Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study

Moioli, Renan Cipriano (2013) Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study. Doctoral thesis (PhD), University of Sussex.

[img]
Preview
PDF - Published Version
Download (7MB) | Preview

Abstract

Oscillatory neural activity is closely related to cognition and behaviour, with synchronisation mechanisms playing a key role in the integration and functional organization of different cortical areas. Nevertheless, its informational content and relationship with behaviour - and hence cognition - are still to be fully understood.

This thesis is concerned with better understanding the role of neuronal oscillations and information dynamics towards the generation of embodied cognitive behaviours and with investigating the efficacy of such systems as practical robot controllers. To this end, we develop a novel model based on the Kuramoto model of coupled phase oscillators and perform three minimally cognitive evolutionary robotics experiments. The analyses focus both on a behavioural level description, investigating the robot’s trajectories, and on a mechanism level description, exploring the variables’ dynamics and the information transfer properties within and between the agent’s body and the environment.

The first experiment demonstrates that in an active categorical perception task under normal and inverted vision, networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally, and to adapt to different behavioural conditions. The second experiment relates assembly constitution and phase reorganisation dynamics to performance in supervised and unsupervised learning tasks. We demonstrate that assembly dynamics facilitate the evolutionary process, can account for varying degrees of stimuli modulation of the sensorimotor interactions, and can contribute to solving different tasks leaving aside other plasticity mechanisms. The third experiment explores an associative learning task considering a more realistic connectivity pattern between neurons. We demonstrate that networks with travelling waves as a default solution perform poorly compared to networks that are normally synchronised in the absence of stimuli.

Overall, this thesis shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, produce an asymmetric flow of information and can generate minimally cognitive embodied behaviours.

Item Type: Thesis (Doctoral)
Schools and Departments: School of Engineering and Informatics > Informatics
Subjects: Q Science > QP Physiology > QP0351 Neurophysiology and neuropsychology
T Technology > TJ Mechanical engineering and machinery > TJ0210.2 Mechanical devices and figures. Automata. Ingenious mechanisms. Robots (General)
Depositing User: Library Cataloguing
Date Deposited: 05 Sep 2013 10:39
Last Modified: 15 Sep 2015 15:05
URI: http://sro.sussex.ac.uk/id/eprint/45995

View download statistics for this item

📧 Request an update