University of Sussex
Browse

File(s) not publicly available

A dynamic model of simulating stress distribution in the distal femur after total knee replacement

journal contribution
posted on 2023-06-08, 15:58 authored by J F Shi, Chang WangChang Wang, T Laoui, W Hart, R Hall
The aim of this study has been to develop a dynamic model of the knee joint after total knee replacement (TKR) to analyse the stress distribution in the distal femur during daily activities. Using MSC/ADAMS and MSC/MARC software, a dynamic model of an implanted knee joint has been developed. This model consists of the components of the knee prosthesis as well as the bones and ligaments of the knee. The femur, tibia, fibula, and patella have been modelled as mixed cortico-cancellous bone. The distal part of femur has been modelled as a flexible body with springs used to simulate the ligaments positioned at their anatomical insertion points. With this dynamic model a gait cycle was simulated. Stress shielding was identified in the distal femur after TKR, which is consistent with other investigators' results. Interestingly, higher stresses were found in the bone adjacent to the femoral component peg. This dynamic model can now be used to analyse the stress distribution in the distal femur with different load conditions. This will help to improve implant designs and will allow comparison of prostheses from different manufacturers.

History

Publication status

  • Published

Journal

Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

ISSN

0954-4119

Publisher

SAGE Publications

Issue

8

Volume

221

Page range

903-912

Department affiliated with

  • Engineering and Design Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2013-10-03

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC