University of Sussex
Browse
Chesebro,_John.pdf (7.47 MB)

Mechanisms of segmentation in the American cockroach, periplaneta americana

Download (7.47 MB)
thesis
posted on 2023-06-08, 14:11 authored by John Chesebro
A fully segmented body and jointed legs are defining characteristics of the Arthropoda (Insecta, Crustacea, Myriapoda, and Chelicerata). The underlying mechanisms involved in achieving these features are not well understood outside of the insect Drosophila melanogaster (fruit fly) – a long germ band organism where segmentation occurs all at once in a syncytial blastoderm. In the more common, ancestral mode of development, short germ band, new segments are added sequentially from the cellular environment of a posteriorly extending growth zone. Segmentation in these organisms may not always be comparable to the “Drosophila paradigm” and, therefore, require further analysis. My thesis will explore the conservation and divergence of the molecular mechanisms of segmentation in a phylogenetically basal, short germ band insect, Periplaneta americana (American cockroach). Presented over three results chapters, I will discuss aspects of cockroach segmentation processes, from the establishment of a posterior organiser and growth zone, to subsequent posterior growth and the formation of new segments. In particular, Chapter III describes how interactions between the Cad/Wnt-dependent posterior organiser and the Notch-segmentation clock control posterior growth and segmentation. Chapter IV encompasses the expression patterns and potential roles for Periplaneta homologues of the pair-rule genes: even-skipped, runt, pairberry, and sloppy-paired throughout embryogenesis, identifying deviations in function between anterior and posterior segmentation processes. New functions for the non-canonical, polycistronic small Open Reading Frame (smORF) gene tarsal-less in body patterning are discussed in Chapter V, along with the conserved roles for tarsal-less, nubbin, Notch, and Delta in leg and development. Elucidation of the networks involved in these processes will help establish putative ancestral gene functions allowing us to gain further insights into the evolution of insect (and arthropod) body segmentation and leg joint formation.

History

File Version

  • Published version

Pages

264.0

Department affiliated with

  • Biology and Environmental Science Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2013-02-06

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC