The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases

Prodromou, Chrisostomos, Artymiuk, Peter J and Guest, John R (1992) The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. European Journal of Biochemistry, 204 (2). pp. 599-609. ISSN 0014-2956

Full text not available from this repository.

Abstract

The nucleotide sequence of the aconitase gene (acn) of Escherichia coli was determined and used to deduce the primary structure of the enzyme. The coding region comprises 2670 bp (890 codons excluding the start and stop codons) which define a product having a relative molecular mass of 97,513 and an N-terminal amino acid sequence consistent with those determined previously for the purified enzyme. The acn gene is flanked by the cysB gene and a putative riboflavin biosynthesis gene resembling the ribA gene of Bacillus subtilis. The 1004-bp cysB--acn intergenic region contains several potential promoter and regulatory sequences. The amino acid sequence of the E. coli aconitase is similar to the mitochondrial aconitases (27-29% identity) and the isopropylmalate isomerases (20-21% identity) but it is most similar to the human iron-responsive-element-binding protein (53% identity). The three cysteine residues involved in ligand binding to the [4Fe-4S] centre are conserved in all of these proteins. Of the remaining 17 active-site residues assigned for porcine aconitase, 16 are conserved in both the bacterial aconitase and the iron-responsive-element-binding protein and 14 in the isopropylmalate isomerases. It is concluded that the bacterial and mitochondrial aconitases, the isopropylmalate isomerases and the iron-responsive-element-binding protein form a family of structurally related proteins, which does not include the Fe-S-containing fumarases. These relationships raise the possibility that the iron-responsive-element-binding protein may be a cytoplasmic aconitase and that the E. coli aconitase may have an iron-responsive regulatory function.

Item Type: Article
Keywords: Aconitate Hydratase/*genetics Amino Acid Sequence Base Sequence Binding Sites DNA, Bacterial/genetics Escherichia coli/*enzymology Fumarate Hydratase/genetics Iron-Regulatory Proteins Isomerases/*genetics Mitochondria/*enzymology Molecular Sequence Data Plasmids RNA, Messenger/metabolism RNA-Binding Proteins/*genetics Restriction Mapping Sequence Alignment
Schools and Departments: School of Life Sciences > Biochemistry
Subjects: Q Science > QD Chemistry > QD0241 Organic chemistry > QD0415 Biochemistry
Q Science > QH Natural history > QH0301 Biology
Depositing User: Chrisostomos Prodromou
Date Deposited: 24 Feb 2015 17:21
Last Modified: 24 Feb 2015 17:21
URI: http://sro.sussex.ac.uk/id/eprint/44358
📧 Request an update