"The Case Of The Proprietors Of The Birmingham Canal Navigation, Relative To Charles Colmore Esquire, 21st January 1771"

Alistair Grant

Introduction
On 21st January 1771, sixty years before the public meetings of the Birmingham Political Union were rallied by Thomas Attwood to Newhall Hill, prompting the Great Reform Act of May 1832, the social, industrial, and geographical landscape of Birmingham was reshaped by a parliamentary tussle between the town’s established landowning gentry and its industrious company of newly wealthy ‘Proprietors’. The Case Of The Proprietors Of The Birmingham Canal Navigation, Relative To Charles Colmore Esquire directly affected the way in which Matthew Boulton, the ‘Father of Birmingham’, developed his famous Soho Manufactory and engineered the opportunity that made him a key player in the Industrial Revolution. It also led to the rapid expansion of Birmingham to the northwest along Newhall Street, where Elkington, Mason & Company set up in business as Boulton’s successors as the town’s leading metalware manufacturers, and led to the development of the famous Jewellery Quarter.

The Estate of Charles Colmore Esquire

“Birmingham cut, fairly wrought, For the cut of all cuts is a Birmingham cut”

In 1771-72, Charles Colmore (Fig. 1), a London-based merchant, and absentee landowner of his family’s old manor of New Hall near Birmingham, became involved in a major building project that hastened the development of his 100-acre estate, and greatly extended the north-western reaches of the town. On 24th January 1767, a group of the town’s leading businessmen had held a public meeting in the White Swan on the High Street to propose building a canal to link Birmingham to the Black Country and Staffordshire coalfields, and the Staffordshire and Worcestershire Canal near Wolverhampton. A new company was formed, called the Birmingham Canal Navigations (BCN), and the renowned canal engineer James Brindley was commissioned to survey a route (Fig. 2). As with his previous engineering works on the Bridgewater, Trent and Mersey, and Staffordshire and Worcestershire canals the route that James Brindley proposed aimed to minimize the amount of laborious groundwork involved by contouring the canal through the landscape on a level. Brindley’s serpentine route aimed to avoid building too many embankments and locks, which were time-consuming and costly because of the laborious manual methods then available for cutting and removing earth. Locks also slowed the progress of commercial traffic.

Nevertheless, Charles Colmore was quick to realize the potential revenue he could obtain if the Birmingham Canal extended onto his land, and he urged the company’s shareholders into an agreement to cut a branch canal that would end on his Newhall estate (Fig. 3). The intention was to build two termini on the outskirts of Birmingham at Paradise Wharf, later called Old Wharf, near what is now the Gas Street Basin, and at Newhall Wharf in a field on Colmore’s land known as Newhall Ring.

On 24th February 1768, an Act of Parliament was given Royal Assent by George III that granted permission to “The Company of Proprietors of the Birmingham Canal Navigation,” to raise the sum of £55,000 by the issue of 550 shares worth £100 each, and allowed them to raise the further sum of £15,000, if it was required. The Act was entitled: “An Act for making and maintaining a navigable Cut, or Canal, from Birmingham to Bilston, and from thence to Autherley, there to communicate with the Canal now making between the Rivers Severn and Trent, and for making collateral Cuts up to several Coal Mines.” Work began almost immediately under Brindley’s supervision. On 21st September 1772, the canal, which later became known as the Main Line to distinguish it from the numerous branches later built or acquired by the BCN, was joined to the Staffordshire and Worcestershire Canal via a flight of 20 locks. It was just over 22 miles long, and followed the contours with a few deviations to coal mines and manufactories, including a collateral cut to Matthew Boulton’s new Soho Manufactory.

The Intention of the said Act

“Of what we invent each partakes of a share. For the best of wrought metals is Birmingham ware.”

However, as work on the canal had progressed, Matthew Boulton (Fig. 4) decided that extending the canal onto the Newhall estate would be too costly and, more importantly, risked reducing the supply of water to his new manufactory at Soho. As Jenny Uglow points out, “Only when the work started did it dawn on him that..."
the planned extension to New Hall, the old Colmore estate whose lands ran down towards Soho, posed a real danger to his own water supplies." Boulton was a major shareholder in the BCN and along with another BCN committee member, Dr. William Small, he set about preventing the extension to Newhall Ring. Besides being his physician, William Small, often acted as an unofficial factor in Boulton's business affairs. He was sociable and diplomatic, and, as a doctor, affected an air of being above commercial ambition. He appeared to have no personal interest in the Newhall branch canal other than ascertaining whether or not it served the best commercial interests of the BCN. In truth, William Small was one of Boulton's closest confidants and, as a BCN committee member, he was able to discreetly represent Boulton's concerns about the supply of water to Soho as though it were a broad, egalitarian concern for all the BCN shareholders and the wider community.

Small’s opinion among his fellow BCN committee members was influential, and so the plans for the canal to extend to the field on Charles Colmore’s estate were quietly dropped. “Acting as Boulton’s lieutenant, William Small negotiated behind the scenes. The New Hall extension mysteriously disappeared from the plans, due to ‘an unforeseen difficulty.” Colmore was outraged, not just at the breaking of his gentleman’s agreement with James Brindley and the BCN committee members and shareholders, but because he felt legally aggrieved, since the termination of the waterway on his land had been specified in the Act authorising the building of the canal. Colmore complained, first to the King’s Bench, and then to Parliament:

“That the Canal, for which an Act passed in 1767, (now in part executed, and particularly into a Field belonging to the Free School of Birmingham, not far distant from that Town) was by the said Act intended to proceed to Newhall Ring, which is the estate of Mr. Colmore; and that as all the Intermediate Land belongs to Mr. Colmore, if the Canal should not be continued thither, according to the Intention of the said Act, he would be very materially injured in his property: Wherefore he prays for a Bill, to oblige the Company of Proprietors to complete the said Canal to Newhall Ring, and within a Time to be limited, or that he maybe allowed to complete the same at his own Expenditure.”

Seizing on the offer by Charles Colmore “to complete the same at his own Expendence”, Boulton and his fellow proprietors invited him to extend the canal to Newhall Ring himself “on very equitable terms”. In truth, the proprietors’ terms were far from “very equitable,” and, as Jenny Uglow has shown, William Small took great pains to conceal that Boulton was the primary instigator and obstacle to the Newhall extension. “Small worked even harder, dash ing to London, sending weekly - even daily - express letters, while carefully keeping Boulton’s name out of it, telling their lawyer, ‘you are allowed to read Mr. Boulton’s letter but not speak of it.”

As the dispute escalated, engineers were called upon as expert witnesses by both sides. William Small pressed James Brindley forward to represent the BCN’s argument, emphasizing the unnecessary cost implications of extending the canal to Newhall, and the further strains it would place on the water supply along the canal generally, without citing Soho specifically. Charles Colmore called upon another reputable engineer, John Smeaton (Fig. 5), to demonstrate that, in truth, there really were no insurmountable engineering obstacles or prohibitively expensive costs to the Newhall cutting. Smeaton was the first self-proclaimed civil engineer, and he argued that if there was a problem with the water supply along the twenty-two miles and five furlongs of the Main Line it was at the Smethwick summit where the level rose by 19½ feet for about a mile, and then dropped again by the same amount, before continuing level from Oldbury to Wol veryampton. There were also problems with the water supply at Atherley where the canal drops down 132 feet to join the Staffordshire and Worcestershire Canal, and in 1778, another lock was added to the original flight of 20 to save water.

James Brindley and John Smeaton were the two foremost engineers of their day, and their involvement is an indication of how the judicial and parliamentary system in eighteenth-century England had begun listening to scientific evidence by expert witnesses to settle personal and commercial disputes. Jenny Uglow however, delightfully draws attention to the fact that despite employing James Brindley’s technical reputation to surreptitiously support his own interests, Boulton was actually scornful about the expert evidence.
of this "whole tribe of Jobbing ditches." In 1771, whilst surveying a new branch of the Trent and Mersey Canal, Brindley was caught in a severe rainstorm, which was something of an occupational hazard for a canal engineer. Afterwards, he was unable to dry and caught a chill. He became seriously ill, and whilst convalescing at his home in Staffordshire his physician, Erasmus Darwin, attended to him and discovered that he was suffering from diabetes. On 27th September 1772, less than a week after the Main Line was completed, James Brindley died.

Colmore was determined, and clearly confident of his legal case. He resisted all attempts by Small and the BCN committee to compromise the original plan of "the said Act intended to proceed to Newhall Ring". Colmore was most affronted that the "very equitable terms" that Small (Boulton) and the BCN committee were proposing stated that even if the canal were to be completed to Newhall Ring at his "own Expense", then it must be "without any improper Dimunition of the Company's present Powers". By finishing the cut at Paradise Wharf, the canal proprietors felt that their primary aim and obligation under the Act would be achieved, which was simply to create better access to the Staffordshire coalfields for their increasingly populous and industrious town, coal being, "an Article most essential to its Manufactures and for which an enormous Price had long been paid, by Land Carriage".

The Company of Proprietors

"Not Europe can watch us for traffic, America, Asia and Afric." The Birmingham Canal was built to bring vast amounts of bulky raw materials, especially coal and metal ores, into the town more cheaply, rather than to carry manufactured artifacts out of town. "The actual effect of the canal network across the West Midlands eventually established by the end of the century, was, however, to facilitate cheaper transport of heavy goods and raw materials, rather than to carry the output of Birmingham's workshops. Industrial growth in the town was accelerated by rather created by, its canals. Finished articles could be more quickly and easily transported overland, either to the home market, or more often to London, Bristol, and Liverpool for export to foreign markets, particularly Europe, and the British colonies in the West Indies and America. By the end of the 17th century Birmingham metalworkers had established a growing export trade. By 1700, metalwares were the second largest category of manufactured goods exported, although they only accounted for about 3% of the total export. In 1722-4 metal wares accounted for 7% of manufactured goods exported; by 1752-4 this had risen to 9% and again by 1772-4 to 14%. Before 1775, and the outbreak of the American War of Independence (1775-1783), the population of the thirteen British colonies on the Atlantic coast of North America and the colonies in the British West Indies rapidly increased, and transatlantic trade became an important market for the town's metalware manufacturers.

Colmore knew that if he could bring cheap coal and ore along the canal to the heart of his Newhall estate he could intensively develop the land, and the town's metalware manufacturers and merchants, artisans and mechanics would move there. He applied to the Court of the King's Bench for a Mandamus, but was refused, and so he resorted to a private petition to the House of Commons. This is what prompted The Case Of The Proprietors Of The Birmingham Canal Navigation, Relative To Charles Colmore Esquire. In answer thereto, the Proprietors of the Birmingham Canal Navigation do in general say "That they cannot comprehend or admit of the Above Assertion of Mr Colmore's being very materially injured by them in his Property; for that the Newhall Ring was never intended by them to be a certain and necessary Termination of their Canal - Nor did they ever certainly understand that Parliament intended it should be so - And if in the above Respect Mr Colmore's Allegations should be found deficient they flatter themselves that his Prayers, to have the Proprietors compelled to continue their Canal to Newhall Ring at all, will be judged unreasonable."

The Proprietors go on to blame the lateness in the parliamentary season for the abridged imperfection of their original petition of 1767, claiming that several terminations for the canal were marked out as "possible and practicable but that it was impossible to ascertain at that juncture where the canal could be bought with the best Security of its Success". With a subtle allusion to their famed and respected engineer, James Brindley, they claimed that they were informed by "Persons experienced in canals" that they would not be required to bring the Canal to any Precise spot of Ground", they go on to portray themselves as naive and unwitting victims of Charles Colmore's unreasonable demands. Little then did they imagine, that by the unsuspicious mention of Newhall Ring, they were forging any shackles for themselves.

The Proprietors, and especially Matthew Boulton's problem was one of simple fluid mechanics: the termination of the canal at Newhall Ring required either a tunnel, or an equally costly succession of locks to be built to carry the canal over the hill. Bringing the canal to Newhall Ring was dependent on the provision of sufficient water because the high level of the proposed canal had no current, unless a stream was diverted some distance from its course, and "at very great Expense (greater perhaps than the whole profits of the Canal)", and, most importantly of all, "on which the most considerable Manufactory of this Neighbourhood depends, as also an iron Furnace, and some other important Works." The considerable Manufactory, italicized for emphasis, was Matthew Boulton's new manufactory at Soho (Figs. 6-7).
The BCN committee demanded that even if Colmore were to complete the canal onto his land, he must do so not only at his own expense, but also agree to pay in perpetuity for the maintenance of the branch canal without profiting solely or directly from it. Moreover, they demanded that he should financially offset any effect the Newhall branch canal may have on the recently completed Main Line, as well as compensate any businesses affected by the diminution of the shared water supply.

It was clear to all involved that Matthew Boulton meant his own silver manufacture at Soho. Boulton and his fellow Proprietors argued that “coming to Newhall Ring is altogether incommodious and unnecessary—both in respect to the Community and themselves” because “it will endanger the Success of the whole Undertaking in a public View.”

Nevertheless, Colmore won the case.

The Stream of Water

“Birmingham ware, none so fair, For the best of wrought metals is Birmingham ware.”

The water supply on Handsworth Heath, Moneybank Hill, and Crabtree Bank where Boulton had built his factory had been problematic ever since John Wythley, the lord of the manor of Handsworth, had inclosed the land and leased it to Edward Ruston and John Eaves in 1757. Water was diverted from Hockley Brook to make a pool 350m long and 52m wide, which generated enough power to drive a small water mill used in their modest toymanufactory business. Boulton purchased the lease from them in 1762, and transplanted his manufactory from Snow Hill to Soho. He partially rebuilt and enlarged the premises, and replaced the watermill despite the fact it was only four years old. Despite these additions, his business quickly outgrew the buildings and in 1764 he began building the famous Soho manufactory, which was finished the following year.

One contemporary chronicler of the development of Birmingham, the Rev. Stebbing Shaw, noted, “From that period he began to turn his attention to the different branches of manufactory; and, in conjunction with Mr. Fothergill, then his partner, established a mercantile correspondence throughout Europe; by which means the produce of their various articles was greatly extended, and the manufacturer, by becoming is own merchant, eventually enjoyed a double profit. Impelled by an ardent attachment to the arts, and by the patriotic ambition of bringing his favourite Soho to the highest degree of perfection, the ingenious proprietor soon established a seminary of artists for drawing and modelling; and men of genius were now sought for and liberally patronised, which shortly led to a successful imitation of the Or Moli. These metallic ornaments, consisting of vases, tripods, candelaibras, &c. by the superior skill and taste bestowed upon them here, soon found their way; not only to the admiration of his majesty, and to the chimney-piece and cabinets, &c. of the nobility and curious of this kingdom; but likewise to France, and almost to every part of Europe. From this elegant branch of the business the superior skill of Mr. Boulton led his artists by a natural and easy transition, to that of the wrought silver; upon which he soon found the necessity of applying to parliament for, and establishing, in 1773, an assay office at Birmingham.”

The growth of production and new branches of manufactory at Soho soon far exceeded the water supplied by Hockley Brook. The power of the new mill was never sufficient to run laps (polishing machines) or grinding machines on the scale of production required by the new manufactory. For twelve years the water mill

Fig. 8 The oldest surviving of Boulton and Watt's engines, 'Old Bess' on display in London's Science Museum, was installed below the water mill at Soho to recycle water back into the mill pond. (photograph by Angus Patterson)

Fig. 9 James Watt's waterworks at Soho, The Boulton & Watt Archives, Birmingham Archives & Heritage
was the sole source of power at Soho, and Boulton was forced, like many smaller manufacturers, to use Holford mill for rolling metal. In dry summer months, water was a particularly short supply.

So Boulton's concerns over any further diminution of his water supply caused by the proposed extension of the Birmingham Canal to Newhall Hill were understandable. Losing the parliamentary ruling to Charles Colmore in 1771 placed further limits on existing operations, and severely inhibited the potential for expansion at Soho.

However, losing the case to Colmore prompted Boulton to explore other solutions to raising sufficient groundwater to keep the 'Or Molu' and other articles flowing out of his considerable Manufactory. The solution others had actually found proved truly groundbreaking, and was a forerunner to the development of the Industrial Revolution.

Shaw continues the story: 'Mr. Boulton finding from experience that the stream of water which had induced him to build a mill and transplant his manufactory to Soho, was insufficient for its purpose, he applied horses, in conjunction with his water-mill; but finding that both troublesome, irregular, and expensive, in 1767 he made a steam-engine, on Savery's plan, with the intention of returning, and raising his water about 24 feet high; but this proving unsatisfactory to him, he soon after formed an acquaintance with his present partner and friend, Mr. James Watt of Glasgow, who in 1765 had invented several valuable improvements upon the steam-engine, which in fact made it a new machine. For these improvements Mr. Watt had obtained a patent in January 1769, and afterwards came to settle at Soho, where in that year, he erected one of his improved engines, which he brought from Scotland; and, after full proof of its utility, obtained from parliament in 1775 a prolongation of the term of his patent for 25 years from that date.

With the low levels of water in the summer months, and increasing demands being made of Hockley Brook upstream, the Newhall branch canal led Boulton to install a steam engine to pump recycled water back into the pool at Soho (Figs. 8-9). The "full proof of its utility" convinced Boulton to enter into a partnership with James Watt (Fig. 10) to supply similar steam engines to other manufactories and mines. In 1776, they formed a partnership in the firm of Boulton and Watt to exploit Watt's patent for his new design, which had a separate condenser, making it much more fuel-efficient than the existing Newcomen engines.

"He then entered into partnership with Mr. Boulton, and established a very extensive manufactory of these engines at Soho, whence most of the great mines and manufactories of England are supplied, they being now applied to almost every mechanical purpose where great power is requisite. The application of this improved steam-engine at Soho to raise and return the water, extended the powers of the water-mill; which induced Mr. Boulton to rebuild it a second time upon a much larger scale, and several engines were afterwards erected at Soho for other purposes, by which the manufactory was greatly extended, the source of mechanical power being thus unlimited."

The Manufacturers and Shops

"With pride every heart must be glowing, Stamps, pressees and taffets shall be going..."

When the Birmingham Canal was opened in 1769, the price of coal in the town halved overnight. However, despite the success of the Old Main Line there was always a problem supplying sufficient water to the six locks on either side of Smethwick Summit, and to the branch canal that served the Soho manufactory. Boulton and Watt constructed steam engines on either side of the Smethwick Summit to pump water from the locks back to the summit. The famous Smethwick Engine (which was once displayed in the Birmingham Museum of Science and Industry on Newhall Street) began pumping water on 5th June 1770 from the Birmingham side.

The Spon Lane Engine began pumping water from the Wolverhampton side in April 1778. In the 1780s, John Smeaton constructed a cutting, which replaced one of the six locks on each side. In the 1820s, Thomas Telford built a new canal parallel to the Old Main Line in an even deeper cutting, which were then the largest mansions earthworks in the world. Despite these cuttings, the Boulton and Watt engines were still needed.

Initially Boulton and Watt steam engines were assembled at the Soho Manufactory. However, most of the major parts, such as the cylinders, had to be manufactured elsewhere, and in 1790, Boulton and Watt applied to operate a foundry or rolling mill. In 1794, Boulton and Watt moved production of their steam engines to their new Soho Foundry in Smethwick. The Smethwick Engines were designed by James Watt for the Birmingham Canal Navigation and began pumping water in May 1779, and completely revolutionized steam engine design. Samuel Smiles, in his Lives of Boulton and Watt of 1865, describes how the demand for Watt's new machines were fuelled by Boulton's reputation: "When it became known that Boulton had taken an interest in a new engine for pumping water, he had many inquiries about it from the mining districts. The need of a more effective engine than any then in use was every year becoming more urgent. The powers of Newcomen's engine had been tried to the utmost."

Within the first few years of the 1780s, Boulton and Watt's engines had replaced all of the seventy-five Newcomen engines that had been operating in mines in Cornwall. "Applications for terms, followed by orders, shortly came in from the mining districts; and before long the works at Soho were resounding with the clang of hammers and machinery employed in manufacturing steam-engines for all parts of the civilized world."

By 1800, Boulton & Watt had manufactured 496 engines, 164 of which were used for (reciprocating) water pumps, 24 for blast furnaces, and 308 for pumping mill machinery. After 1800, Boulton and Watt's sons continued the partnership, and the firm continued manufacturing steam engines until 1895.

However, a survey of "The Steam-power of Birmingham," published in the Transactions of the Royal Statistical Society in 1840, reveals the number of steam-engines at work in the town, the dates they were erected, and the uses to which they were applied. Surprisingly, 'From 1780 to 1815, a period of 35 years, there were only 42 engines set to work.' Clearly, the main market for Boulton and Watt's steam engines was not the mechanization of the metalworking trades of Birmingham and the Midlands, but pumping water in the metal mines of Cornwall and Wales, and the coal mines of the Midlands, the north and northeast, and parts of Scotland. The application of steam power was quicker in more labour-intensive, unskilled trades, such as the mills and looms of Lancashire.

Even so, by 1840 the metal trades of Birmingham did account for 62.7% (2155 out of 3435 horsepower) of the steam engines at work in the town. By the time of the Royal Statistical Society survey in 1840, 198 more engines had been added since the end of the Napoleonic Wars in 1815, 120 of which had been erected after 1830, making the total number at work 2400. Interestingly, the survey states that only 65 of those erected were "high-pressure", which refers to Watt's design. By 1840, far and away the greatest use of steam in the metal trades, 650 out of 2155 horsepower, was for rolling mills, steel rolling mills, to which Boulton and Watt applied for permission which was first applied in 1792. 210 horsepower out of 2155 was applied by iron founders, engineers and smiths, to which it was first applied in 1795. 201 by iron forges and wrought iron mills, to which it was first applied in 1808. 135 by iron founders, engineers and smiths, to which it was first applied in 1808. By 1813, it had been applied to nail cutting, which by 1840 was consuming 78 horsepower, and by 1819 to wood screw making, which consumed 122 horsepower.

Boulton & Watt's improved steam engine further increased the demand for coal. In the early years of the Industrial Revolution, because coal was so bulky and expensive, many coal-dependent industries and towns grew up close to the coal mining areas, but there was also a great demand for canals to transport bulk materials, especially coal and metal ores, to the established manufacturing towns from the mining districts.

The Newhall branch ran just to the north and parallel of Great Charles Street, to the main coal wharf, which was just below what is now the corner of Newhall Street and Queenensway. Unlike the later Birmingham and
Fazeley Canal, which descends through the impressive Farmer’s Bridge flight of locks, and crosses Newhall Street lower down the hill, the original Newhall branch was kept on a level. Following the termination of the branch canal at Newhall Ring, Charles Colmore developed the land on his estate either side of the canal for industry and housing, or ‘mixed use’ to use the opened-ended term currently favoured by developers on planning applications.

The new canal corridor created prime waterside locations for wharves, rolling mills, foundries, manufactories, and, above all, shops. The common 18th- and 19th-century slang for artisanal work in Birmingham and the Black Country was ‘shopping’, with factories and workshops usually referred to as ‘shops’. Charles Dickens in ‘A Poor Man’s Tale Of A Patent’ in his weekly magazine, Household Words, 19th October 1850, has a working man from Birmingham say, “what you would call Manufactories, we call Shops.”

Newhall Wharf was the primary coal and timber wharf for the town. Many of the town’s metalware manufacturers and merchants, artisans and mechanics moved there. The principal canal-side trade was always metalwork, and the canal prompted the development of a whole new area to the northwest of the town, which quickly became the toymakers’ quarter.

An Act of Parliament obtained in 1784, authorized the building of the Birmingham and Fazeley Canal, which stretched 15 miles, through 38 locks, from the Main Line at Old Turn Junction, through the Newhall estate, past the site where the famous Elkington, Mason and Co manufactury was later built. It was completed in August 1789, joining the Coventry Canal at Fazeley, just outside Tamworth. The Birmingham Canal Company merged with the Birmingham and Fazeley Canal Company to form what was briefly called the Birmingham and Birmingham and Fazeley Canal Company. In 1794, the cumbersomely combined company became simply, Birmingham Canal Navigations.

The Toymakers’ Quarter

“Birmingham toys, all men praise, And riches spring daily from Birmingham toys.”

By the time the New Hall estate was fully developed, toymaking had been an established and important industry in Birmingham for over a hundred years. The term toy refers to a very wide variety of small, often highly intricate artifacts made in a variety of metals. James Sketchley’s Birmingham Directory (the 3rd edition of 1767) gives an idea of the diversity of the toymakers’ wares:

“An infinite variety of articles come under this denomination and it would be useless to attempt to give an account of the whole, but for the information of strangers we shall here observe that these artists are divided into several branches as the Gold and Silver Toymakers, who make trinkets, seals, weezers, toothpick cases, smelling bottles, snuff boxes, and Phoenix work such as toiletts, tea chestts, inkstands etc, etc. The Tortoise shell toy maker makes a beautiful variety of the above and other articles; as does the steel toy maker, who make cork screws, buckles, buttons, draw and other boxes, snuffers, watch chains, stay hooks, sugar nippers etc, etc; and almost all these are likewise made in various metals, and for cheapness, beauty, and elegance no place in the world can vie with them” (Fig. 11).

It is interesting to note that Sketchley does not categorize toymakers by the kind of toy that they make but by the material with which they make them. Sketchley’s descriptive division of Birmingham’s trades sees the function and ornamental form of the product as less important than the artistry and skills required in working with a particular material. By the 1840s, the toymakers’ quarter had consumed the Newhall estate and roads extended across Colmore’s land to the Inge and Vyse family estates. By 1846, Richard Howard-Vyse had created a large area of building plots across his estate along Vyse Street, with Hylton Street leading north. The jewellery trades congregated along Vyse Street, Warstone Lane, and the adjoining area to form what later became known as The Jewellery Quarter (Fig. 12).

In a final twist of fate, in the late 1780s, Matthew Boulton briefly used the Colmore’s Newhall mansion as a canal-side warehouse. By then, the large house and its outbuildings had become an obstacle to the extension of Newhall Street, and Boulton, perhaps to spite Charles Colmore, initially objected to its demolition. The house was finally demolished in 1787, although Boulton retained the barn until he had constructed a new purpose-built warehouse on Livery Street in 1788.

By 1901, the Newhall branch was largely disused (Fig. 13). In 1937, it was acquired by the Birmingham Corporation, and it was drained, filled-in, and built over to pave the way for redevelopment. The basin adjacent to the footbridge to Cambrian Wharf is all that now remains of the Newhall branch (Fig. 14).
Acknowledgements:

I would like to thank Angus Patterson who has been most generous with his time and knowledge in guiding me through the metawork collections, stores and archives of the Victoria and Albert Museum. I am also grateful to Professor Maurice Howard at the University of Sussex, and Ann Ewsell, the Padgett & Graham Curator at the Victoria and Albert Museum, and to the AHRC for funding my research. I am also grateful to Neville Topping, Amanda Harris, and Julie Bridgman Jones who commissioned me to "collect, document, and transform" the defunct Birmingham Museum of Science and Industry and Elkington Mason & Co electroplating works on Newhall Street in Birmingham's Jewellery Quarter Conservation Area. Their artwork has included site-specific arts, heritage, and environmental commissions for the public realm.

This paper is a revised extract from Days of May: The Artisans & Mechanics of New Hall, An Unsettled Neighbourhood© Alistair Grant, 2011.

Author:

Alistair Grant is an artist and historian who is researching the history of electro-metallurgy and its application to the arts for an AHRC Collaborative Doctoral Award at the University of Sussex and the Victoria and Albert Museum. His thesis is titled Elkington Mason & Co and the Art of Electro-Metallurgy: A Social History Since Circa 1840. Between 2006-2009, Alistair was historian/artist-in-residence and led the redevelopment of the former Birmingham Museum of Science and Industry and Elkington Mason & Co Electroplating Works on Newhall Street in Birmingham's Jewellery Quarter Conservation Area. His artwork has included site-specific arts, heritage, and environmental commissions for the public realm.

Notes:

1. John Freeth, "The Birmingham Lode" in Art in Birmingham Gleanings, 6th November 1790. "The Birmingham Lode" was a popular ballad written by John Freeth (1731-1808) a well-known local lacekeeper, poet and balladeer to commemorate the opening of the Birmingham Canal. From circa 1790 until he died in 1808, Freeth was landlord of the Leicester Arms tavern on the corner of Bed Street and Lower Lame in Birmingham. John Freeth's Coffee House, as it was popularly known, became one of the city's most talked about coffee houses in England. To entertain his patrons, and disseminate his radical views, Freeth wrote ballads about topical events of local or national importance, selling them to popular horses, and singing them nightly at his coffee house. His musical news bulletins proved popular and profitable, drawing in regular local patrons, and attracting eminent visitors from all walks of life. Even before the French Revolution of 1789-1790, Freeth's ballads made the Leicester Arms a political meeting-place for radicals, Jacobins, and nonconformists. Freeth published almost 400 songs in the popular press and in over a dozen collections between 1790 and 1805, some under the pseudonym John Frias.

2. Information about the Colmore family comes from MS 3375 (Papers relating to the Colmore Estate) from the archives of Smythe Eitches Co, later Lee Crowder and Co, solicitors of Birmingham in Birmingham Archives & Heritage Service, 6th Floor, Central Library, Chamberlain Square, Birmingham B3 3HQ, most notably: Deeds, leases, estate and family papers of the Colmore family, including deeds and leases of property in Birmingham Colmore Row/Newhall Street area, city of the will and codicils of Charles Colmore of London, 1790; Copy of the will of Mary Colmore of London, 1789, and of the pedegrees of the will of Colmore family of Birmingham, 1874-1837, and the Oegre and Oegre-Colmore families of Devon and Cornwall, 1775-1932.

John Gage III, Cap. 38, Royal Assent 24th February 1798. This was the first of ten Acts of Parliament that KingGeorge III gave Royal Assent to during his 60-year reign before the completion of the development of the Birmingham Canal, and its many branches and collateral canals were completed.

11. The first Act was obtained on 24th February 1788 forming the company of Proprietors of Birmingham Canal Navigation. By an Act dated 30th June 1795, a new company was incorporated called Company of Proprietors of Birmingham and Fazeley Canal Navigation Under an Act dated 1794 the two companies were incorporated by the snappily named, Company of Proprietors of Birmingham and Fazeley Canal Navigation. By virtue of an Act obtained 28th July 1798 the company was incorporated almost under the original name Company of Proprietors of Birmingham Canal Navigation. That company was dissolved by an Act of 1788, June 30th. The 584 bills and volumes, including the Minutes of the Birmingham Canal Navigation from 1797-1943 are held in The National Archives at Kew, Reference RAIL 610 (formerly EDC).

19. Thomas Savery (1650-1716) patented his 'fire engine', as the first steam engines were called, in 1698. The patent describes the purpose of Savery's 'plan': A grant to Thomas Savery of the sole exclusive exercise of a new invention by him invented, for raising of water, andoccasioning motion to all sorts of mill works, by the important force of fire, which will be of great use for drawing mines, serving tums with water, and for the working of all sorts of mills, when they have not the advantage of running water; to hold for 14 years; with usual clauses. "Savery also published a pamphlet entitled, The Miller's Friend; or, A Description of an Engine to Rove Water by Fire described, and the manner of fixing it in 3 lines, with an account of the several uses it is applicable to, and An Answer to the Objections against it. S. Crouch, London, 1702. Saw Robert H. Thurston, A History of the Growth of the Steam Engine, 1878.

24. Ibid, p. 213

28. The Farmer's Bridge fight was named after James Farmer, a partner in the Birmingham gunmakers Farmer and Gatton. The firm, founded by James Farmer and Samuel Gatton, the eldest, was best known for their muzzle-loading flintlock muskets. The Gatton family had been ironmongers in Birmingham since the early 1750s. Samuel Gatton entered into a gunmaking partnership with the Farmer family, but bought them out when their fortune was raised by the Lisbon earthquake of 1755. Their fortune was founded on trading guns for African slaves, who were transported to work on cotton and sugar plantations in America and the West Indies. As Quakers, the Gatton family was eventually persuaded by the Society of Friends and abolitionist movement to stop slave trading. He handled the business on his son Samuel John in 1765. Samuel John had entered the family business in 1775, and through his scientific interests became a Fellow of the Royal Society, and member of the famous Lunar Society with Matthew Boulton, Erasmus Darwin, Joseph Priestly, James Watt, and Joseph Wedgwood. In 1818, after a decline in demand following the Napoleonic wars, Samuel Tertius Gatton, the son of Samuel John, abandoned gunmaking to concentrate on banking.

29. Household Words, 19th October 1850

31. James Stiles's Birmingham Directory was first published in 1763. His 3rd directory, published in 1787, was a classified directory of professions and trades. Accessed in the Birmingham Archives & Heritage Service, 6th Floor, Central Library, Chamberlain Square, Birmingham B3 3HQ.