Keeping an eye on the truth: Pupil size, recognition memory and malingering

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/39749/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Keeping an eye on the truth: Pupil size, recognition memory and malingering

B. Heaver, S.B. Hutton

School of Psychology, University of Sussex, Brighton, United Kingdom

Background: Estimates of the incidence of malingering in patient populations vary from 1 to 12%, rising to ~25% in patients seeking financial compensation. Malingering is particularly difficult to detect when patients feign poor performance on neuropsychological tests (see Hutchinson, 2001). One strategy to detect malingering has been to identify psychophysiological markers associated with deception. Tardif, Barry, Fox and Johnstone (2000) used electroencephalogram (EEG) recording to measure event related potentials (ERPs) during a standard recognition memory test. Previous research has documented an ERP “old/new effect” – late positive parietal ERPs are larger when participants view old, learned words compared to new words during recognition. Tardif et al. reasoned that if this effect is not under conscious control, then it should be equally detectable in people feigning amnesia as in participants performing to their best ability. As predicted, they found no difference in the magnitude and topography of the old/new ERP effect between participants who were asked to feign amnesia whilst performing the test and those asked to perform to their best ability. Whilst this approach shows some promise, EEG is comparatively time consuming and expensive. Previous research has shown that during recognition memory tests, participants’ pupils dilate more when they view old items compared to new items (Otero, Weeks, and Hutton, 2006; Vo et al., 2008). This pupil “old/new effect” may present a simpler means by which to establish whether participants are feigning amnesia.

Method: We used video-based oculography to compare changes in pupil size during a recognition memory test when participants were given standard recognition memory instructions, instructions to feign amnesia and instructions to report all items as new. Due to constant fluctuation in pupil size over time, and variation between individuals, a pupil dilation ratio (PDR) was calculated that represented the maximum pupil size during the trial as a proportion of the maximum during baseline.

Results: Participants’ pupils dilated more to old items compared to new items under all three instruction conditions ($F(1.25) = 47.02, \text{MSE} < 0.001, p < .001, \eta_p^2 = .65$). There were no significant differences between baseline pupil size ($F(1.63,40.76) = 1.90, p = .17, \text{ns}$).

Conclusions: The finding that under standard recognition memory instructions, participants’ relative increase in pupil size is greater when they view old items compared to new items replicates previous research documenting the pupil old/new effect. That the effect persists, even when participants give erroneous responses during recognition, suggests that the “pupil old/new effect” is not under conscious control and may therefore have potential use in clinical settings as a simple means with which to detect whether patients are feigning amnesia.
References

doi:10.1016/j.ijpsycho.2010.06.206