Development of manganese (VI) oxidising agents soluble in organic solvents

Ellis, Rhys, Lee, Kee-Han, Ainsworth, Matthew, Kerr, Alexander and Viseux, Eddy M E (2012) Development of manganese (VI) oxidising agents soluble in organic solvents. Synlett, 23 (9). pp. 1371-1373. ISSN 0936-5214

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/44177/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
With compliments of the Author
Development of Manganese(VI) Oxidising Agents Soluble in Organic Solvents

Rhys Ellis, Kee-Han Lee, Matthew Ainsworth, Alexander Kerr, Eddy M. E. Viseux*

School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9AG, UK
E-mail: e.m.e.viseux@sussex.ac.uk
Received: 01.03.2012; Accepted after revision: 15.03.2012
The author would like to dedicate this paper to Prof. Philip J. Parsons on the occasion of his 60th birthday.

Abstract: Two manganate(VI) reagents have been prepared from permanganate salts that show excellent oxidising properties in common organic solvents.

Key words: manganate, oxidising agent, allylic alcohol, ketone, amine

Manganese exhibits many oxidation states from +I to +VII, +II being the most stable ion. Mn(II) ions are required as a trace mineral for all living organisms as they function as a cofactor for a large number of enzymes. There are few manganese(VI) oxides in the literature that are useful to synthetic chemists. Barium and potassium variants have been extensively studied and used, but show their limitations due to their lack of solubility in common organic solvents. Mn(VI) oxides, just like manganese dioxide, are excellent oxidising agents and are particularly effective at oxidising primary and secondary allylic and benzylic alcohols to their corresponding aldehydes, ketones, or even carboxylic acids, and at oxidising amines, silyl ethers, and thiols.

A wide range of conditions have been used including the use of microwaves, solvent-free reactions, or in conjunction with other metals or semimetals like lithium, copper, arsenic, tellurium, thallium, ruthenium (III), and lead. Despite their interesting chemoselectivity, a large excess of the reagents is usually required, from 5–50 equivalents, which renders them particularly expensive on larger scale with significant waste in manganese element.

To avoid this shortfall, we synthesised two complexes that are soluble in both organic and aqueous solvents based on the corresponding ammonium salts. Because alkaline solution of potassium iodide is usually used to reduce potassium permanganate to potassium manganate, our initial attempts involved the use of ammonium primary and secondary reducing agent for potassium permanganate, but the stability of the green complex was short-lived, with degradation to brown residues, presumably insoluble Mn(IV). Best results were obtained with trialkylammonium hydroxides and tetrabutylammonium permanganate (Bu₄N)₂MnO₄. Two reagents were synthesised using tetrabutylammonium hydroxide, tetrabutylammonium iodide, and phenyltrimethylammonium iodide: bistetrabutlammonium manganate (bTBAM, Scheme 1) and the mixed salt tetrabutylammonium phenyltrimethylammonium manganate.

Manganese(VI) oxides are typically green in colour, due to a combination of the relatively large molar extinction coefficient ε, arising from the ligand-to-metal charge transfer, and to the absorption within the visible region of the spectrum. They are usually characterised by an absorption maxima at a wavelength of 606 nm with an ε value of 1200 ± 50 dm³ mol⁻¹ cm⁻¹. Permanganate, on the other hand, has an absorption maximum at a wavelength of 525 nm.

Though the salts are soluble in a variety of organic solvents, including DMSO, DMF, MeCN, acetone, THF, EtOAc, 1,4-dioxane, pyridine, CHCl₃, and CH₂Cl₂, the best solvents for the oxidation were found to be THF and acetonitrile. The compound is also moderately soluble in benzene to produce ‘green benzene’ by analogy with the well-known ‘purple benzene’ reported by Herriott and Picker. Table 1 exemplifies the use of bTBAM as a mild oxidising agent, with reactions occurring at room temperature. Though MnO₄⁻ is usually successful at oxidising allylic alcohols, yields are usually lower. BaMnO₄ and K₂MnO₄ can also perform such oxidations illustrated in Table 1, but require a large excess of the oxidising agent. In conclusion we have shown that ammonium salts of manganese oxides allow the oxidation of a variety of functional groups under mild conditions in an easy and widely applicable procedure.

Preparation of (Bu₄N)₃MnO₄ (bTBAM)
Tetrabutylammonium permanganate (1.00 g, 2.77 mmol) was added to a flask containing TBAOH solution (40 wt%, 5 mL, 7.70 mmol) and distilled H₂O (45 mL). The mixture was then placed into a sonicator bath and sonicated for 10 min at 60 °C. The mixture was subsequently poured through a sinter funnel to remove any undisolved permanganate salts. The green solution was subsequently lyophilised to give a green solid which can be kept in a desiccator under reduced pressure, or in a sealed flask under argon. ¹H NMR
Table 1 Oxidation with 1.5 equiv of bTBAM

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>60</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>150</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>30</td>
<td>quant.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>60</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>120</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>30</td>
<td>80%</td>
</tr>
</tbody>
</table>

*Conditions: 2.5 equiv of bTBAM were required.

* Products were characterized by comparison with authentic samples, IR, TLC, mp, and NMR.

(500 MHz, CDCl₃): δ = 3.39–3.35 (16 H, m), 1.70–1.68 (16 H, m), 1.49–1.47 (16 H, m), 1.03–1.01 (24 H, m). ¹³C NMR (126 MHz, CDCl₃): δ = 59.1 (CH₂), 24.2 (CH₂), 19.7 (CH₂), 13.7 (CH₃). ESI-MS: m/z = 603, 242.

Preparation of [(Bu₄N)(PhMe₃N)]MnO₄
A solution of phenyltrimethylammonium iodide (1.66 g, 7.32 mmol) in MeCN (50 mL) was added to a solution of TBAI (7.02 g, 0.019 mol) in MeCN (30 mL), followed by the addition of KMnO₄ (0.514 g, 3.16 mmol) in MeCN (10 mL). The mixture was placed in a H₂O bath at 30 °C for 1 h before 1 equiv of KI was added. The mixture was then left to stir for 12 h, filtered, and the solvent was evaporated yielding dark green crystals (5.78 g, 0.011 mol).

¹H NMR (500 MHz, CDCl₃): δ = 8.02–7.97 (2 H, m), 7.63–7.61 (2 H, m), 7.55–7.53 (1 H, m), 4.01 (9 H, s), 3.40–3.34 (8 H, dt, J = 14.3 Hz), 1.68–1.64 (8 H, m), 1.49–1.47 (8 H, m), 1.03–1.01 (12 H, m). ¹³C NMR (125 MHz, CDCl₃): δ = 126.0 (CH), 59.2 (CH₂), 50.7 (CH₂), 24.2 (CH₂), 19.3 (CH₂), 13.4 (CH₃). ESI-MS: m/z = 496, 242.

General Procedure for the Oxidation of Alcohols
bTBAM (1.5 equiv) was added to a 0.01 M solution of the alcohol in THF or MeCN at r.t. and stirred for 60 min during which time the colour of the solution changed from green to brown. The suspension was then filtered over a short plug of silica, which was subsequently rinsed with Et₂O. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure to give the corresponding aldehyde or ketone.

Acknowledgment
We thank Dr. Alfred Bader for a generous Bader award to EMEV and the University of Sussex for Junior Research Associate schemes. We also thank Dr. Iain Day for the NMR service and Dr. Alaa Abdul-Sada for the mass spectrometry service at the University of Sussex.

References

