr>
<td>Centrifugation</td>
<td>Results obtained were inconsistent, varying from good activity retention to total activity loss</td>
</tr>
</tbody>
</table>

Table 4.14a – Concentration methods used. This Table lists the various concentration methods used, and general results obtained.

Further to the results shown above in Table 4.14a, it was necessary to ascertain whether PEG had an inhibitory effect on the activity of the recombinant protein and several precipitations were carried out. Typical results are shown in Table 4.14b, and Figure 4.10 below.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total protein (mg)</th>
<th>Specific activity (μmols/min/mg)</th>
<th>Total activity (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluate</td>
<td>1.2</td>
<td>0.04</td>
<td>0.058</td>
</tr>
<tr>
<td>PEG SN</td>
<td>1.1</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>PEG PPT</td>
<td>0.1</td>
<td>0.122</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Table 4.14b – The effect of PEG precipitation on the activity of purified recombinant S. guttaum AOX expressed in FN102. SN refers to supernatant and PPT refers to the pellet left following ultracentrifugation.
Figure 4.10 – Western blot of PEG precipitated purified recombinant *S. guttatum* AOX expressed in FN102. This Western Blot shows the presence of recombinant alternative oxidase in the PEG precipitation pellet (PPT) and absence in the PEG precipitation supernatant (SN). Sample shown corresponds to the activity shown above in Table 4.14b. The dark bands present above the 76kDa and between the 78kDa and 52kDa markers are most likely dimeric recombinant *S. guttatum* alternative oxidase protein.

4.3.2.6 Quantification, visualisation and activity monitoring of recombinant alternative oxidase

Two methods were used to estimate alternative oxidase concentration, namely the BCA and Lowry methods. In order to identify any differences in sensitivity, the protein content of an active membrane sample (FN102) was estimated on the same day using the two methods. In this case, the Lowry gave an estimation approximately one-fifth (8mg protein total) of that given by the BCA (42mg protein total). In addition when carrying out the BCA estimation method, control protein estimations were performed using buffer containing no protein, but treated in the same manner as experimental samples. These
estimations gave readings of approximately 0.001 at 562nm (0.002 max, 0.000 min). By comparison, the lowest BSA concentration standard, corresponding to 0.1mg/ml protein, had a typical absorbance of 0.202 (±0.021). To further ensure that protein estimation was accurate, any samples where absorbance was below 0.010 were repeated.

Figure 4.11 – Possible location of recombinant *S. guttatum* AOX expressed in FN102 on an SDS-PAGE gel and Western blot. This Figure shows the probable recombinant *S. guttatum* AOX band on an SDS PAGE gel and corresponding Western blot, as indicated by the arrows. Also observed is the double band often seen when running recombinant *S. guttatum* AOX on SDS PAGE gels. Lanes: 1 – markers; 2 – Western blot corresponding to lane 3; 3 – membrane-bound recombinant *S. guttatum* AOX; 4 – supernatant from membrane isolation. The dark bands present between the 76kDa and 52kDa markers are most likely dimeric recombinant *S. guttatum* alternative oxidase protein.

When conducting activity assays, ubiquinol-1 was the preferred substrate, although not in constant supply as it was donated by Professor Kita (University of Tokyo). Initially,
duroquinol and decylubiquinol were used in activity assays, but lower activity was recorded using these substrates for the same sample, as shown below in Table 4.15.

On each of the Western blots presented in this Chapter a higher-weight AOX species can be seen, typically between the 52kDa and 76kDa markers and above the 76kDa marker. This is thought to be a dimeric recombinant *S. guttatum* AOX which is present unless the protein was placed under reducing conditions.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Average Specific activity (μmols/min/mg)</th>
<th>Total activity (μmols/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiquinol-1</td>
<td>0.90 (0.11)</td>
<td>18.0</td>
</tr>
<tr>
<td>Duroquinol</td>
<td>0.51 (0.05)</td>
<td>10.2</td>
</tr>
<tr>
<td>Decylubiquinol</td>
<td>0.35 (0.13)</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Table 4.15 – The effect on activity of recombinant *S. guttatum* AOX protein of three substrates. This table shows the specific and total activity observed in one sample using three different substrates. The sample was taken from recombinant *S. guttatum* alternative oxidase expressed in FN102 in the membrane-bound form, containing 20mg total protein. Standard deviation is indicated in the specific activity column.

4.4 Discussion

4.4.1 Strains and growth conditions

It has been possible to successfully express and harvest protein from two *E. coli* expression strains, C41 and FN102 (Table 4.1).

4.4.1.1 C41

Following the Berthold (1998) growth and harvest method for the C41 strain, little refinement of the original protocol was required to produce consistent quantities of recombinant protein (Table 4.1) targeted to the cytoplasmic membrane (Figure 4.6). The optimal concentration of IPTG required for induction of C41 cells expressing recombinant *S. guttatum* was ascertained (25μM, Table 4.3), resulting in consistent protein concentration and specific activity. Furthermore, growth of the main culture post-inoculation and pre-induction (4 hours at 30°C and 1 hour at 18°C) appears consistent over a number of
preparations (Figure 4.1). After evaluation of the data shown in Table 4.4, the Berthold (1998) method was selected for all further growth of C41 cultures. The method as defined by Fukai et al. (1999) was not used since it consistently produced lower protein concentration and specific activity than the protein produced by C41 cells expressed using the Berthold (1998) method.

4.4.1.2 FN102

The previously defined protocol for over-expression and membrane harvest of FN102 cells expressing recombinant TAO (Nihei et al., 2003) has been successfully adapted to express recombinant S. guttatum AOX (Table 4.1). Use of 50μM of IPTG to induce FN102 cells expressing recombinant S. guttatum alternative oxidase appears to be optimal, giving the highest total activity and sufficient protein content (Table 4.5).

In agreement with previous findings (Chaudhuri et al., 1998; Nihei et al., 2003) the addition of ALA to agar plates and starter culture is required for FN102 growth. A lack of ALA results in significantly decreased cell growth and subsequent activity as shown in Figure 4.3b and Table 4.4. Retaining ALA in the media leads to increased growth rate, but halves the recombinant AOX activity indicating that whilst the cells are able to express the haem-COX proteins and subsequently the recombinant alternative oxidase after induction, expression of the recombinant AOX while the other COX proteins are present is shown to be decreased. This is demonstrated by reduced AOX specific activity observed in the membrane fraction where ALA was not removed compared to the membrane fraction where the ALA was removed, whilst the total protein concentration remains similar in both conditions (Table 4.4). The reason for this is unclear; it could be assumed that following induction, growth of the FN102 cells without ALA removal should increase more than that of the cells where the ALA had been removed given the additional oxidative role the recombinant protein is performing. However, as this is not directly linked to energy production, there may be additional factors acting on the cells that would explain the observed protein behaviour. For example, when the ATP supply is likely to be steady and
adequate where membrane redox potentials are close to normal for E. coli (i.e. when ALA is present and not removed), then the activity of the recombinant protein is reduced, although it is unclear how this may occur. Crucially, in FN102 cells expressing recombinant S. guttatum AOX, the time taken to reach the required optical density of 0.1 (at 650nm) after inoculation appears to be longer and more variable than the times given for FN102 cells expressing recombinant TAO (between 2 and 8 hours for S. guttatum compared to between 2 and 4 hours for TAO, Nihei et al., 2003). Since expression of recombinant AOX in both this project and the previously published work (Nihei et al., 2003) is under the tight control of the T7 promoter, with cells grown in lactose-free, glucose-containing media prior to induction, this difference in pre-induction growth cannot be attributed to isoform-specific differences in alternative oxidase protein activity. However, the variation in time taken for FN102 cells expressing recombinant S. guttatum alternative oxidase may be explained by naturally fluctuating levels of COX protein production in the presence of ALA; COX activity may decrease after periods of high turnover or remain relatively stable after periods of moderate turnover. The former would produce ATP more rapidly, but levels would also be depleted more rapidly. The variation in time taken to reach inducible optical density results in a less-predictable growth protocol than is observed with C41 cells expressing recombinant S. guttatum AOX. Therefore, the growth of FN102 cells post-inoculation requires very careful monitoring of optical density.

4.4.1.3 Cell lysis

Two methods of cell lysis were used during this project – sonication and the French Press. Membrane samples prepared from the same growth, where half the resuspended harvested cells were sonicated and the remaining half lysed using the French Press, no significant difference in specific activity was observed (C41 cells when sonicated: 0.48μmols/min/mg, compared to the French Press: 0.52μmols/min/mg; FN102 cells when sonicated: 0.89μmols/min/mg, compared to the French Press: 0.90μmols/min/mg). Regarding the practicality of each method, there is a preference for the French Press when
the volume of re-suspended harvested cells is >50mls and sonication for volumes of <50mls. The French Press also offers more opportunity to visually assess the lysate for signs of effective lysis (i.e. clarification of the sample leaving the cell) and therefore repeat the lysing process should it appear that lysis has not been effective. However, care must be taken when using both sonication and the French Press as methods of lysis of cells expressing recombinant alternative oxidase, as excessive damage to the membrane during lysis may result in inactivation of the recombinant protein.

4.4.2 Solubilisation

It has been possible to ascertain a solubilisation protocol for the effective liberation of active recombinant *S. guttatum* alternative oxidase resulting in 99% recovery of total activity from the membrane fraction (Table 4.11). The protocol consists of the drop-wise addition of solubilisation buffer to the membrane fraction (50mM TRIS-HCl, pH 7.5, 1% (w/v) DDM, 10mM pyruvate, 100mM MgSO$_4$, 5% (v/v) glycerol), followed by 30 minutes incubation with gentle stirring at 4°C and ultracentrifugation at 200,000 x g for 30 minutes at 4°C. After ultracentrifugation, the soluble fraction consistently contains the recombinant alternative oxidase, as verified by activity (Table 4.8b) and Western blotting (Figure 4.6). Previous attempts to solubilise recombinant TAO (Nihei *et al.*, 2003) stipulate the requirement for 1.4% (w/v) OG, 20% (v/v) glycerol and 100mM MgSO$_4$; as such, the DDM and pyruvate are specific requirements for the solubilisation of the *S. guttatum* alternative oxidase. Given the similarity between *S. guttatum* alternative oxidase and TAO, it was unexpected that OG should be so ineffective at liberating recombinant *S. guttatum* AOX protein from the membrane (Table 4.7). Whilst both DDM and OG are mild, non-ionic detergents, DDM has a larger head-group and longer alkyl chain than OG and therefore DDM forms larger micelles than OG (*cf* Baron and Thomson, 1975; Rosevear *et al.*, 1980; Maire *et al.*, 2000). These differences could suggest that TAO and *S. guttatum* alternative oxidase may have different requirements for lipophilic/hydrophobic association contributing to overall protein stability. However, as OG is known to decrease activity in
some proteins (Maire et al., 2000) continued use of DDM for solubilisation is preferable. The 1% (w/v) DDM (equivalent to 0.2mM) concentration used for the solubilisation of the *S. guttatum* alternative oxidase is greater than the CMC of DDM (0.17mM; cf Maire et al., 2000), which would allow for the formation of micelles. It is probable that the recombinant alternative oxidase molecules are at least partially enveloped by the DDM micelles; however, the exact extent of this interaction is not known. If required, the number of protein molecules per micelle could be further elucidated using analytical ultracentrifugation (cf Reynolds and Tanford, 1976).

Furthermore, if the recombinant protein molecules are partially embedded within the detergent micelles, this may increase the potential effect of the Mg$^{2+}$ ions present in the buffer; if less protein surface area is solvent-accessible (i.e. buried in the detergent micelles), any Mg$^{2+}$ ions binding to negatively charged groups will reduce the protein solvent-accessible surface area to an even greater extent. Addition of other sulphate salts (zinc and iron sulphate, Table 4.9) does not appear to stabilise recombinant *S. guttatum* alternative oxidase to the same extent as magnesium sulphate, indicating that it may be the magnesium ions rather than the sulphate ions which are stabilising the protein. However, magnesium sulphate alone does not increase activity, so it should be used in combination with DDM, pyruvate and glycerol for optimum effect.

4.4.3 Purification

A protocol has been defined within this project for the purification of recombinant *S. guttatum* alternative oxidase, resulting in 22-fold increase in specific activity from the membrane-bound fraction to the purified fraction and 49% recovery of total activity between the same fractions (Table 4.11). Using 1ml of nickel or cobalt affinity resin per 15mg of recombinant protein, at least three applications of 4x the bed volume of equilibration buffer (50mM TRIS-HCl, pH 7.5, 10mM pyruvate, 0.5% (w/v) DDM, 0.5% (w/v) OG, 100mM MgSO4, 5% (v/v) glycerol) should be used to equilibrate the affinity resin. The soluble fraction should be allowed to bind to the resin for no longer than 15
minutes at 4°C and following collection of the flow-through, the resin should be washed twice with 5x the bed volume of wash buffer (as per the equilibration buffer, with an additional 25mM imidazole). A final elution buffer (as per the equilibration buffer, with 250mM imidazole) 3x the bed volume may be applied as a single step elution for volumes <4ml, or as a multiple step gradient (25mM-250mM imidazole) elution for volumes >4ml.

This protocol differs from the previously defined protocol for the purification of recombinant TAO (Nihei et al., 2003), which does not stipulate the requirement for pyruvate or a DDM-OG combination. As discussed previously, the optimum detergent appears to be isoform-specific; however, any detergent added after solubilisation is unlikely to be forming new micelles, as the concentrations required (0.5% (w/v) of both DDM and OG) are below their respective CMCs. The additional detergent may simply be beneficial through the encouragement of the perpetuation of existing detergent-protein micelles by ensuring any detergent molecules lost from the micelles may be readily replaced.

4.4.4 General factors affecting the over-expression, solubilisation and purification of recombinant S. guttatum alternative oxidase

4.4.4.1 The effect of pyruvate on recombinant S. guttatum alternative oxidase

By adding pyruvate – which would be abundant in the cell cytoplasm if Kreb's had been halted – to membrane-bound recombinant S. guttatum alternative oxidase, activity can be increased (Tables 4.12a and 4.13). If the pyruvate is added to the assay buffer alone, the increase is a relatively small 1.2-fold, however when adding pyruvate to the protein membrane extraction buffer, a 4-fold increase in activity is observed. Furthermore, if pyruvate is added to both the membrane extraction buffer and the assay medium, the activity is increased 6-fold. This is generally consistent with previous findings, namely that the addition of pyruvate to native alternative oxidase extracted from thermogenic tissue increases the alternative oxidase activity (Carré et al., 2011). This is the first time it has been demonstrated with recombinant S. guttatum AOX expressed in E. coli. There is a cautious acceptance that the stimulation by pyruvate of thermogenic alternative oxidase
isoforms occurs independently of expression system. However, whether this increase in activity is as a result of a conformational change remains untested, and the data presented in this thesis cannot confirm this suggestion.

Interestingly, before pyruvate was routinely added to the extraction and purification buffers, no inhibition of activity was observed, which is somewhat in contradiction with previously reported findings that an absence of pyruvate leads to the inactivation of the alternative oxidase (Carré et al., 2011). It may be that the concentration of endogenous pyruvate present in the E. coli cells prior to membrane extraction was sufficient to maintain activity, especially if the pyruvate is bound to the protein (as opposed to being free in the lysate) and did not dissociate during the process of extraction, solubilisation and purification. Similarly, lower than expected rates of activity in early purified recombinant S. guttatum AOX samples may have been in part due to depleting pyruvate levels. However, this does imply that at least some of the pyruvate was potentially still bound to the protein as activity was low, rather than absent (Tables 4.12a and 4.13). This supports the suggestion that the pyruvate molecules interact directly – through more than simply transient association – with the alternative oxidase protein.

4.4.4.2 Recombinant protein quantification

Accurate quantification of recombinant alternative oxidase in the membrane and soluble fractions has been a consistent frustration during the course of this project. Since the protein estimation accounts for the total protein concentration rather than recombinant protein concentration only, the estimated protein concentrations used to calculate specific activity were artificially inflated. As a result, the specific activities reported for the membrane and soluble fractions are likely to be lower than the actual activity. This has not been considered in previous attempts to assay recombinant alternative oxidase (cf Berthold, 1998; Chaudhuri et al., 1998; Fukai et al., 1999; Nihei et al., 2003).

An alternative method of recombinant protein quantification was considered; expression of GFP-tagged alternative oxidase was attempted, but the attempts were not
successful and were not taken forward. Additionally, quantification through coomassie intensity was attempted, although difficulty in accurately identifying bands on an SDS PAGE gel that corresponded solely to recombinant AOX made this method unreliable (Figure 4.11) and was not taken forward. One possible method for accurately quantifying protein concentration is the use of quantitative Western blotting using fluorescence labelling (Bergendahl et al., 2003).

4.4.4.3 Downstream processing – protein concentration

As indicated in Table 4.14a, a number of techniques were investigated in order to identify the most effective method to concentrate purified protein samples. Of the methods investigated PEG precipitation proved to be the most effective, resulting in the retention of activity in the pelleted fraction post-centrifugation (Table 4.14b) and demonstrable localisation of the recombinant alternative oxidase to the same fraction (Figure 4.10). The pelleted fraction containing the concentrated recombinant alternative oxidase could also be readily frozen and stored at -80°C until required, with virtually no activity loss observed over 12 months of storage. The other methods investigated (ammonium sulphate precipitation, ultrafiltration, dialysis and high-speed centrifugation) resulted in an unacceptable, irreversible loss of protein activity and so were not used.

4.4.4.4 Substrate preference

As shown in Table 4.15, a higher rate of specific activity is observed when ubiqinol-1 is used as a substrate compared to duroquinol and decylubiquinol in the spectrophotometric activity assays. This is in agreement with previous findings (Hoefnagel et al., 1997), but does indicate that when ubiqinol-1 is not available, either duroquinol or decylubiquinol may be used.
4.4.5 Isoform-specific differences in alternative oxidase protein activity

There are significant differences between the specific activity of the three main recombinant *S. guttatum* alternative oxidase fractions (membrane-bound, solubilised and purified, Table 4.11) and the specific activity of other alternative oxidase isoforms, both native and recombinant (summarised in Tables 4.16a and 4.16b below). Particularly noteworthy comparisons are recombinant TAO and native *A. maculatum* (Kido *et al.*, 2010 and Affourtit and Moore, 2004 respectively), both of which reported specific activity values for a membrane-bound, solubilised and purified alternative oxidase isoform. For both *A. maculatum* and TAO, the specific activities observed in all fractions are considerably greater than those observed in the equivalent fractions of recombinant *S. guttatum* alternative oxidase. The higher activity exhibited by TAO may be an indication of the high turnover observed *in vivo*; during the blood-stream stage of the trypanosome life cycle when the organism produces ATP through glycolysis only, the TAO acts as the sole terminal oxidase turning over rapidly to reoxidise NADH to ensure glycolysis is sustained (Clarkson *et al.*, 1989; Chaudhuri *et al.*, 1995; Minagawa *et al.*, 1996). The TAO is not subject to regulation, so given sufficient provision of substrate and a suitably lipophilic environment, the enzyme should function at maximum capacity both *in vivo* and *in vitro*. Moreover, TAO has a truncated N-terminal region compared to *S. guttatum* and *A. maculatum* and this region has previously been identified as important in regulation of the activity of many alternative oxidase isoforms (Crichton *et al.*, 2005; Ito *et al.*, 2011). However, the high turnover rate of the TAO cannot account for the considerably greater protein concentration observed during all stages of expression and purification of TAO compared to that of recombinant *S. guttatum* alternative oxidase. As the expression of recombinant alternative oxidase is controlled by the same promoter for both *S. guttatum* and TAO, the greater quantity of protein produced in FN102 cells expressing TAO may perhaps indicate that either TAO requires less cellular energy to synthesise than *S. guttatum* or that *S. guttatum* recombinant protein is subject to degradation at some point after synthesis. There is some evidence of *S. guttatum* presence in the non-membrane portion of
the cell lysate (Figure 4.4, lane 8) and furthermore there was no AOX activity observed in this fraction when assayed, suggesting degradation may be occurring.

By contrast, the higher activities observed in *A. maculatum* alternative oxidase extracted from native tissues to near homogeneity (Affourtit and Moore, 2004) cannot be explained by a difference in enzyme function – both *A. maculatum* and *S. guttatum* generate the heat required for pollination via the alternative oxidase. Although the two isoforms share 90% sequence similarity, the recent discovery and sequencing of a number of *A. maculatum* alternative oxidase AOX1 gene products expressed at different stages during the process of thermogenesis highlight important amino acid variations (Ito *et al.*, 2011) in a region of the AOX previously identified as involved in regulation (Crichton *et al.*, 2005). A three amino acid motif, QDC (found at positions 288-290 in the *S. guttatum* sequence) is thought to be responsible for pyruvate sensitivity (Crichton *et al.*, 2005); in the recently sequenced *A. maculatum* AOX mRNAs however, the sequence is either ENV, QDT or QNT. Crucially, the *S. guttatum* sequence is the only alternative oxidase sequence to date that contains the QDC motif, which may account for the difference in observed activities presented below in Table 4.16a and above in Table 4.11. Additionally, it is likely that the rates presented by Affourtit and Moore (2004) are the result of the combined activities of two or more of the *A. maculatum* AOX1 gene products. As yet, the exact mechanism for regulation at this site is unknown, although pyruvate and other \(\alpha\)-keto acids are thought to play a major role (Crichton *et al.*, 2005). Furthermore, the activity assays performed on the *A. maculatum* samples were conducted in the presence of the detergent EDT-20 which is thought to stabilise the AOX protein (Affourtit and Moore, 2004; Carré *et al.*, 2011).

Despite the considerable differences in specific and total activity observed in recombinant *S. guttatum* compared to native *A. maculatum* AOX and recombinant TAO, a greater percentage of the total activity (49%) can be retained when purifying *S. guttatum* AOX compared to native *A. maculatum* (31%) and is comparable to the recovery achieved by Kido *et al.* (2010) when purifying recombinant TAO (53%).
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total activity (μmols/min)</th>
<th>Specific activity (μmols/min/mg)</th>
<th>Purification factor</th>
<th>% recovery</th>
<th>Total protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondria</td>
<td>116 (58)</td>
<td>1.7 (0.85)</td>
<td>-</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>Soluble</td>
<td>84 (42)</td>
<td>5.8 (2.9)</td>
<td>3.4</td>
<td>81</td>
<td>16</td>
</tr>
<tr>
<td>Purified</td>
<td>36 (18)</td>
<td>64 (32)</td>
<td>38</td>
<td>31</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table 4.16a – Purification table for mitochondrial *A. maculatum* AOX. This Table shows total activity, specific activity, purification factor, % recovery and total protein for mitochondrial, solubilised and purified alternative oxidase isolated from *A. maculatum* tissues, adapted from Affourtit and Moore (2004). Total and specific activities refer to μmols of duroquinol consumed and the figures in brackets refer to μmols of O₂ consumed as quoted in the referenced research article. Purification factor indicates the factor by which specific activity is increased compared to the mitochondrial specific activity and % recovery indicates the % of total activity recovered compared to the total mitochondria activity.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total activity (μmols/min)</th>
<th>Specific activity (μmols/min/mg)</th>
<th>Purification factor</th>
<th>% recovery</th>
<th>Total protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner membrane</td>
<td>3500</td>
<td>23.3</td>
<td>-</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>Soluble</td>
<td>2400</td>
<td>63.2</td>
<td>11</td>
<td>69</td>
<td>37.9</td>
</tr>
<tr>
<td>Purified</td>
<td>1860</td>
<td>207</td>
<td>35.4</td>
<td>53</td>
<td>8.95</td>
</tr>
</tbody>
</table>

Table 4.16b – Purification table for recombinant TAO expressed in FN102. This Table shows total activity, specific activity, purification factor, % recovery and total protein for inner membrane, solubilised and purified recombinant TAO expressed in FN102, adapted from Kido et al. (2010). Total and specific activities refer to μmols of substrate consumed when 150μM ubiquinol-1 was used as a substrate. Purification factor indicates the factor by which specific activity is increased compared to the inner membrane specific activity and % recovery indicates the % of total activity recovered compared to the total inner membrane activity.

4.4.6 Concluding remarks

For the first time, two different prokaryotic expression systems can be reliably used to express recombinant *S. guttatum* alternative oxidase protein. One system (C41) produces
a higher recombinant protein concentration, whilst the other system (FN102) produces recombinant protein which exhibits a higher activity, albeit in smaller quantities. Given the lower specific activity observed in protein expressed in the C41 strain, the FN102 strain is the better choice for expressing protein to use for kinetic profiling as the protein is more likely to reach V_{max}.

Recovery of total activity following solubilisation and purification of the recombinant protein is comparable with other recombinant alternative oxidases (TAO, Kido et al., 2010) and greater than the recovery of total activity of alternative oxidase from native tissues (Affourtit and Moore, 2004). The use of the detergent DDM for solubilisation of recombinant $S. \text{guttatum}$ alternative oxidase is very effective. Furthermore, retaining a lower concentration of DDM and OG post-solubilisation appears to be important for maintaining recombinant protein activity and stability. Therefore, a concentration of 0.5% (w/v) of both DDM and OG should be used in conjunction with magnesium sulphate and glycerol in all post-solubilisation buffers. Crucially, pyruvate should be present in all buffers post-harvest, as pyruvate has the most positive effect on stability and activity of recombinant $S. \text{guttatum}$ alternative oxidase.

Even when using similar growth, solubilisation and purification protocols, the specific activity observed in recombinant TAO is considerably higher than that observed in recombinant $S. \text{guttatum}$ AOX. This indicates that the activity may be affected by protein structure, as there are differences in sequence, structure and activity in vivo between TAO and $S. \text{guttatum}$ AOX. Although the optimised protocols are not suitable for scaling up much beyond volumes described herein, they can be repeated often with ease allowing quantities of active protein to be produced, pooled and stored. Whilst this approach has the disadvantage that protein quality may vary from preparation to preparation, there is less protein to be lost from one small preparation than there would be for one much larger preparation should an error occur.

With an expression and purification protocol optimised for recombinant $S. \text{guttatum}$ alternative oxidase, this is a significant advancement towards producing protein for other
experimental procedures to further elucidate the structure and catalytic mechanism of the plant alternative oxidase.
Chapter 5

Structural Biology of the Alternative Oxidase

5.1 Background

The structure of a protein can be described on a number of different levels, from the specific order of amino acids as determined genetically, to the highly complex and stable tertiary and quaternary native states. It is possible to ascertain the global structure of a protein using methods such as X-ray crystallography, but to further probe the relationship between the structure and function of a protein, local structure must also be investigated. Whilst no crystal structure is available for any of the plant alternative oxidases, two TAO structures have been solved in recent months (Shiba et al., 2013). In addition, site-directed mutagenesis of key residues identified through sequence alignments has been gathered previously for a number of AOX isoforms, which has lead to the identification and predicted structures of the active site, the substrate binding pocket and the inhibitor binding site.

The results presented in this Chapter show for the first time analysis of the alternative oxidase secondary structure, and describe efforts to define a protocol for the crystallisation of the S. guttatum alternative oxidase, which has previously not been attempted.

5.1.1 Primary and secondary structure of the alternative oxidase

The primary structure of a protein is determined by the gene from which it has been transcribed. The amino acids, in specific order, are joined through covalent peptide bonds and unlike the secondary, tertiary and quaternary structures it is not subject to changes in state unless enzymatically cleaved. The primary structure of the alternative oxidase has been known for two decades, with the first amino acid sequence published in 1991 (Rhoads
and McIntosh; *S. guttatum*). To date, there are ~280 reviewed alternative oxidase sequences in the UniProt database (http://www.uniprot.org), from both prokaryotic and eukaryotic organisms. Early sequence alignments were carried out when relatively few sequences were known (*cf* Moore *et al*., 1995a) and areas of high conservation became immediately apparent. Additionally, similarities between alternative oxidase and diiron carboxylate sequences (as reported in Moore *et al*., 1995a and Moore *et al*., 1995b) were observed. Furthermore, the alternative oxidase appeared to share physical properties with diiron carboxylates (like methane mono-oxygenase, MMO) such as the absence of a spectroscopic signal above 340nm (Vincent *et al*., 1990; Wilkins 1992; and Lipscomb 1994), leading to the suggestion that the similar functions of the AOX and diiron carboxylate (the activation of molecular oxygen) might indicate that their structures may also be similar (Moore *et al*., 1995a). This was supported by the similarity observed in the structures (Nordlund *et al*., 1992) of several diiron carboxylate proteins (hemerythrin, Holmes *et al*., 1991; methane mono-oxygenase, Rosenzweig *et al*., 1993; and ribonucleotide reductase R2, Nordlund and Eklund, 1993). Whilst the number of monomers varies for each diiron carboxylate, the monomers have predominantly α-helical structure, with four helices lying anti-parallel to one another to form a scaffold for the diiron active site. Using homology modelling based on another diiron carboxylate, Δ⁹-desaturase, Andersson and Nordlund predicted that the alternative oxidase active site was similarly constructed (Andersson and Nordlund, 1999).

Secondary structure, which is the formation of intrinsically coded, locally coordinated α-helices and β-sheets, is the result of hydrogen bonding. The resultant structures have regular geometry, as the amide bonds holding the residues together have restricted torsion angles (Ramachandran *et al*., 1963). Helices, for example, are permitted to adopt either 3.6_{13}, 3_{10} or π-helix conformation, with the latter two occurring less frequently in nature than the former. In the 3.6_{13} helix, often referred to simply as an α-helix, there are 3.6 amino acids per turn, which results in hydrogen bond formation between the backbone C=O group of the *n*th atom of the chain and the backbone N-H group of every *n*th + 4 residue. The lone pair of electrons found in the C=O group act as an acceptor to allow
hydrogen bonding to take place with the N-H group acting as the donor. One full hydrogen bond – spanning residue \(n \) to \(n+4 \) – contains approximately 13 atoms. The resulting helical structure has a square appearance when viewed lengthways through the core of the helix. This is the most commonly occurring helical conformation observed in nature.

By contrast, the \(3_{10} \) formation, which occurs in nature less frequently, contains 3 residues per turn, and a single closed hydrogen bond loop spans 10 atoms. Bonding still occurs between the C=O and N-H groups, but the participating N-H group is found on the \(n^{th}+3 \) residue, rather than the \(n^{th}+4 \) residue as it is in the \(\alpha \)-helix. The \(3_{10} \) helix appears triangular when viewed lengthways along the core, and offers a more tightly packed conformation. In the \(\pi \)-helix, hydrogen bonding occurs between the C=O and N-H moieties found on the \(n^{th} \) and \(n^{th}+5 \) residues respectively. Recent research suggests that \(\pi \)-helices are more common than previously thought, and may play a role in the formation of kinks in \(\alpha \)-helices of some active sites (Cooley et al., 2010). All three helices adopt a right-hand conformation in nature.

The physical construction of \(\alpha \)-helices was both predicted (Pauling et al., 1951) and verified experimentally (cf Kendrew et al., 1960). In 1983, Kabsch and Sander devised the Dictionary of Secondary Structure, and developed the algorithm “Define Secondary Structure of Proteins” (DSSP), which allows the user to assign secondary structure elements (SSE) within a 3D structure given the atomic coordinates. The DSSP algorithm identifies SSEs based on hydrogen bonding and atom geometry; for example it can assign \(\alpha \), \(3_{10} \), and \(\pi \) helices by calculating theoretical hydrogen bond energies between two residues (\(n + 4 \), 3 or 5 respectively) given their distance and the angle relative to each other. This algorithm cannot be used to predict secondary structure from sequence information, but the description of hydrogen bonding and atom geometry in a mathematical way has been an fundamental tool when taking a knowledge-based approach to structure prediction. Algorithms exist which are able to predict the propensity for any given sequence of amino acids to form particular secondary structure elements. Early calculations were based either on the frequency with which certain residues occur in each structure (Chou and Fasman,
1974) for example, or calculating probability both on residue frequency and the neighbouring amino acid residues (Garnier et al., 1978). Both algorithms have since been adapted and improved, and are freely available and widely used.

5.1.1.1 Determining secondary structure experimentally – circular dichroism

Secondary structure may be verified experimentally by a number of different methods, such as X-ray crystallography, nuclear paramagnetic resonance (NMR) spectroscopy and UV circular dichroism (CD). Of particular interest to this project has been X-ray crystallography and CD, and the latter has been used to estimate the extent of \(\alpha \)-helical structure within the plant alternative oxidase protein.

CD is a spectroscopic technique in which the differential absorption of left- or right-hand circularly polarised light by chiral molecules, such as proteins, is monitored over several wavelengths. The data obtained, if correctly analysed, can provide information relating to the secondary structure of the protein under investigation (cf Chen et al., 1974; Chang et al., 1978; and more recently Whitmore and Wallace, 2004; Greenfield, 2006b). CD has been used successfully to investigate membrane proteins such as bacteriorhodopsin (cf Cogdell and Scheer, 1985). Furthermore, the limitations of using CD in the investigation of membrane protein secondary structure and the implications for data analysis have been described and critically evaluated (cf Wallace et al., 2003; Whitmore and Wallace, 2008). For example, shifts in the CD peaks associated with \(\alpha \)-helices are observed between soluble and membrane proteins, especially when membrane proteins have been solubilised from their native membrane environments (Swords and Wallace, 1993). As such, careful interpretation of CD data obtained from membrane protein samples – whether membrane-bound or solubilised – is advised (Whitmore and Wallace, 2008).

In addition to providing information about the secondary structure of proteins, CD can be used to assess the thermal stability of proteins (Yadav and Ahmed, 2000; Greenfield, 2006a) by monitoring absorbance at a single wavelength (such as 222nm for \(\alpha \)-helical proteins) from low to high temperature. If interpreted correctly, data obtained could
indicate not only the temperature at which a protein begins to unfold, but also the extent to which secondary structure is diminished after heating to 90°C. This is of particular interest in the case of *S. guttatum* alternative oxidase, which is responsible for the dissipation of energy not coupled to ATP synthesis but released as heat during the process of thermogenesis (Meeuse, 1975; Meeuse and Raskin, 1988).

5.1.2 Tertiary and quarternary structure of the alternative oxidase

The tertiary structure of globular proteins is the native state where the elements of secondary structure are both brought closer together and stabilised through the sequestering of hydrophobic residues at the core of the molecule. This state may be further stabilised by the exclusion of water from the core, and formation of intra-molecular disulphide bonds in some cases. In addition, hydrophilic interactions between the solvent-exposed residues and the external environment aid in the maintenance of the compact structure. Relatively little is known about the tertiary structure of the alternative oxidase, and what is known is inferred from experimental evidence and algorithmic prediction.

As previously stated, in light of both homology modelling (Andersson and Nordlund, 1999) and recent TAO crystal structures (Shiba et al., 2013), the secondary structure elements of the AOX are highly likely to form an anti-parallel, four-helix bundle, accounting for the vast majority of the tertiary structure. Specific residues involved in stabilising hydrophobic interactions have not been identified. Predicted loop regions between the helices are relatively short and most likely relatively inflexible, aiding in the maintenance of tertiary structure stability. However, relatively little is known about the N- and C-terminal regions, which even in the TAO crystal structures appears to be unstructured. It has previously been suggestion that the N-region in particular – the region with the greatest sequence dissimilarity between species – may act to increase activity of the molecule through interaction with α-keto acids (Crichton et al., 2005) in some species. The exact mechanism for this has not been fully elucidated experimentally.
It is thought that the extent of the quaternary structure of most plant alternative oxidases is homodimerisation, which is responsible for regulation of activity (Moore and Seidow, 1991; Umbach and Seidow 1993) in many non-thermogenic species. Homodimerisation is facilitated by the formation of sulphide bonds between the two highly conserved cysteine (C122 in \textit{S. guttatum} numbering) residues present in all plant sequences. In other organisms such as fungi and trypanosomes it is not clear whether homodimerisation occurs, as an equivalent conserved cysteine residue is absent. When both native and recombinant TAO has been purified, no evidence of dimerisation was observed on SDS-PAGE gels (\textit{cf} Chaudhuri et al., 1998; Fukai et al., 2003). However, the recent structures of TAO show it as a homodimer – despite the absence of a conserved cysteine. This suggests the potential presence a second site for homodimerisation, which may also be applicable to other non-plant alternative oxidase structures.

Further to the regulation of alternative oxidase activity through dimerisation, stimulation by \(\alpha\)-keto acids such as pyruvate is also thought to involve the conserved C122 residue (\textit{cf} Rhoads et al., 1998 and Carré et al., 2011). It is thought that through the formation of a thiohemiacetal bond between the pyruvate and the C122 residue, the tertiary and potentially the quaternary structure of \(\alpha\)-keto acid-sensitive alternative oxidase isoforms may be altered. Mutation of the cysteine 122 residue renders the protein insensitive to pyruvate (Rhoads et al., 1998), which confirms the importance of the residue, but not the exact mechanism by which the conformational change is facilitated or what the conformational change may be. This implies a certain amount of flexibility within the alternative oxidase structure exposed to the cytosol – which is perhaps aided by the stabilisation of the membrane-associated regions of the protein. It is widely acknowledged that proteins rarely have a fixed or inflexible single structural conformation; there is thought to be considerable movement associated with catalytic activity in ATP-synthase, for example (Boyer, 1975; Abrahams et al., 1994). Therefore, the relative flexibility within the cytosolic, non-membrane regions of the alternative oxidase structure is considered an
essential part of its structural biology and an intrinsic part of the structure-function relationship.

5.1.3 Structure-function relationships – mutants

Sequence homology data as analysed by Moore et al. (1995a) led to the identification of several conserved residues proposed to be essential to activity; this list was refined by Andersson and Nordlund (1999). When mutated, the six residues involved in the binding of the two iron ions in the active site (E178, E217, H220, E269, E319, H322) cause complete loss of activity in the protein, even though the protein is expressed (cf Albury et al., 2002). Mutation of the equivalent conserved residues in TAO causes the same loss in activity (Ajayi et al., 2002), suggesting that the active sites of the AOX and TAO isoforms function in the same way. Highly conserved residues outside of the active site have also been investigated through mutagenesis, and these are listed below in Tables 5.1a and 5.1b along with proposed function. The location of each mutant in the protein is illustrated in Figure 5.1.

5.1.4 The nature of alternative oxidase membrane association

When first exploring the primary structure of the alternative oxidase, Moore and Siedow (1991) performed an in silico hydrophobicity analysis of the AOX sequence which revealed that there were several regions of predominantly hydrophilic residues, and two large regions of hydrophobicity spanning ~25 residues. Initially it was proposed that the hydrophobic regions formed two membrane-spanning helices, with the active site comprised of several smaller helices located on the matrix-facing side of the mitochondrial membrane (Moore et al., 1995a), based on previous localisation experiments (Rasmusson et al., 1990). However in the subsequent homology model (Andersson and Nordlund, 1999) it was proposed that there were no transmembrane helices in light of similarities between the alternative oxidase and the diiron carboxylates, and that the protein was largely α-helical. The membrane association is now known to be monotopic, and the larger spans of
<table>
<thead>
<tr>
<th>Residue and mutation</th>
<th>Function</th>
<th>Effect of mutation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T179A</td>
<td>Proximal to E178 (iron binding), found near active site</td>
<td>Decreases v_{max} and increases oxygen affinity</td>
<td>Crichton et al., 2010</td>
</tr>
<tr>
<td>W206F/Y</td>
<td>Radical formation</td>
<td>Inactive</td>
<td>Crichton et al., 2010</td>
</tr>
<tr>
<td>Q242N</td>
<td>Inhibitor/substrate binding in hydrophobic pocket between helices 2 and 3; possible membrane binding.</td>
<td>94% activity lost</td>
<td>Albury et al., 2010</td>
</tr>
<tr>
<td>N247Q</td>
<td></td>
<td>4% activity lost</td>
<td></td>
</tr>
<tr>
<td>Y253F Y253A</td>
<td></td>
<td>F 39% activity lost; A 72% activity lost</td>
<td></td>
</tr>
<tr>
<td>S256T</td>
<td></td>
<td>93% activity lost</td>
<td></td>
</tr>
<tr>
<td>H261A</td>
<td>HR pair motif found in quinone-binding proteins; also in hydrophobic pocket between helices 2 and 3; possible membrane binding.</td>
<td>95% activity lost</td>
<td></td>
</tr>
<tr>
<td>R262K</td>
<td></td>
<td>94% activity lost</td>
<td>Albury et al., 2010</td>
</tr>
<tr>
<td>E270N</td>
<td>Proximal to E269 (iron binding), found in active site</td>
<td>Inactive</td>
<td>Albury et al., 1998</td>
</tr>
<tr>
<td>Y275F</td>
<td>Radical formation</td>
<td>Inactive</td>
<td>Albury et al., 2002</td>
</tr>
<tr>
<td>Y299F</td>
<td>Radical formation</td>
<td>Retained 100% activity</td>
<td>Crichton et al., 2010</td>
</tr>
</tbody>
</table>

Table 5.1a – Previously mutated residues and the effect on activity once mutated. This Table lists previously mutated residues, their proposed function, and the effect of the mutation on activity. Where the expressed isoforms are inactive, expression was confirmed using Western Blotting. Residues highlighted in bold have been expressed as part of this thesis and the results are detailed in Section 5.3.5.
<table>
<thead>
<tr>
<th>Residue</th>
<th>Function</th>
<th>Effect of mutation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C122E</td>
<td>Dimerisation site; site of probable α-keto acid interaction; potential interaction with oxygen</td>
<td>Constitutively active; insensitive to pyruvate</td>
<td>Rhoads et al., 1998</td>
</tr>
<tr>
<td>C122K/R (positive charge added)</td>
<td></td>
<td>Insensitive to pyruvate and succinate; more active than wild type in absence of pyruvate</td>
<td>Umbach et al., 2002</td>
</tr>
<tr>
<td>C122Q/L (uncharged)</td>
<td></td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>C172A</td>
<td>Possible second dimerisation site; putative α-keto acid binding site</td>
<td>Oxygen affinity decreased</td>
<td>Albury et al., 2002; Crichton et al., 2010</td>
</tr>
</tbody>
</table>

Table 4.1b – The effect of mutating two key cysteine residues. This Table details previous mutagenesis of the two conserved cysteine residues involved in regulation of AOX activity. Residues highlighted in bold have been expressed as part of this thesis and the results are detailed in Section 5.3.5.
Figure 5.1 – A diagrammatic representation of three residues investigated in this thesis. This Figure shows the location of the mutated residues investigated during this project: C172 is shown in red; T179 in green, and Y253 in blue. The model was generated as described in Chapter 3, Section 3.2.3.
hydrophobicity are more likely to correspond to the substrate binding region (as the substrate is hydrophobic; cf Hoefnagel et al., 1997) rather than forming transmembrane helices.

In the absence of structural data, bioinformatic approaches may provide useful – albeit limited – information. In order to predict whether a protein contains transmembrane helices, for example, servers such as PredictProtein (cf Rost et al., 2004) are able to apply several algorithms to user-submitted sequences. Most of the prediction algorithms focus on larger areas of membrane association, such as transmembrane helices (see Nugent and Jones (2012) for a recent review); there are no specific algorithms to predict whether a protein is associated with the membrane in a monotopic manner, as is the case with the alternative oxidase. The lack of monotopic membrane prediction algorithms is partly because monotopic membrane proteins are not as clearly defined as some other protein-membrane association mechanisms (anchors or transmembrane helices for example) – though they are mainly included in training sets for machine learning approaches to membrane-association prediction in order to aid distinction between transmembrane and non-transmembrane proteins (cf Jayasinghe et al., 2001). Another factor in the lack of monotopic membrane prediction algorithms is the under-representation of monotopic membrane protein crystal structures in the relevant databases. Of the ~74,000 crystal structures available in the Protein Data Bank (PDB), only 65 are identified as monotopic membrane proteins – which represents 0.08% of the database. Included in the 65 structures is the prostaglandin H₂ synthase-1 protein (first solved by Picot et al., 1994, PDB reference 1PRH), which has previously been proposed as a template for the membrane-binding region of the alternative oxidase, as the diiron carboxylate structures used as templates for previous models (i.e. Andersson and Nordlund, 1999) are not membrane associated proteins, and therefore lack any membrane-binding regions.
5.1.5 Elucidation of the quaternary structure through crystallography

The first protein structure to be solved using X-ray crystallography was that of myoglobin in 1958 (Kendrew et al., 1958). The technique had previously been used to elucidate smaller biologically relevant molecules such as Vitamin B\textsubscript{12} (Brink et al., 1954; Hodgkin et al., 1955), but elucidation of a structure several times larger than B\textsubscript{12} presented a very different challenge.

The first stage in protein crystallography is the production of suitable protein crystals, which can be a time-consuming and non-trivial task. Suitably homogeneous, folded protein is mixed in small volumes with multiple screen solutions (often less than 1\textmu l of protein to an equal volume of solution), covering a wide variety of pH, salt and precipitant concentrations and conditions. The protein-solution mixture can then be aliquotted on to a coverslip and placed above a reservoir containing a larger volume of the screen solution (hanging drop method) and sealed with a lubricant such as silicon grease. Alternatively, the protein-solution mixture can be placed on to a ledge next to a well containing a larger volume of the screen solution in a 96-well plate (sitting drop method). In both cases diffusion of vapour allows movement of molecules between the solution contained in the well and the solution in the sitting or hanging drop, encouraging protein aggregation and ultimately ordered precipitation. In order to achieve ordered precipitation, commercially prepared screen kits contain between 28 and 96 non-redundant solutions ranging from a sparse matrix of conditions previously successful for crystallising proteins (after Jancarik and Kim, 1991), to specialist screens tailored to specific protein classes such as membrane proteins (cf Newstead et al., 2008). While the protein is initially soluble within the screen solution, the protein solubility must be gradually decreased in order to cause ordered protein precipitation and crystal formation. Since protein solubility is effected by pH, salt concentration and the presence of solvents and precipitants (Chernov, 2003), it is these factors which are varied in crystal growth solutions. The effects of each factor are summarised above in Table 5.2.
Factor Effect on protein solubility

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect on protein solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salts</td>
<td>Addition of kosmotropic salts (sulphates, phosphates etc.) decreases protein solubility through the removal of water molecules from the surface of the protein. This leads to protein aggregation and precipitation due to hydrophobic protein-protein attraction. Addition of chaotropic salts (iodide, lithium etc.) increases water-protein interactions, leading to increased protein solubility and often denaturation as concentration of the salt increases.</td>
</tr>
<tr>
<td>pH</td>
<td>Protein molecules in a solution with a pH above or below their pI will be repelled due to exposure of negative and positive charges respectively on the protein surface. Proteins close to their pI experience attractive forces, which contributes to the process of aggregation and precipitation.</td>
</tr>
<tr>
<td>Solvents</td>
<td>Addition of organic solvents such as alcohols results in protein aggregation and precipitation as water molecules are gradually removed from the surface of the protein, leading to hydrophobic attraction between protein molecules. However, addition of solvents may cause protein denaturation above 0°C.</td>
</tr>
<tr>
<td>Other precipitants</td>
<td>Addition of polymers such as polyethylene glycol (PEG) leads to protein aggregation and precipitation through the removal of water molecules from the surface of the protein, causing hydrophobic attractions between protein molecules. Precipitants such as PEG are less likely to denature the protein at temperatures above 0°C.</td>
</tr>
</tbody>
</table>

Table 5.2 – Factors which affect protein solubility.

Initially the individual crystallisation solutions containing the protein of interest are kept at a constant temperature with minimal movement to encourage nucleation. Nucleation is the process by which protein molecules begin to aggregate and align in a regular pattern required to generate crystals. The nucleation event may be as a result of a number of protein molecules aligning in a regular order whilst moving through the solution and forming a surface onto which more molecules may adhere (homogeneous nucleation). Alternatively protein molecules begin to adhere and align on a surface which is not made from other protein molecules (heterogeneous nucleation) such as silicon (Chayen et al., 2001). The rate of nucleation is dependent on both the number of clusters formed in the
early stages, which may take a few hours to form for some proteins or considerably longer for others; and the rate at which the protein molecules can diffuse through the solution towards existing clusters. Nucleation and subsequent crystal growth can be described using a phase diagram, which can be derived for a protein by varying the individual parameters for a particular screen condition (cf Haas and Drenth, 1999). Following nucleation, the protein molecules should continue to aggregate and align in a regular order in part initiated by the reduction in protein concentration as molecules forming the nuclei are removed from the solution. However, the conditions required for nucleation are often not the same as the conditions required for further crystal growth and it is at this point that the small sites of nucleation can be removed from the original drop solution and placed in a highly concentrated protein solution. The nuclei are transferred to the concentrated protein solution using a fine gauge needle and act as seeds for further crystal growth. Predictive models of the process of nucleation and subsequent crystal growth have been attempted (Rupp and Wang, 2004), although the models require large quantities of data from previously successful crystallisation conditions. As such the models cannot confidently be applied to proteins with no previous crystals, or those classes of protein which are under-represented in the database – especially membrane proteins (see Section 5.1.3.4 below; Rupp and Wang, 2004). Once conditions have been identified which consistently lead to nucleation and initial crystal growth, further optimisation is required. A range of new reservoir solutions can be created by gradually altering the original conditions one factor at a time, as illustrated in Table 5.3 below, to give a new matrix of conditions. Following optimisation and successful crystal growth, the process of collecting and analysing diffraction data can begin, the final result of which is the production of a three-dimensional description of the protein structure.
Table 5.3 – An example demonstrating the variants created from an original solution. In this example, 48 new, unique solutions were created.

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Salt concentration</th>
<th>Precipitant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>5.6</td>
<td>0.1M NaCl</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Variation</td>
<td>4.6-6.6</td>
<td>0.1M NaCl</td>
<td>20-40% PEG 400</td>
</tr>
</tbody>
</table>

5.1.6 The challenges of membrane protein crystallography

To date, there are in excess of 74,000 X-ray crystal structures available in the PDB. However, there is a distinct under-representation of certain classes of protein, such as membrane proteins. Of the ~600 structures identified as membrane-associated proteins in the PDB, just under half (281) are described as integral membrane proteins, suggesting that of the 74,000 crystal structures\(^3\), only 0.8% are membrane-associated proteins, while just 0.38% are integral membrane proteins. Compared to the prevalence of membrane proteins within eukaryotic organisms – approximately 30% of the proteome corresponds to membrane proteins (Bill et al., 2011) – there is a clear discrepancy between natively expressed protein and solved structures within the database.

This does raise the question as to why there are so few membrane-associated protein structures in structural databases – is it due to lack of research interest, or are there other inhibitory factors involved? As far as the former is concerned, it is not down to a lack of interest or impetus; with membrane proteins playing vital roles in processes such as cell signalling and respiration, they are not a class of proteins of limited merit – indeed, they are often identified as important drug targets. So on to the latter, and the relatively well-documented difficulties associated with the crystallisation of membrane proteins.

The first membrane protein crystal structure was presented in 1985 – some 33 years after the first protein structure (Deisenhofer et al., 1985). While there are specific problems associated with expression of membrane proteins in hosts such as *E. coli* (as described previously in Chapter 4), there are further limitations experienced when expressing and

\(^3\) As of September 2012; http://www.rcsb.org/
purifying membrane proteins for the purpose of crystallography (Carpenter et al., 2008). A major obstacle in the crystallisation of membrane proteins is the requirement of detergent for protein stability: membrane proteins often rely on areas of hydrophobicity for conformational stability, which is provided by the membrane. When extracting expressed recombinant protein from the membrane, detergent is required to disrupt the membrane itself. Whilst this is not necessarily problematic from the perspective of protein purification (as detergent can easily be incorporated into purification buffers), it is often inhibitory to the production of crystals as the resultant detergent-protein complexes can disrupt formation of well-ordered crystals (Privé, 2007). Therefore, the smaller the detergent micelle, the more likely successful crystallisation is; octyl-glucoside is preferred over dodecyl-maltoside for this reason. Additionally, the presence of detergent decreases the likelihood of sufficient protein aggregation and precipitation; the protein molecules sequestered in the detergent micelles may not be affected by the factors leading to precipitation described above in Table 5.2.

In order to avoid excessive use of detergent, lipidic materials may be incorporated into the crystallisation solutions, providing both sites of nucleation and a lipidic environment required for membrane protein stability (Landau and Rosenbusch, 1996; and more recently reviewed in Caffrey, 2009 and Cherezov, 2011). Such systems have proven successful in the field of membrane crystallography, with several structures solved in recent years using Lipidic Cubic Phase (LCP) techniques (notable examples are Katona et al., 2003 and Cherezov et al., 2007).

5.2 Methodology
5.2.1 Circular dichroism

Purified recombinant S. guttatum protein expressed in FN102 and TAO protein (provided by Dr Yasutoshi Kido, University of Tokyo, Japan) was concentrated using the PEG precipitation method as previously described in Chapter 2. When required the PEG precipitated pellets were gently thawed on ice and resuspended in chilled (4°C) buffer,
before being loaded into a 1mm glass CD cuvette (Hellma). Absorption measurements were taken with a Jasco J715 spectrophotometer, and the block temperature was controlled using a Jasco Peltier-type system. Data was recorded using the Jasco Spectra Manager software suite and exported to Microsoft Excel or Gnumeric for analysis. Two experiments were conducted – multiple wavelength scans and single-wavelength variable temperature assays to assess secondary structure and thermal stability respectively.

In order to predict the percentage of each secondary structure element from the raw CD data, three algorithms were used via the Dichroweb server (Whitmore and Wallace, 2008; http://www.dichroweb.cryst.bbk.ac.uk/html/home.shtml): K2D (Andrade et al., 1993), CDSSTR and SELCON3 (cf Sreerama et al., 1999; Sreerama and Woody, 2000). The K2D algorithm was selected as it did not require selection of a Reference set in order to perform the analysis. This was considered important because the Reference proteins used to generate the Reference sets provided by Dichroweb are all soluble proteins (with the exception of SMP180, described below) and therefore may be biased against membrane proteins (cf Wallace et al., 2003 and Whitmore and Wallace, 2008). The Reference set SMP180 (Abdul-Gader et al., 2011) does contain membrane proteins (albeit large and transmembranous proteins) and is suitable for use with the SELCON3 algorithm. It was not possible to analyse the TAO data using SMP180 Reference set, as it requires data from 180nm, whilst the TAO dataset contained data from 190nm and above only. The CDSSTR algorithm was chosen along with Reference set 4 (optimised for 190-240nm) as CDSSTR is considered relatively accurate (cf Whitmore and Wallace, 2004) as the algorithm selects reference proteins from the Reference set with similarities to the protein of interest (cf Sreerama and Woody, 2000) and the Reference set most closely matched the wavelength range of the S. guttatum AOX data where the HT was less than 600 volts.
5.2.2 Prediction of secondary structure

The *S. guttatum* protein sequence (UniProt accession number P22185; full sequence can be found in Appendix 1) was input into the programs listed below in Table 5.4 to predict secondary structure.

5.2.3 *In silico* investigation of dimerisation site

In lieu of experimental evidence confirming the nature of the dimerisation mechanism, an homology model of the *S. guttatum* alternative oxidase (based on TAO, see Chapter 3 Section 3.2.7) was studied in PyMOL (http://www.pymol.org) to assess the likelihood of dimerisation through salt bridge formation, hydrogen bonding networks and interfacial water hydrogen bonding. Other structures with non-sulphide dimer linkage were studied for comparison; especially those with a known monotopic membrane association such as external NADH dehydrogenase (PDB accession numbers 4G9K, 4GAP and 4GAV – all Iwata *et al.*, 2012).

<table>
<thead>
<tr>
<th>Program</th>
<th>Server/URL</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSIPRED 3.0</td>
<td>PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/</td>
<td>Jones, 1999; Buchan et al., 2010</td>
</tr>
<tr>
<td>CFSSP</td>
<td>http://www.biogem.org/tool/chou-fasman</td>
<td>Chou and Fasman, 1974</td>
</tr>
<tr>
<td>PROFphd</td>
<td>PredictProtein http://www.predictprotein.org</td>
<td>Rost and Sander, 1993; Rost, 1996; Rost et al., 2004</td>
</tr>
<tr>
<td>PROSITE</td>
<td></td>
<td>Bairoch et al., 1997</td>
</tr>
</tbody>
</table>

Table 5.4 – Algorithms used to predict secondary structure for the *S. guttatum* alternative oxidase.
5.2.4 Crystallography

Protein for crystallisation screening was prepared using concentrated eluate (see Chapters 2 and 4) containing expressed recombinant alternative oxidase protein. Concentration was carried out using PEG precipitation (as described in Chapter 2) and final protein concentration was typically <10mg/ml. Initially, to ensure that the concentration was optimal, a pre-crystallisation test (PCT; Hampton Research) was carried out as per the manufacturer’s guidelines.

Concentrated protein was then used to set up crystal screen trays using both hanging and sitting drop methods. 1μl of protein was used for both methods. A variety of screens were used in the laboratory of Dr Darren Thompson (University of Sussex, UK), the laboratory of Professor Kiyoshi Kita (University of Tokyo, Japan) and the laboratory of Professor So Iwata (Imperial College London and Diamond Light Source, UK). The screens used are listed below in Table 5.5. It should be noted that initial screens (at Sussex and Diamond) were chosen because they had been specially designed for membrane proteins, while the screens used in the Tokyo lab were recommended by Dr Shiba based on previous success when crystallising the TAO.

<table>
<thead>
<tr>
<th>Sussex</th>
<th>Tokyo</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mem Start (MD1-21)</td>
<td>CS I (HR2-110)</td>
<td>Mem Start (MD1-21)</td>
</tr>
<tr>
<td>Mem Sys (MD1-25)</td>
<td>CS II (HR2-112)</td>
<td>Mem Sys (MD1-25)</td>
</tr>
<tr>
<td>MembFac (HR2-114)</td>
<td>Mem Gold (MD1-39)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.5 – Crystal screens. This Table shows the crystal screens used in the three labs where screening took place. The manufacturer (MD Molecular Dimensions; HR Hampton Research) and product reference number are shown in brackets.

In the laboratory at the University of Sussex, the hanging drop method was used (see Section 2.6.1), whilst at the University of Tokyo, the sitting drop method (see Section 2.6.2) was used exclusively. At the Membrane Protein Laboratory at the Diamond Light Source, both hanging and sitting drop methods were used. In all cases, the plates were
checked regularly and care was taken to avoid crystal degradation by excessive plate handling.

5.2.5 Expression of mutant isoforms

A variety of *S. guttatum* mutants were created by Dr Mary Albury (as detailed above in Tables 5.1a and 5.1b in bold and Figure 5.1) and expressed using FN102 *E. coli*. The purification of these recombinant mutant proteins was carried out as described in detail in Chapter 4, and assays were performed using 50mM TRIS, pH7.4 buffer. A substrate (ubiquinol-1) concentration of 150mM was used in each assay, and 100nM ascofuranone was used as the inhibitor. Assays were carried out on a Shimadzu UV-3000 spectrophotometer. SDS PAGE and Western blots were performed as previously described in Chapter 2.

5.2.6 Variable temperature activity assays

Membrane-bound and purified recombinant *S. guttatum* protein was assayed to determine the effect of temperature on AOX activity. The protocol as defined in Section 2.5.2 was modified to control buffer and protein temperature using a Fisher (DriBlock DB1, Techne) heating block prior to assay, Cary Temperature Controller connected to a Cary 400 spectrophotometer (Varian) to control the sample temperature for the duration of the assay. The inhibitor (octyl-gallate) was not heated due to the small quantity added to the cuvette; the substrate (ubiquinol-1) was not heated to avoid evaporating the acidified ethanol in which it was suspended. The assay buffer used in all experiments was 50mM TRIS, pH 7.5, 10mM pyruvate; 150mM of ubiquinol-1 was used as the substrate, with 1μM octyl-gallate used as an inhibitor.
5.3 Results
5.3.1 Circular dichroism
5.3.1.1 Wavelength scan

Figure 5.2a below shows mean residue ellipticity, [\theta] (mdeg cm² dmol⁻¹) against wavelength for purified recombinant *S. guttatum* alternative oxidase at a concentration of 5μM, whilst Figure 5.2b shows the same trace overlaid with purified recombinant TAO at a concentration of 4.25μM. Figure 5.4 shows the effect of varying TAO concentration on mean residue ellipticity.

Table 5.6 below shows the outcome of raw CD analysis by the K2D, CDSSTR and SELCON3 algorithms (as accessed via Dichroweb) along with the Reference protein set used. For K2D, wavelengths 200-260nm were selected (as the HT values shown in Figure 5.2a) exceed 600 volts for absorbance readings below 200nm; for CDSSTR wavelengths 190-240nm were used and for SELCON3, wavelengths of 180-240nm were used, as required by the algorithms.
Figure 5.2a – Circular dichroism of purified recombinant \textit{S. guttatum} AOX expressed in FN102. This CD trace shows the mean residue ellipticity ([\theta] (mdeg cm^2 dmol^{-1})) of purified \textit{S. guttatum} recombinant alternative oxidase at 5\mu M. The second plot (top, right) shows the high tension (HT, in volts) values for the data shown to demonstrate why the data has been truncated at 200nm.
Figure 5.2b – Comparison of circular dichroism of purified recombinant *S. guttatum* AOX and TAO expressed in FN102. This CD trace demonstrates the trace from Figure 5.2a overlaid with the mean residue ellipticity ([θ] (mdeg cm² dmol⁻¹)) of purified TAO at a concentration of 4.25μM.
Figure 5.3 – Circular dichroism of recombinant TAO expressed in FN102. This trace shows mean residue ellipticity ([\theta] (mdeg cm^2 dmol^{-1})) of purified TAO at 4.25\mu M, 8.5\mu M and 17\mu M.

5.3.1.2 Variable temperature

Figure 5.4 below shows the degree of conformational change observed as a function of mean residue ellipticity versus temperature for purified S. guttatum AOX and TAO respectively at a wavelength of 222nm.
Figure 5.4 – The effect of temperature on mean residual ellipticity at 222nm. This Figure demonstrates the effect of temperature on mean residual ellipticity at 222nm ([θ] (mdeg cm² dmol⁻¹)) of purified *S. guttatum* alternative oxidase (○) and purified TAO (□) from 10°C to 90°C.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Algorithm and Reference set</th>
<th>Predicted secondary structure elements (%)</th>
<th>α₁</th>
<th>α₂</th>
<th>β₁</th>
<th>β₂</th>
<th>Turn</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. guttatum AOX</td>
<td>K2D, no set</td>
<td></td>
<td>49</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>51</td>
</tr>
<tr>
<td>TAO</td>
<td>K2D, no set</td>
<td></td>
<td>36</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37.5</td>
</tr>
<tr>
<td>S. guttatum AOX</td>
<td>CDSSTR, Set 4</td>
<td></td>
<td>45</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>TAO</td>
<td>CDSSTR, Set 4</td>
<td></td>
<td>36</td>
<td>6</td>
<td>18</td>
<td>12</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>S. guttatum AOX</td>
<td>SELCON3, SMP180</td>
<td></td>
<td>54</td>
<td>22</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5.6 – Calculated % secondary structure from raw CD data submitted to Dichroweb. Data from wavelengths 190-240nm was analysed by CDSSTR, 180-240nm by SELCON3 and 200-260nm for K2D. The Reference set chosen for each analysis is indicated, except for K2D which required no Reference set. α₁ refers to regular α-helices, α₂ refers to disordered α-helices, β₁ refers to regular β-strand, β₂ refers to disordered β-strand, Turn refers to turns and Coil refers to random coil (after Sreerama et al., 1999). K2D Andrade et al., 1993; Set 4, CDSSTR and SELCON3 cf. SMP180 Abdul-Gader et al., 2011.

5.3.2 Predicted secondary structure

Results of the prediction programs detailed above in Table 5.4 are shown below in Table 5.7.

<table>
<thead>
<tr>
<th>Number of residues per secondary structure element [%]</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helix</td>
<td>Strand</td>
</tr>
<tr>
<td>163 [46.7]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>251 [71.9]</td>
<td>151 [43.3]</td>
</tr>
<tr>
<td>173 [49.6]</td>
<td>4 [1.1]</td>
</tr>
</tbody>
</table>

Table 5.7 – Predicted secondary structure elements by different programs. The data is displayed as number of residues and [percentage] of the total sequence length (286)
Additionally, the PROFphd algorithm predicted the presence of two transmembrane helices between residues 175-193 and 237-255; and that residues 194-236 would be found within the membrane – but not as transmembrane helices.

5.3.3 Identification of potential dimerisation sites

Using the dimeric homology model generated from the TAO crystal structure (see Chapter 3 Section 3.2.7), 12 residues on helices 2 and 3 were identified which may form a dimer interface (Table 5.8). The criteria for selection was that the residues must be within 10Å and oriented towards the counterpart helix and furthermore must be relatively well conserved across most species. The residues identified are shown in Table 5.5 below and the conservation of these residues is indicated on Figure 3.1. Dimerisation through interfacial water molecules was discounted as a mechanism, as the limited space between helices 2 and 3 would not permit water molecules to form hydrogen bonds with the residues.

<table>
<thead>
<tr>
<th>Residues on Helix 2</th>
<th>Residues on Helix 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T179</td>
<td>I207</td>
</tr>
<tr>
<td>A182</td>
<td>R208</td>
</tr>
<tr>
<td>M186</td>
<td>L211</td>
</tr>
<tr>
<td>V190</td>
<td>E215</td>
</tr>
<tr>
<td>H193</td>
<td>R218</td>
</tr>
<tr>
<td>L194</td>
<td></td>
</tr>
<tr>
<td>L197</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.8 – Potential dimer interface residues. This list shows the residues identified on helices 2 and 3 as potentially involved in formation of a dimer interface. The conservation of these residues are indicated on Figure 3.1.
Table 5.5 – A diagrammatic representation of the potential dimer interface. This Figure shows the residues on helices 2 (red) and 3 (teal) that may form a dimer interface. The four helices are shown in their relative positions in the dimer images (top). Residues on helix 2 (red, bottom helix of the pair) from left to right: T179, A182, M186, V190, H193, L194, L197. Residues on helix 3 (teal, bottom helix of the pair) from left to right: I207, R208, L211, E215, R218.
5.3.4 Crystallography

No crystals of diffraction quality were produced from purified recombinant *S. guttatum* alternative oxidase. Any microcrystals produced (a sample of which can be seen below in Figure 5.6) either disintegrated during viewing (i.e. moving the screen tray from the bench or refrigerated unit to the light microscope) or during seeding. The few microcrystals which continued to grow following seeding disintegrated spontaneously within 1-2 days of transfer. However, several conditions consistently produced microcrystals and they are listed in full in Appendix 1. Figure 5.7 below shows the salt type, precipitant type, and pH found in these conditions.

5.3.5 Mutants

Activity assays were conducted on *S. guttatum* mutants (C172A, T179A, Y253F) expressed in FN102, using both membrane-bound, soluble and purified fractions. For all assays ubiquinol-1 was used as a substrate, and at least 95% inhibition was demonstrated using 100nM ascofuranone. SDS PAGE gels and Western blots are shown for each mutant. Activities are shown below for each mutant in Tables 5.9, 5.10 and 5.11. Figure 5.8 shows expressed *S. guttatum* mutants as membrane, soluble and purified fractions on SDS PAGE gels and Western blots.
Figure 5.6 – A selection of images taken during crystallographic screening. White scale bars indicate a length of 1 μM. A an early crystal, when detergent concentrations were too high; B a small crystal, which disintegrated when an attempt was made to seed from it; C microcrystals from Memstart, condition #21 (see Appendix 1 for a full list of screen conditions); D microcrystals from Memstart #23; E microcrystals formed after seeding from Memstart #23 (same conditions); F amorphous precipitate, the result of seeding from Memstart #31.
Figure 5.7 – A graphic representation of the number of screens with particular conditions. This Figure shows the number of screens in which particular salt (top), precipitant (middle) and pH (bottom) conditions occurred (out of the 16 screens detailed in Appendix 1).
4.3.5.1 C172A

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein (mg ml(^{-1}))</th>
<th>Total protein (mg)</th>
<th>Specific activity (μmols min(^{-1}) mg(^{-1}))</th>
<th>Total activity (μmols min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>1.0</td>
<td>0.6</td>
<td>3.05</td>
<td>1.83</td>
</tr>
<tr>
<td>Solubilised</td>
<td>0.2</td>
<td>0.12</td>
<td>0.54</td>
<td>0.065</td>
</tr>
<tr>
<td>Purified</td>
<td>0.27</td>
<td>0.11</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5.9 – Specific and total activities for the *S. guttatum* C172A mutant expressed in FN102.

4.3.5.2 T179A

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein (mg ml(^{-1}))</th>
<th>Total protein (mg)</th>
<th>Specific activity (μmols min(^{-1}) mg(^{-1}))</th>
<th>Total activity (μmols min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>1.8</td>
<td>1.1</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>Solubilised</td>
<td>0.2</td>
<td>0.11</td>
<td>0.11</td>
<td>0.012</td>
</tr>
<tr>
<td>Purified</td>
<td>0.28</td>
<td>0.1</td>
<td>0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5.10 – Specific and total activities for the *S. guttatum* T179A mutant expressed in FN102.

4.3.5.3 Y253F

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein (mg ml(^{-1}))</th>
<th>Total protein (mg)</th>
<th>Specific activity (μmols min(^{-1}) mg(^{-1}))</th>
<th>Total activity (μmols min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>1.9</td>
<td>1.1</td>
<td>0.15</td>
<td>0.165</td>
</tr>
<tr>
<td>Solubilised</td>
<td>0.3</td>
<td>0.2</td>
<td>0.04</td>
<td>0.008</td>
</tr>
<tr>
<td>Purified</td>
<td>0.22</td>
<td>0.09</td>
<td>0.02</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 5.11 – Specific and total activities for the *S. guttatum* Y253F mutant expressed in FN102.
Figure 5.8 – SDS-PAGE gels and Western blots for three *S. guttatum* AOX mutants expressed in FN102. This Figure shows SDS PAGE gels (left) and Western blots (right) for C172A (A), T179A (B) and Y253F (C). Abbreviations: Mr – marker, M – membrane, S – soluble fraction, E – eluate (purified) fraction.
5.3.6 Variable temperature activity assay

The activity of membrane-bound and purified *S. guttatum* recombinant alternative oxidase expressed in FN102 was assayed at 4°C, 40°C, 50°C, 90°C and then returned to 4°C after heating to 90°C. Estimated protein and total protein is shown in Table 5.12a, with specific and total activities shown in Table 5.12b. 150mM ubiquinol-1 was used as the substrate and inhibition of at least 95% by 1μM octyl-gallate was demonstrated in each assay.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein (mg/ml)</th>
<th>Total protein (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>52</td>
<td>414</td>
</tr>
<tr>
<td>Purified</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.12a – Estimated protein for samples used in the variable temperature assays.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Specific activity (μmol/min/mg) and [Total activity (μmol/min)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>0.58</td>
</tr>
<tr>
<td>Purified</td>
<td>15 [15]</td>
</tr>
</tbody>
</table>

Table 5.12b – The effect of temperature on activity of recombinant *S. guttatum* AOX protein expressed in FN102. This Table shows the specific and total activity for samples assayed at varying temperatures. 90 → 4 represents assay carried out after the sample had been heated to 90°C and then cooled to 4°C.

5.4 Discussion
5.4.1 Secondary structure

For the first time the secondary structure of the plant alternative oxidase has been demonstrated experimentally. The data obtained from circular dichroism when converted to mean residue ellipticity and plotted against wavelength provides a relatively strong signal in the 222nm region, which is associated with helical structure (Figure 5.2a). However, when comparing the data obtained from TAO (Figures 5.2b and 5.3), it is evident that there is differential absorption in the 190-200nm range, usually indicative of random coil secondary structure elements. This may be indicative of the longer unstructured N-terminal
region of the *S. guttatum* alternative oxidase, which has been implicated in the regulation of activity (Crichton *et al*., 2005). By comparison, the TAO has a much shorter unstructured region at the N-terminal.

Another factor affecting the differing far-UV absorbances observed between *S. guttatum* AOX and TAO is the contribution of solvent noise. The solvent used for CD experimentation remained the same for both proteins (0.04% DDM in dH₂O) and the choice of solvent was based on low UV absorption coupled with the ability of DDM to aid the structural stability of recombinant alternative oxidase. However, the TAO protein used for the CD experimentation had been dialysed prior to PEG precipitation, whilst the recombinant *S. guttatum* had not. As a result, it is possible that there were other ions and buffer components present in small quantities in the *S. guttatum* sample that were not present in the TAO sample — such as Tris, imidazole, chlorine ions and magnesium ions — which are known to absorb in the far UV range (*cf* Kelly *et al*., 2005). In order to overcome these effects, a smaller cell pathlength may be used if possible and alternative methods for eliminating buffer components remaining from the purification process should be investigated. Furthermore, experimentation to identify other solvents which may be used in CD analysis of recombinant *S. guttatum* AOX (and mutants thereof) would be beneficial in obtaining improved CD data in the future and may even provide insight into conditions under which the protein is most stable that may be applied to any further crystallisation attempts.

Following analysis of the raw CD data with three algorithms accessed via the DicrhoWeb server (*cf* Whitmore and Wallace, 2004; Whitmore and Wallace 2008) the evidence for helical structure in *S. guttatum* is compelling (Table 5.6) if unexpected given the apparently poor quality data. All three algorithms predict that approximately 50% of the protein is α-helix (49%, 54% and 45% by K2D, SELCON3 and CDSSTR respectively) and attribute between 10 and 20% of the total structure to β-sheet. K2D predicts the greatest amount of disorder (51%) whilst CDSSTR and SELCON3 predict approximately 20%. It is worth noting that of the three algorithms used, only K2D allowed for the selection of
wavelengths of 200nm and above and thus is the only algorithm where the noise observed in the *S. guttatum* AOX data could be avoided (as indicated by increasing HT voltage, Figure 5.2a). None of the Reference sets available at the time of analysis permitted a minimum wavelength of 200nm, so Reference set 4 (optimised for 190-240nm) was chosen for use with the CDSSTR algorithm. Similarly, all the Reference sets with the exception of one (SMP180) contain soluble proteins, so analysis of the CD data using the SMP180 Reference set and SELCON3 algorithm was chosen to reflect the fact that AOX is a membrane protein. The outcome of the analysis of *S. guttatum* AOX CD data by these algorithms is an interesting starting point which could be vastly improved in the future with the collection of higher-quality CD data.

By comparison, analysis of TAO CD data using K2D and CDSSTR algorithms calculates that approximately 36% of the protein is α-helix, 30% is β-sheet and that between 28 and 37% is random coil. This is not in agreement with the recently solved TAO structure (Shiba et al., 2013) which exhibits 53% α-helical structure, and no β-structures. The difference between percentage helical structure in TAO and *S. guttatum* AOX cannot be explained by the sequence difference between the two alternative oxidase isoforms alone, and is likely to due to a combination of partial unfolding of the *S. guttatum* AOX and a more homogeneous sample used for the TAO experiments. As previously discussed in Chapter 4, the plant alternative oxidase has proven difficult to purify to the level of homogeneity to which the TAO has been purified; therefore, any potential contaminating proteins left in the *S. guttatum* sample may case interference with the circular dichroism data collection. Therefore, it is likely that these differences in protein concentration and homogeneity is the cause of the discrepancy in outcome. However, in the case of the structure prediction analysis (Table 5.8), the difference in algorithmic approach leads to a varied set of predictions which should be used with caution when ascribing potential secondary structure of the alternative oxidase.

One unexpected outcome from the circular dichroism experiments is the apparent partial retention of the helical absorbance signal at 222nm (Figure 5.4) in both *S. guttatum*
and TAO isoforms. In each case, approximately 58% and 64% (respectively) of the signal remained after heating to 90°C. When the same sample was cooled to 10°C following heating to 90°C, the ellipticity was not equal to the signal observed before heating; it had decreased to approximately 75% of the original (data not shown) – indicating that there was significant unfolding during the heating process, which was not completely recovered during the cooling period. Activity data collected at different temperatures (Table 5.12b) is somewhat contradictory to the circular dichroism data collected at higher temperatures. The latter implies that secondary structure is being lost during heating, while activity in the membrane fraction actually increases between 4°C and 50°C temperature conditions. Once the protein had been re-cooled to 4°C however, the activity was reduced by 77% of the maximum (at 50°C) and 54% of the original activity at 4°C. The increase in activity observed when heating cannot be explained by increased auto-oxidation at the increased temperature, as activity was inhibited by 98% at both 50 and 90°C. The increase in activity could be explained by an increase in kinetic energy (supplied by the increased temperature), although this is speculative and warrants further investigation.

The loss of activity when the sample is re-cooled was not the expected outcome, as many globular proteins which unfold due to increased temperature refold to their native state spontaneously when the temperature is returned to optimum. In this case, there could be aggregation of the *E. coli* membrane – and therefore the alternative oxidase protein – due to the rapid change in temperature. It may be, that in plants and other organisms where the alternative oxidase is natively expressed there would be chaperones or heat-shock proteins available to aid in refolding should unfolding occur, which are not present in the membrane-bound sample used for these experiments. It should be noted that no expressed AOX proteins have been confirmed in prokaryotic organisms, although the gene is present in several prokaryotic genomes. The requirement for chaperones to aid in alternative oxidase protein folding *in vivo* is contraindicated by the ability of *E. coli* to express a fully folded and functional complement of alternative oxidases and further supported by the fact that approximately 10% of the original activity can be restored to the non-membrane bound
protein after heating to 90°C accompanied by a 99% loss of activity. Conversely, it could be argued that functional expression of a recombinant eukaryotic protein in *E. coli* is not proof of a spontaneously folding protein. *E. coli* systems express chaperone proteins such as GroEL which could responsible for folding directly after translation, but 10% restoration of activity in the purified alternative oxidase activity after heating could be explained by a small proportion of protein molecules refolding spontaneously, while the majority were unable to do so. Again, auto-oxidation of the substrate cannot account for activity, as more than 95% inhibition could be demonstrated in each assay by the addition of octyl-gallate.

While the apparent increase in activity at temperatures above the optimum (for most enzymes, at least) was unexpected, it is perhaps pertinent to consider the function of the alternative oxidase found in thermogenic tissue – to generate heat. While no thermogenic tissue has ever been recorded to have reached temperatures of >50°, it is not unrealistic to suggest that it may be advantageous to be able to do so. However, in consideration of the other proteins present in thermogenic tissues, raising the tissue temperature to one where most other proteins would be damaged most likely does not support the suggestion that thermogenic plants would routinely do so.

5.4.2 Crystallography

No suitable crystals were grown during this project. This can be explained by several contributory factors including low protein quantity and concentration, difficulties purifying recombinant *S. guttatum* AOX, the requirement for detergent during purification, the large region of potentially unstructured residues found at the N-terminal region of the protein, as well as practical and experimental limitations.

There were many difficulties encountered when expressing and purifying the alternative oxidase – namely low expression levels and the lengthy process of optimising the purification protocol. Even with the protocol significantly improved, protein yields were still low (<2mg per preparation) and concentrating the protein without losing too much enzyme activity is only possible using PEG. The protein produced was also not 100%
pure, which negatively impacted on the ability to crystallise the *S. guttatum* AOX. The lower boundary for protein quantity for crystallography is typically 10mg; in order to achieve this for the *S. guttatum* AOX, between 8 and 10 purification preparations would need to be pooled. In itself this is not difficult, although at one week per preparation, time was a constraint.

The requirement for detergent to be present during the purification of AOX (as described in Chapter 4 Sections 4.4.2 and 4.4.3) led to the first crystal screen experiments producing virtually no stable microcrystals and only one larger crystal (see Figure 5.6, image A) from a total of eight attempts (i.e. 768 screens). Since alternative oxidase activity is lost when detergent is removed from the protein solution, it is perhaps unwise to exclude detergent from the protocol entirely, as the lack of activity may indicate a deterioration in structure. A lack of tertiary and quaternary structure would make the formation of crystals extremely unlikely. Early attempts to remove the detergent through ultrafiltration were unsuccessful and it was only after successful precipitation with PEG that the buffer could be changed following purification and the detergent levels significantly reduced for crystallography. As previously stated (Table 4.8a) absence of detergent during solubilisation resulted in reduced specific activity, so detergent could not be completely eliminated from the protein solution. Similarly, inclusion of glycerol into later purification protocols led to the same problem as excessive detergent levels (i.e. increased protein solubility and decreased aggregation, leading to the inhibition of crystal formation); though glycerol can be relatively easily removed through PEG precipitation and the overall concentration of glycerol was reduced from 20% to 5% in the most recent and most successful purification protocols.

As previously stated, the alternative oxidase isoforms from plant species differs from the TAO significantly in the N-terminal region, with the plant sequences possessing an additional 35 residues which represents ~12% of the whole structure. These additional residues are most likely to be unstructured and as a result, the high level of conformational freedom in this region alone would decrease the likelihood of the molecules to form a
highly ordered crystal structure required to create diffraction-quality protein crystals. One possible solution to this problem would be to create a truncated version of the \textit{S. guttatum} alternative oxidase, which lacks the N-terminal region; although there is no guarantee that this would leave the activity and native structure of the expressed protein intact.

Much knowledge has been gained about the conditions which consistently form microcrystals (i.e. microcrystals were formed on at least three occasions when the condition was used) and as this is the first time that crystallisation of the plant alternative oxidase has been attempted, this represents a significant step towards understanding how to reproducibly create high-quality AOX protein crystals. Of the crystallisation conditions listed in Appendix 1 and represented graphically in Figure 5.7 above, there are some trends in salt type and precipitant type, although pH seems to be less significant. In 5 out of the 16 conditions, there were sulphate or phosphate salts, which are ranked high in the Hofmeister series (\textit{cf} Collins, 2004 for a recent review) of precipitating salts and in 2 of the 4 conditions where no salt was listed, the precipitants were either phosphate or sulphate. Of the 16, 6 conditions contained 0.1M NaCl, with both the anion and cation of the salt towards the middle of the Hofmeister series. This suggests that choosing either NaCl or other salts high in the Hofmeister series may be advantageous when attempting to precipitate the protein. Regarding precipitant choice, 12 of the screen conditions contained PEG (either 30\% \text{w/v} PEG 400 or 12\% \text{w/v} PEG 4000), suggesting that PEG is a suitable precipitant to use; furthermore PEG precipitant experiments described in Chapter 4 indicate that PEG does not disrupt AOX protein structure. In future this knowledge may be applied to create custom screens for crystallisation of the alternative oxidase.

Finally, a major problem encountered with the crystallisation of the \textit{S. guttatum} alternative oxidase was the tendency for any crystalline deposits (both microcrystals and larger formations) to become unstable and disintegrate when the screen plate was moved from the refrigerated unit to the microscope. Whilst this may not be a problem in cases where proteins form more stable crystals, it was a significant limitation in this project. Therefore, in an attempt to improve the likelihood of stable crystal formation, trays were
not moved for the first week. Whilst this did reduce the number of disintegrating crystals, it was not always practical and made full observation and photography of the crystals difficult. The only practical solution to this problem is to use a system such as that employed at the Membrane Protein Laboratory within the Diamond Light Source\(^4\) where sitting and hanging drop plates are automatically checked by a robotic camera mounted inside the plate storage unit (ThermoFisher Rhombix Cs 750i) without the plate being moved. However, when crystallography was attempted in the facility (12 separate screen plates were set up), no crystals were formed which does not confirm whether the system would prevent AOX crystal disintegration.

It is worth noting that the only group to have successfully grown AOX protein crystals and gathered sufficient diffraction data to solve the structure (Shiba et al., 2013) began the process of producing crystals over a decade ago, whilst attempts to crystallise the *S. guttatum* AOX have been ongoing for less than half of that time.

5.4.3 Expression of mutant *S. guttatum* isoforms

The activities and SDS PAGE gels shown above in Tables 5.9, 5.10 and 5.11 and also in Figure 5.8 demonstrate the first time these particular mutants have been expressed in *E. coli*, as all previous expressions have been in the *S.pombe* yeast expression system (Albury et al., 1996). The specific activities of the T179A and Y253F mutants reported above are 62% and 70% less active (on average) than the *S. guttatum* wild type recombinant alternative oxidase, which is not entirely consistent with previous findings (Albury et al. 2001; Crichton et al., 2010), who reported that the mutants lost less activity compared to the wild type. The activities reported above – whilst lower than might be expected – generally support the previously described roles of the residues, although they do not add any further information to the structure-function relationship. As previously discussed in Chapter 4, expression in the non-native *E. coli* system may have an impact on the AOX isoform activities and therefore direct comparison between activities observed in

\(^4\) http://www.diamond.ac.uk/Home/MPL/equipment.html; last accessed 16/09/12
E. coli recombinant protein and *S. pombe* recombinant protein should be viewed with caution.

Finally, the C172A *S. guttatum* mutant displayed a higher activity than most of the wild type *S. guttatum* preparations made during the course of this project, which is in direct contradiction with previous findings (Crichton *et al*., 2010), where expression of the C172A mutant resulted in lower activities than that of the wild type. Therefore, it is not possible to further elucidate the role that this particular residue plays in the structure-function relationship of the alternative oxidase.

5.4.4 Identification of a possible dimer interface

As no evidence of cysteine-associated dimerisation has been found in the recent TAO structures which indicates that there must be another mechanism – either in addition to, or instead of – the sulphide linkage proposed previously. This is likely due to hydrogen bonding between two complementary regions of the individual monomers (helices 2 and 3; Table 5.8. Table 5.5). Without detailed knowledge of exactly how and why dimerisation leads to increased activity, this does lead to the question of whether there are other physiological advantages to existing as a dimer versus a monomer. As there is no evidence to suggest that the alternative oxidase requires extensive folding interaction through chaperones (i.e. a self-folding recombinant eukaryotic protein expressed in a prokaryotic expression system), and in light of the gene coding for a single unit (not a dimer, with no identifiable dimerisation peptide signal) it can be assumed with a reasonable amount of confidence that the dimerisation occurs spontaneously *in vivo*. As such, it could be postulated that the formation is driven by a requirement for a minimal energy state. It is generally accepted that proteins existing as dimers and other oligomers have a lower minimal energy state than monomers (*cf* Goodsell and Olson, 2000) and are far more prevalent in structural databases than monomers. Crucially, 49% of the monomeric homology model surface area is solvent accessible, compared to 39% of the dimeric
homology model surface. This reduction is likely an important factor in the stabilisation of the AOX, which in turn may lead to an increase in activity.

5.4.5 Concluding remarks

For the first time, alpha helical secondary structure has been demonstrated in alternative oxidase using circular dichroism. Whilst the CD data observed for recombinant S. guttaturn alternative oxidase appears to be of lower quality than that observed for recombinant TAO, statistical analysis of the S. guttaturn raw data does provide evidence of a high proportion (on average 65%) of helical structure. Furthermore, the observation of an unfolding curve at 222nm through temperatures 10°-90°C without complete loss of signal at the upper temperature range, coupled with observable AOX activity above 50°C suggests a hitherto undiscovered characteristic of S. guttaturn alternative oxidase – a degree of thermostability.

Mutant S. guttaturn alternative oxidase has been successfully expressed and purified which is essential to the continuation of the investigation of the structural biology of the alternative oxidase. Of particular interest for future experimentation is the use of mutant S. guttaturn alternative oxidase isoforms for crystallisation trials, should they produce more stable crystals than the wild type. Similarly, investigation of the effect of mutations on the helical content and thermostability offers an exciting future research direction.

Whilst no crystals of diffraction quality have been obtained to date for the S. guttaturn alternative oxidase, our knowledge of the factors negatively affecting production of AOX crystals has been considerably increased. For future attempts at crystallising S. guttaturn AOX, intensive screening of crystallisation conditions using PEG as the precipitant should be carried out, along with further investigation of the negative and positive effects of individual ions from the Hoffmeister series on successful crystallisation.
Chapter 6

General Discussion

The alternative oxidase, a monotopic integral membrane protein associated with the inner mitochondrial membrane, catalyses the oxidation of quinol to quinone and the reduction of oxygen to water and dissipates the free energy as heat. It is ubiquitous to plants and is found in several species of fungi, proteobacteria and parasitic protists such as T. brucei and C. parvum; importantly, it is not found in higher mammals. The release of heat from the catalytic function of AOX is used by thermogenic plants to volatilise aromatic compounds to attract insect pollinators. AOX is insensitive to several respiratory inhibitors and thus facilitates the continuation of glycolysis and the Kreb's cycle when other respiratory complexes are inhibited or not functioning correctly.

The alternative oxidase found in the human parasite, T. brucei – the causative agent of African Sleeping Sickness – is the sole terminal oxidase during the infectious stage of the parasite's life cycle. Crucially, inhibition of the trypanosomal alternative oxidase during this stage of infection results in the death of the parasite in vivo and is therefore an important drug target. The alternative oxidase has also been implicated in the fungicide-resistant respiration exhibited by pathogenic fungi affecting both mammals and plants.

Given the chemotherapeutic importance of the alternative oxidase as a drug target, it is essential to understand the structure-function relationship of the enzyme and species-specific differences in protein behaviour.

Therefore, the aim of this project was to develop overexpression and purification protocols with the objective of producing purified recombinant plant alternative oxidase protein for structural studies. These expression and purification protocols are intended to complement the existing S. pombe expression vector, offering a system to express functional recombinant protein that may be readily and reproducibly purified.
Also within the scope of this project was investigation of the alternative oxidase structure using bioinformatic resources; initially to attempt to replicate the previously devised model and subsequently to re-evaluate and refine the current model using new modelling techniques.

6.1 Expression of recombinant *S. guttatum* alternative oxidase

For the first time, recombinant *S. guttatum* alternative oxidase has been functionally expressed in two *E. coli* expression systems. The C41 strain, optimised for membrane protein over-expression, offers reproducible quantities of total protein (~12mg per litre of growth media) with reasonable specific and total activity (Table 4.4). The FN102 strain, chosen for its inability to synthesise haem – and therefore any other quinol oxidases – expresses on average less protein per litre of growth media than the C41 strain, but the specific and total activity of the expressed protein is consistently higher. Expression of recombinant *S. guttatum* in C41 therefore is preferable when greater quantities of protein are required, but where high activity is less important (such as crystallography, Western blotting or circular dichroism). However, when highly active protein is required in smaller quantities, such as for kinetic profiling, FN102 is the preferred strain.

Following growth, the recombinant *S. guttatum* AOX can be solubilised and further purified using affinity chromatography, with retention of total activity compared to the membrane fraction of 99% post-solubilisation and 49% post purification (Table 4.11). Identification of several key requirements for retaining protein activity and stability has been crucial to the development of a robust and reproducible purification protocol (Figure 4.6). As such, the expression of recombinant *S. guttatum* alternative oxidase in C41 and FN102 is a practical and complementary system to that of *S. pombe*, from which recombinant protein cannot be so readily extracted (Albury et al., 1996). Whilst extraction of AOX from native tissues provides a clear insight into the kinetics of the enzyme *in vivo* (which it is not possible to achieve using recombinant AOX expressed in a prokaryotic system), it has historically proven to be relatively unstable once released from the
mitochondrial membrane (cf. Moore and Siedow, 1991). Expression of the alternative oxidase in C41 and FN102 offers an improved purification outcome; the protein is more stable both in the short and long term and is simpler to extract.

However, despite the advantages of expressing recombinant AOX in *E. coli*, there are also drawbacks, such as reduced specific protein activity and protein concentration compared to native extraction (*A. maculatum*; Affourtit and Moore 2004) and recombinant expression of other AOX isoforms (TAO; Kido *et al.*, 2010) as summarised in Tables 4.16a and 4.16b respectively. This raises an interesting question as to why the activity of the recombinant *S. guttatum* AOX should be so low by comparison to *A. maculatum* and TAO. Higher activities observed in TAO can be explained by the necessity for the enzyme to function at a high rate in an unregulated manner, as it is the sole terminal oxidase expressed during a stage in the organism’s life cycle when the only source of cellular ATP is provided by glycolysis (Clarkson *et al.*, 1989; Chaudhuri *et al.*, 1995; Minagawa *et al.*, 1996). Similarly, the higher activity recorded for native *A. maculatum* AOX (Table 4.16a) is likely due to the combined activities of a number of different AOX isoforms expressed in native tissues during thermogenesis (Ito *et al.*, 2011). This may also account for the high protein concentration observed in the *A. maculatum* solubilised and purified samples (Table 4.16a).

S. guttatum and TAO recombinant proteins in this thesis and the data reported by Kido *et al.* (2010) respectively are under the control of the same promoter and expressed in the same strain (FN102). The significantly greater protein concentration observed of recombinant TAO (cf. 8.95mg of purified protein) compared to recombinant *S. guttatum* alternative oxidase (typically <1mg of purified protein) may suggest that after the point of protein synthesis, *S. guttatum* recombinant alternative oxidase is becoming degraded. The exact cause of any potential degradation is not known, although the presence of *S. guttatum* AOX signal on Western blots of the membrane fraction supernatant (supernatant from the final ultracentrifugation step; Figure 4.4, lane 8) would indicate that at least some of the recombinant AOX is being lost from the membrane during growth or harvest. A very small proportion of AOX activity is also observed in the membrane supernatant fractions from
both C41 and FN102 cells (Table 4.9), which suggests that if AOX protein is present in the supernatant, most of the enzymes may well be denatured or otherwise inactivated.

The double band present on almost all gels and Western blots of recombinant *S. guttatum* (a clear example of which is shown in Figure 4.8, lane 2) may be the result of such degradation products. Whether these degradation products are active or inactive is not known, but the consistency with which the bands appear on Western blots would indicate that the degradation process occurs frequently and always produces similar size protein fragments. One way to investigate this would be to excise the bands from an SDS PAGE gel and analyse them using mass spectrometry.

Interestingly, the presence of ALA in the growth media for FN102 cells after induction and therefore expressing recombinant *S. guttatum* AOX, leads to a reduction in AOX specific and total activity (Table 4.4), although the effect on total protein is less pronounced. Therefore, if the ALA is either being retained in the media or the effect of the ALA (continued expression of other quinol oxidases) persists after removal, this may be negatively affecting the activity of – and possibly expression of – recombinant *S. guttatum* alternative oxidase. In order to investigate this further, the amount of ALA added to the starter culture should be decreased. If the reduction in ALA concentration leads to an increase in recombinant AOX activity this may be one strategy to increase the activity of recombinant *S. guttatum* AOX expressed in FN102. However, this may also lead to slower growth from inoculation to induction, which would make the protocol less practical and may not provide a better strategy overall.

Another factor which contributes to low observed recombinant *S. guttatum* alternative oxidase activity is the use of different substrates (Table 4.15) during spectrophotometric assays. Whilst using ubiquinol-1 as a substrate for alternative oxidase protein activity assays is preferred, other substrates such as duroquinol will suffice. The activity recorded using the latter is lower than that of ubiquinol-1 and this is most likely due to differences in chemical structure; duroquinol lacks the isoprenyl chain present in both ubiquinol-1 and decylubiquinone (containing 1 and 10 isoprenyl units in the chain
respectively) and is highly hydrophobic as a result. This may negatively affect uptake of duroquinol by the enzyme in the aqueous assay media, leading to reduced recorded specific activities. Similarly this structural difference may affect uptake into the hydrophobic quinone-binding pocket located in the membrane as this may be more selective for the ubiquinol-1 tail rather than the single six-membered ring structure of duroquinol (cf Hoefnagel et al., 1997). This preference is most likely mediated by specific residues which are responsible for facilitating the movement of the respiratory substrate into the AOX active site from the Q-pool located in the inner mitochondrial membrane.

Following the identification of a possible quinone-binding pocket between helices 1 and 4 (see “Cavities.pse”), any of these residues (150-164 and 232-255) could potentially be involved in substrate preference and this could be investigated further using mutagenesis. This is particularly worth elucidating, given that the previously identified quinone-binding residues (cf Fisher and Rich, 2000; L137, H141, T147, H261, R262) are not proximal to the most likely quinone-binding region.

Without knowing the exact composition of the membrane local to each expressed protein it is not possible to say whether the membrane is capable of permitting a substrate added to the media (whether ubiquinol-1 or duroquinol, both of which are hydrophobic) to pass into the membrane and subsequently into the alternative oxidase quinol binding region. When the protein has been solubilised or purified and no such membrane structure is present, it remains unclear whether the substrate passes directly into the AOX protein, or whether it must temporarily associate itself with one of the hydrophobic substances within the local media (for example PEG, DDM or glycerol). Apparent decreases in activity should therefore not necessarily be assumed to be a reflection on protein conformation, but may in fact reflect the ineffective movement of the substrate to the protein. Furthermore, relying on total protein concentration of membrane, soluble and purified fractions containing S. guttatum alternative oxidase rather than the exact concentration of recombinant protein has undoubtedly affected the outcome of the activity assays. As previously stated an over-estimation of protein leads to artificially lower activity, whilst
under-estimated protein concentration results in artificially inflated activity. Combined with the uncertainty of the efficiency of substrate movement within the assay media, the resulting rates of activity should be regarded as an estimate rather than a definitive figure. Whilst this has not presented a constraint during this project, it would need addressing if further and more comprehensive kinetic profiling were to be carried out.

6.2 Structural studies of the *S. guttatum* alternative oxidase

No diffraction-quality recombinant *S. guttatum* crystals were produced during this project. Small crystals could be reproducibly grown as described in Chapter 5, but these particular crystals were susceptible to disintegration whenever the plate was moved. This frustrating occurrence could be eliminated if the plates could be viewed *in situ*, as is possible at the Membrane Protein Laboratory (MPL) at the Diamond Light Source, but unfortunately the screens used at that laboratory were not the screens which produced consistent crystal growth, as these screens were discovered some time after the visit to the MPL had taken place. It is not known exactly why the crystals formed were so small and so susceptible to degradation. One possible explanation is that the apparently unstructured N-terminal tail region of the *S. guttatum* alternative oxidase may be preventing the formation of larger, more ordered crystals. In order to ascertain the effect that the N-terminal region has on the production of stable crystals, a truncated *S. guttatum* alternative oxidase mutant which lacks the N-terminal region could be expressed recombinantly and crystallisation attempted. However, as the N-terminal region is important for the regulation of alternative oxidase activity in some isoforms (Crichton *et al.*, 2005) it may be unlikely that this mutant would be fully active, if at all. Nevertheless, provided the expressed protein is fully folded, it could still be used for attempting crystallisation screening.

In light of the recent TAO crystal structure, which forms a homodimer, the oligomeric state of the *S. guttatum* alternative oxidase may be important when attempting to crystallise it. Iwata *et al.* (2012) used chemical cross-linkers to dimerise the internal
NADH-dehydrogenase (NDI1) complex. As the internal NADH-dehydrogenase is also an integral monotopic membrane protein, the use of chemical cross-linkers to potentially improve the outcome of AOX crystallisation trials could be a rewarding investigation.

For the first time, circular dichroism has been successfully used to demonstrate the \(\alpha\)-helical nature of the *S. guttatum* alternative oxidase and TAO (Table 5.2 and Figure 5.2b). Using three CD analysis algorithms via Dichroweb, the estimated helical content for *S. guttatum* AOX is \(~50\%\), with the remaining 50% attributed to either random coil (K2D) or a combination of \(\beta\)-sheet and random coil (CDSSTR and SELCON3). Following the optimisation of the buffers for CD experiments, the technique should be used to collect data for not only mutants of *S. guttatum*, but also other AOX isoforms. Additionally, the effect on secondary structure of stabilising detergents such as EDT-20 as well as pyruvate (Carré *et al.*, 2011) could be determined to address whether these substances cause changes to the secondary structure rather than the tertiary or quaternary structure of the alternative oxidase.

The use of circular dichroism in this project has revealed a particularly interesting and unexpected characteristic of the alternative oxidase – apparent thermostability. Biologically, in spadix tissues, it is necessary for the alternative oxidase to have at least some heat stability, in order to dissipate the heat generated during thermogenesis. The structure of the four-helix bundle of this relatively small, simple protein is maintained within its core. Additionally, the protein is very closely associated with the membrane *in vivo*, which may help to minimise excess heating of the protein molecule as the heat would be lost through conduction to the membrane and convection to the surrounding matrix.

Regarding the extent of the thermostability – losing approximately 40% of helical conformation at 90°C (Figure 5.4) – it is likely that if the protein can withstand temperatures in excess of 40°C (above which most proteins begin to denature), it may be relatively easy to withstand further temperature increases. Whether this ability to maintain 60% of helical conformation at high temperatures is an evolutionary development is unclear. Thermogenic plants are found in many climates around the World, from the hot
and humid equatorial forests of Sumatra where the famous corpse flower (*Amorphophallus titanum*) grows; to the boggy wetlands of North America and Canada, home of the Western skunk cabbage (*Lysichiton americanus*); the cold snows of America, Canada, China and Japan, where the Eastern skunk cabbage (*Symplocarpus foetidus*) uses thermogenesis to melt the snow; to the mild spring-time woodlands of the UK, when the Lords and Ladies (*Arum maculatum*) appear in April and May. Perhaps, therefore, the range of ambient temperatures coupled with thermogenic activity would perhaps place selective pressure on a protein which would remain stable across a wide range of temperatures.

6.3 *In silico* modelling of the alternative oxidase – beyond the computer

Attempts to use algorithms to provide information about the alternative oxidase have in part been successful. Comparison of the homology model of recombinant *S. guttatum* alternative oxidase created using Δ⁹-desaturase as a template to that of the homology model created using TAO indicates that the basic four-helix scaffold coordinating the diiron binding site is very similar (Figure 3.4b). As described previously, the section of the Δ⁹-desaturase used as the template is not in any way associated with the membrane and is part of the core of a much larger multi-domain protein; therefore, whilst it was a useful template for the four-helix bundle at the core of the alternative oxidase, as a template for the membrane-associated regions of the protein Δ⁹-desaturase was limited. Z-scores provided by ProSA (Table 3.2) showed the quality of the TAO-based homology model to be within an acceptable range for other proteins of similar size. However, the QMEAN4 score (Table 3.2) was low, although this could be as a result of under-representation of membrane protein models in the database against which the user-generated models are compared. By acknowledging the weakness of the models, this perhaps allows for experiments to be designed that do not assume that the model is 100% accurate, allowing a greater amount of experimental flexibility. The models are, in this case, a very useful tool, a guide – nothing more.
6.4 Readdressing the questions posed in Chapter 1 and consideration of future directions

- Is it possible to over-express recombinant *S. guttatum* alternative oxidase protein in a bacterial system?
 - Yes. Further refinement of the growth conditions for the C41 and FN102 strains should be minimal.

- Is it possible to purify the expressed protein, to provide relatively pure protein?
 - It has been possible to purify expressed recombinant *S. guttatum* AOX to a reasonable level but further refinement is needed to ensure the reproducibility of the protocol defined in Chapter 4.

- Is it possible to crystallise recombinant *S. guttatum* alternative oxidase?
 - It has not been possible to crystallise recombinant *S. guttatum* alternative oxidase to date. Significant steps have been made towards defining a suitable crystallisation protocol, but extensive refinement is required in the future.

- Will recombinant *S. guttatum* alternative oxidase share a similar sensitivity to pyruvate as other AOX isoforms?
 - Recombinant *S. guttaum* does appear to be pyruvate sensitive. Moreover, the inclusion of pyruvate to harvest, solubilisation and purification buffers is important for maintaining protein stability. Whilst pyruvate is unsuitable for addition to CD buffers, it may prove to be an equally important component in the protocol for the crystallisation of *S. guttatum* AOX. The exact nature of pyruvate-AOX interaction is still unknown and should be an area to investigate in the future.

- What is the structure of *S. guttatum* AOX and is it similar to that of TAO and predictions made previously?
 - In lieu of crystallographic structural data for *S. guttatum* alternative oxidase, it has been possible to model the protein on the recently-elucidated TAO structure
with reasonable confidence. The previously predicted four-helix bundle coordinating the diiron active site of the AOX appears to be correct, which provides valuable information towards the understanding of the exact catalytic cycle responsible for AOX activity.

• Does recombinant *S. guttatum* expressed in a bacterial system form dimers and if so, is it possible to identify the mechanism of dimerisation?
 - It appears that recombinant *S. guttatum* AOX does form dimers. Whilst a possible dimerisation interface has been proposed in this thesis, further investigation using mutagenesis and cross-linking studies is required.

• Is it possible to replicate and expand upon previous attempts to model the alternative oxidase, taking into consideration the large volume of new AOX sequences now available in databases?
 - It has been possible to replicate the previously proposed Andersson-Nordlund (1999) general model of the alternative oxidase. Furthermore it has been possible to model the *S. guttatum* AOX on the recently-elucidated TAO structure. The addition of other alternative oxidase sequences to the databases has not improved the ability to predict AOX structure from sequence alone, but has been essential in the creation of detailed and useful multiple sequence alignments and phylogenetic trees. New sequences should be reviewed after they are published to continue understanding the nature of residue conservation and the relation of residues to structure and function.

• How do previous models of the alternative oxidase compare to the newly elucidated TAO structure?
 - The models generated previously by Andersson and Nordlund (1999) and the models generated during this project compare somewhat favourably to the TAO structure. Furthermore, the TAO structure data has provided key insights into
the nature of membrane association, dimer formation and the conservation of the diiron-coordinating four helix bundle at the heart of the alternative oxidase.

6.5 Concluding remarks

Over-expression and purification protocols have been established for recombinant S. guttatum alternative oxidase, thus allowing future expression and purification of other interesting AOX sequences. Several requirements have been identified to maintain AOX activity throughout solubilisation and purification, namely DDM, pyruvate, magnesium sulphate and glycerol. If ~50% of the total activity of the membrane can be retained in the purified fraction, then this purification protocol produces results comparable to the purification protocol for TAO (Kido et al., 2010).

Significant steps have been made towards implementation of a crystallisation protocol to produce stable crystals, but work should continue in this area with the inclusion of more mutants and other AOX proteins in the screening trial. It may prove that a mutant could crystallise more readily than the wild type, but still provide the essential crystal structure of the plant alternative oxidase.

The presence of large regions of helical structure have been confirmed through circular dichorism, which is in accordance with in silico predictions of the same. Whilst the exact extent of helical structure remains elusive, reliable estimates have been obtained. The thermostability discovered during the course of this project has indicated the presence of thermally robust protein, which when viewed biologically in relation to function is a logical extrapolation. Further experimentation of denaturation using heat on recombinant S. guttatum alternative oxidase mutants is required to see whether the exact residues which maintain large proportions of helical structure can be identified.

In silico modelling of the alternative oxidase has proven to be a useful exercise, both as a tool for experimental design, but also as a visual aid for further understanding the structure-function relationship. Caution has been used when asserting the validity of the models as anything more than guides and further modelling of the alternative oxidase as a
dynamic protein can be undertaken when the crystal structure of the plant protein is finally elucidated.
References

Berthold D. 1998. Isolation of mutants of the *Arabidopsis thaliana* alternative oxidase (ubiquinol:oxygen oxidoreductase) resistant to salicylhydroxamic acid. *Biochimica et Biophysica Acta* **1364**:73-83

Chaudhuri M., Ajayi W., Temple S. and Hill G.C. 1995. Identification and partial purification of a stage specific 33 kDa mitochondrial protein as the alternative oxidase of the *Trypanosoma brucei brucei* bloodstream trypomastigotes. *Journal of European Microbiology* **42**:467-472

Wakagi T. 2003. Sulerythrin, the smallest family member of the rubrerythrin family, from a strictly aerobic and thermoacidophilic archeon, *Sulfolobus tokodaii* strain 7. *FEMS Microbiology Letters* **222**:33-37

Wallner B. and Elofsson A. 2005. All are not equal: a benchmark of different homology modelling programs. *Protein Science* **14**:1315-1327

Appendix

A. Full *S. guttatum* alternative oxidase sequence (P22185):

MMSSRLVGTALCRQLSHVPQPYLPALRPTADTASSLHHGCSAAAPAQRAGLWPPSWFSP
PRHASTLSAPAQDGKEKAAGTAGKVPPGEDGGAKEAVASYWAIVPPSVSKSKEGSEWRW
TCFRPWEYQADLSIDHLKHHVPTILDKLALRTVKALKRWPDTIFFQRRYACRAMMLETV
AAVPGMVGGVLHKLKRRFEHSGGWIRALLLEAEAERMMLMTFMEVAQPRWYERALVLAA
VQGIFNYFGLGILLSPKFARHRVGVYEEEAIHYTEFLKIDSIDSGAIQDCPAPAIALDYW
RLPGSTLDRDDTDVRADEAHHRDVHAFSVDVHYQDLELKTTPAPLGYH

B. Crystal screen solutions producing microcrystals (Section 4.3.4):

<table>
<thead>
<tr>
<th>Screen</th>
<th>Salt</th>
<th>pH</th>
<th>Precipitant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memstart 9</td>
<td>-</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>Memstart 10</td>
<td>0.1M (NH₄)₂SO₄</td>
<td>7.5</td>
<td>K₂HPO₄ + Na₂HPO₄</td>
</tr>
<tr>
<td>Memstart 15</td>
<td>0.1M (NH₄)₂SO₄</td>
<td>4.6</td>
<td>4M formate</td>
</tr>
<tr>
<td>Memstart 21</td>
<td>0.1M NaCl</td>
<td>5.6</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memstart 22</td>
<td>0.1M LiSO₄</td>
<td>5.6</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memstart 23</td>
<td>0.1M LiSO₄</td>
<td>6.5</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memstart 24</td>
<td>0.1M MgSO₄</td>
<td>7.5</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memstart 29</td>
<td>0.1M (NH₄)₂SO₄</td>
<td>4.6</td>
<td>12% PEG 4000</td>
</tr>
<tr>
<td>Memstart 31</td>
<td>0.1M NaCl</td>
<td>5.6</td>
<td>12% PEG 4000</td>
</tr>
<tr>
<td>Memstart 35</td>
<td>0.2M MgCl₂</td>
<td>8.5</td>
<td>12% PEG 4000</td>
</tr>
<tr>
<td>Memstart 41</td>
<td>0.1M (NH₄)₂HPO₄</td>
<td>8.5</td>
<td>12% PEG 4000</td>
</tr>
<tr>
<td>Memsy 8</td>
<td>0.1M NaCl</td>
<td>6.5</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memsy 16</td>
<td>0.1M NaCl</td>
<td>7.5</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memsy 24</td>
<td>0.1M NaCl</td>
<td>9.5</td>
<td>30% PEG 400</td>
</tr>
<tr>
<td>Memsy 25</td>
<td>0.1M NaCl</td>
<td>9.5</td>
<td>1.5M NaPO₄</td>
</tr>
<tr>
<td>Memsy 28</td>
<td>0.1M NaCl</td>
<td>5.5</td>
<td>12% PEG 4000</td>
</tr>
</tbody>
</table>

C. Sequences used in multiple alignments can be found on the CD at the back of this thesis.
D. ProSA-web output graphs for homology models (Section 5.3.3):
Left: for *S. guttatum* alternative oxidase using Δ^9-desaturase as a template; Right for *S. guttatum* alternative oxidase using TAO as a template (black dot represents z-score for the model).