SPITZER IRS OBSERVATIONS OF k plus a GALAXIES: A LINK BETWEEN POLYCYCLIC AROMATIC HYDROCARBON EMISSION PROPERTIES AND ACTIVE GALACTIC NUCLEUS FEEDBACK?

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/31030/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
SPITZER IRS OBSERVATIONS OF k+a GALAXIES: A LINK BETWEEN POLYCYCLIC AROMATIC HYDROCARBON EMISSION PROPERTIES AND ACTIVE GALACTIC NUCLEUS FEEDBACK?

I. G. ROSEBOOM, S. OLIVER, AND D. FARRAH
Department of Physics & Astronomy, University of Sussex, Falmer BN1 9QH, UK
Received 2008 December 19; accepted 2009 April 16; published 2009 June 9

ABSTRACT
We have performed Spitzer InfraRed Spectrograph (IRS) low-resolution 5–12 μm spectroscopy on a sample of galaxies selected to be at three distinct poststarburst evolutionary stages based on their optical spectral indices. The resulting IRS spectra show distinctive polycyclic aromatic hydrocarbon (PAH) emission line structures at 6.2, 7.7, 8.6, and 11.3 μm and little silicate absorption, indicative of ongoing star formation. However, the PAH interline ratios, in particular the 11.3/6.2 μm and 7.7/6.2 μm ratio, show large variations. These variations are found to correlate with both time since the most recent starburst and active galactic nucleus (AGN) activity. We speculate that the evolution observed in these PAH ratios is related to an increase in AGN activity with time since starburst.

Key words: galaxies: evolution – galaxies: starburst – infrared: galaxies

1. INTRODUCTION
The nature of the connection between starbursts and active galactic nuclei (AGNs) has been long debated. While the effectiveness of AGN feedback in quenching star formation has been heralded as a key component of galaxy formation by semianalytic models (e.g., Croton et al. 2006; De Lucia & Blaizot 2007), it is only very recently that observational evidence of AGN activity coincident with poststarburst signatures has been found (Schawinski et al. 2007, 2009; Bundy et al. 2008; Kaviraj 2009). However, these discoveries form far from a consensus, with some suggestions that AGN feedback alone may not be sufficient for the truncation of star formation in these galaxies (Bundy et al. 2008; Kaviraj 2009).

The mid-IR contains unique diagnostics of the star formation, AGN activity, and dust obscuration levels of galaxies. Rest-frame 5–12 μm observations can decipher the relative strength of these attributes via investigation of the polycyclic aromatic hydrocarbon (PAH) emission properties, continuum slope, and silicate absorption strength, respectively.

Here, we utilize Spitzer Infrared Spectrograph (IRS) observations of a sample of galaxies which appear at different stages of poststarburst evolution as determined by their optical spectra. In particular, we use the Hδ, [O ii]3727 Å and 4000 Å break spectral features to identify k+a galaxies at three different epochs. k+a galaxies are typically identified via their optical spectrum, with strong absorption in the Balmer series lines, but no significant emission in the [O ii]3727 Å line or other emission lines associated with star formation (Dressler & Gunn 1983; Couch & Sharples 1987; among others). This kind of optical spectrum is indicative of a galaxy which has undergone a very recent burst of star formation as the young, short-lived (<1–2 Gyr) A and B stars are still observed, but no ongoing, or very low level, star formation. Spectral modeling of k+a galaxies typically suggests a starburst in which 1%–10% of the galactic stellar mass is in the form of new stars (i.e., Balogh et al. 1999).

2. DATA
We selected 12 galaxies in three categories from the overlap between the Spitzer SWIRE survey and the Sloan Digital Sky Survey (SDSS) spectroscopic data set for observations with IRS. The targets were selected via their [O ii]3727 Å, Hδ (4101 Å), and D4000 indices to be at distinct poststarburst stages. The Hδ and D4000 indices are well established as good indicators of stellar age (i.e., Balogh et al. 1999; Kauffmann et al. 2003), while the [O ii]3727 Å is a well known indicator of current star formation. Measurements of the indices were performed as per Roseboom et al. (2006). To determine our selection criteria we turn to the stellar population synthesis models of Bruzual & Charlot (2003). Models that assume an exponentially declining starburst (τ = 100 Myr) on top of a passively evolving single stellar population of 1 Gyr were generated using the Bruzual & Charlot (2003) code. Burst strengths of 1%, 5% and 10% were considered. From these models we determine three sets of Hδ and D4000 criteria which isolate galaxies with roughly 0.03, 0.3, and 1 Gyr of poststarburst evolution. In the case of the later two selections an additional [O ii] selection cut is imposed to filter out galaxies with significant ongoing star formation. The specifics of this selection are given in Table 1.

Observations were performed with the short-low module in staring mode, two nod positions per spectral order with an offset of 20′′ were observed with ramp times between 400 and 600 s. The data were reduced using a combination of the SMART (Higdon et al. 2004) and SPICE software environments. First individual ramps of the same order and nod were combined in SMART utilizing a median filtering algorithm. Sky subtraction is performed via subtraction of different order observations at the same nod position. Once combined and corrected for background/sky contributions the spectra are extracted using the SPICE pipeline assuming these objects are point sources for Spitzer at these wavelengths. Finally, the two nods are combined in SMART to produce the final spectrum.

Eleven of the 12 IRS spectra are found to have acceptable signal-to-noise ratio (S/N) spectra (>5); however, one of the IRS observations appears to have a featureless, flat spectrum, suggesting that the exposure times were not sufficient to detect the mid-IR features, or the IRS slit was misplaced in relation to the mid-IR emission. This failed observation is omitted in the following discussion.

3. RESULTS
Figure 1 shows the IRS spectra for the 11 sources discussed here. For comparison the starburst template of Brandl et al. (2006) is also shown. All the spectra, with the exception of
Figure 1. IRS SL spectra for the three subsamples under investigation here. For comparison the starburst template of Brandl et al. (2006) is also shown. Spectra are normalized to arbitrary flux at 11.3 μm for the sake of clarity.

Figure 2. Stacked (top) and continuum-subtracted (bottom) IRS SL spectra for the three subsamples under investigation here. Oka 1 is omitted from the old k+a stack as it is clearly AGN dominated. For comparison the starburst template of Brandl et al. (2006) is also shown. Spectra are normalized to arbitrary flux in the 11.3 μm line for the sake of clarity.

Table 1

<table>
<thead>
<tr>
<th>Line</th>
<th>Young k+a</th>
<th>k+a</th>
<th>Old k+a</th>
</tr>
</thead>
<tbody>
<tr>
<td>O II 3727 Å</td>
<td>···</td>
<td>< 6</td>
<td>< 6</td>
</tr>
<tr>
<td>Hβ (Å)</td>
<td>> 4</td>
<td>> 5</td>
<td>> 2</td>
</tr>
<tr>
<td>D4000</td>
<td>1–1.2</td>
<td>1.3–1.5</td>
<td>1.6–1.8</td>
</tr>
<tr>
<td>Time since burst (Myr)</td>
<td>25</td>
<td>300</td>
<td>1000</td>
</tr>
</tbody>
</table>

* In emission.

Oka 1, show clear PAH emission features at 6.2, 7.7, and 11.3 μm. Oka 1 is found to have a completely stellar-dominated thermal spectrum, similar to early-type galaxies observed with IRS (e.g., NGC 4552; Smith et al. 2007). Negligible silicate 9.7 μm absorption is seen in all cases.

Overall the spectra are typical of normal starburst galaxies (i.e., Brandl et al. 2006). However, one unusual feature of these spectra is the dominance of the 11.3 μm PAH feature over the 6.2 μm PAH feature in the k+a and old k+a types. To emphasis this point in Figure 2 we show the spectra stacked by type, and also the stacked and continuum-subtracted IRS spectra.

For each object key optical emission line fluxes (Hβ, [O II]5007, Hα, and [N II]) are determined by fitting the residual emission after the removal of best-fit stellar population models using the GANDALF IDL code (Sarzi et al. 2006).

Equivalent widths (EWs) and fluxes for the PAH features in the IRS spectra are measured via use of the IDL PAHFIT tool (Smith et al. 2007). As the mid-IR coverage is limited to 5–12 μm the determination of the continuum around 7–12 μm is troublesome due to the degeneracy between silicate absorption and PAH emission. However, as our spectra appear to have no signs of strong silicate absorption around 9.7 μm we constrain the silicate absorption to be zero by running PAHFIT with the /NO_EXTINCTION flag set.

Table 2 lists the optical properties, while Table 3 lists the mid-IR line fluxes and EWs.

To identify correlations between these observed properties and the poststarburst evolution we try to fit a two-component stellar population model to each galaxy’s spectrum. The models are similar to those used to select the sample; a young stellar population superimposed on a homogeneously old single stellar population. The young component is taken to be a single burst with an exponentially declining star formation rate of \(\tau = 100 \) Myr. The old component is taken to be a homogeneously 11 Gyr old single stellar population. In both cases models are provided by the code of Maraston (2005). To investigate both the time since starburst and the burst fraction a total of 24 steps in burst time from 10 Myr to 5 Gyr, and 16 burst fractions from 0.01 to 0.15 are considered. The effect of dust is included according to the model of Calzetti et al. (2000) by allowing \(E(B-V) \) to vary between 0 and 0.2 (\(A_v \approx 1-0 \)). Finally, three steps in metallicity are considered; \(Z = 0.5 Z_\odot, Z = Z_\odot \), and \(Z = 2 Z_\odot \). In total 5760 models are considered. The best-fit solution is found via \(\chi^2 \) fitting to the standard 25 Lick indices as well as broadband fluxes from; Galex NUV and FUV, SDSS u, g, r, i, z, and Spitzer 3.6 μm and 4.5 μm. Where an object is undetected the upper limits are incorporated. The burst time and burst fraction are taken to be the best-fit values after marginalizing over the other model parameters. 1σ errors are taken to be region surrounding the maximum containing the 68% of the probability distribution. These quantities are quoted in Table 2.

From Table 2 it is clear that our k+a selection technique has been effective in isolating galaxies which have undergone recent starbursts. The time since burst of the young k+a sample is \(\sim 0.2 \) Gyr, the k+a sample \(\sim 0.6 \) Gyr, and the old k+a sample \(\sim 1–3 \) Gyr. These values compare well to our predicted timescales of 0.03, 0.3, and 1 Gyr for the three classes. Also shown in Table 2 is the flux measured in the key AGN diagnostic lines Hβ, [O III], Hα, and [N II]. By applying AGN diagnostic criteria presented in Stasińska et al. (2006), a variation on the earlier work of Baldwin et al. (1981), to these we can determine which process dominates the optical emission lines. A clear distinction can be seen between the young k+a galaxies, which are dominated by star formation, and the older classes which are either AGN-dominated, or mixtures of AGN and low-level star formation.

4. DISCUSSION

The unusual nature of the 11.3–6.2 μm PAH feature in the more evolved k+a galaxies is an interesting discovery. To quantify the nature of this Figure 3 shows the ratio of the 6.2 μm flux to the 11.3 μm and 7.7 μm lines as a function of time since starburst.
error multiplied by a normally distributed random number. The
In each realization the data points are "scattered" by the quoted
error are determined via a Monte Carlo simulation of the data set.

Techniques are not sufficient; hence best-fit parameters and their
relationship between the variables. As the errors in both burst
intercept) for the No. 1, 2009 IRS SPECTROSCOPY OF k+a GALAXIES L3

0
14
S
The
Note.

As defined by Stasińska et al. (2006) for the

This suggests that while the observed S_{11.3}/S_{7.7} is consistent with no evolution, the S_{11.3}/S_{0.2}, S_{7.7}/S_{0.2}, and S_{11.3}/S_{8.6} ratios show a statistically significant nonzero evolution with burst time.

Smith et al. (2007) hypothesize that variations in PAH ratios could be generated via either weaker radiation fields, resulting in more neutral PAHs, or preferential destruction of the smallest grains responsible for the 6.2 μm and 7.7 μm bands, leaving a larger excess of the 11.3 μm emitting grains.

Here, we also find that all the galaxies which have high S_{11.3}/S_{0.2} μm PAH ratios have evidence of AGN activity in their optical spectra. Interestingly, we do not find that the S_{11.3}/S_{7.7}

Table 2

Measured Optical Properties of Sample

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>z</th>
<th>Burst Time (Gyr)</th>
<th>Burst Strength</th>
<th>Hβ^a</th>
<th>[O III]5007</th>
<th>Hα</th>
<th>[N II]</th>
<th>Type^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yka1</td>
<td>J103254.44+581638.5</td>
<td>0.08</td>
<td>0.27^{+0.08}_{-0.07}</td>
<td>0.3^{+0.33}_{-0.28}</td>
<td>106.5</td>
<td>104.6</td>
<td>291.84</td>
<td>54.29</td>
<td>SF</td>
</tr>
<tr>
<td>Yka2</td>
<td>J104826.85+564026.8</td>
<td>0.07</td>
<td>0.13^{+0.07}_{-0.03}</td>
<td>0.5^{+0.13}_{-0.12}</td>
<td>141.95</td>
<td>146.66</td>
<td>450.88</td>
<td>92.33</td>
<td>SF</td>
</tr>
<tr>
<td>Yka3</td>
<td>J105326.83+580956.5</td>
<td>0.13</td>
<td>0.27^{+0.08}_{-0.07}</td>
<td>0.25^{+0.25}_{-0.16}</td>
<td>229.16</td>
<td>156.57</td>
<td>770.26</td>
<td>234.36</td>
<td>SF</td>
</tr>
<tr>
<td>Yka4</td>
<td>J163332.66+404827.0</td>
<td>0.08</td>
<td>0.16^{+0.04}_{-0.03}</td>
<td>0.25^{+0.25}_{-0.16}</td>
<td>187.53</td>
<td>350.90</td>
<td>657.17</td>
<td>102.81</td>
<td>SF</td>
</tr>
</tbody>
</table>

Table 3

PAH line Fluxes and Equivalent Widths

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>6.2 μm</th>
<th>7.7 μm</th>
<th>8 μm</th>
<th>11.3 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flux^a</td>
<td>EW</td>
<td>Flux</td>
<td>EW</td>
<td>Flux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yka1</td>
<td>J103254.44+581638.5</td>
<td>1.7 ± 0.8</td>
<td>1.99</td>
<td>5.1 ± 0.8</td>
<td>5.21</td>
</tr>
<tr>
<td>Yka2</td>
<td>J104826.85+564026.8</td>
<td>0.4 ± 0.3</td>
<td>0.36</td>
<td>1.8 ± 0.3</td>
<td>1.11</td>
</tr>
<tr>
<td>Yka3</td>
<td>J105326.83+580956.5</td>
<td>4.7 ± 1.0</td>
<td>1.92</td>
<td>9.2 ± 1.2</td>
<td>3.54</td>
</tr>
<tr>
<td>Yka4</td>
<td>J163332.66+404827.0</td>
<td>2.0 ± 0.5</td>
<td>2.92</td>
<td>4.2 ± 0.6</td>
<td>3.94</td>
</tr>
</tbody>
</table>

Table 3 (continued)

	Flux^a	EW	Flux	EW	Flux	EW		
Ka2	0.5 ± 0.2	0.45	2.1 ± 0.3	1.8	0.9 ± 0.2	0.75	1.1 ± 0.3	0.95
Ka3	3.6 ± 0.4	1.2	11.0 ± 1.4	3.6	2.6 ± 0.2	0.91	4.1 ± 0.8	1.3
Ka4	1.8 ± 0.4	0.76	5.0 ± 0.7	2.5	1.3 ± 0.2	0.67	3.1 ± 0.8	1.4

Table 3 (continued)

	Flux^a	EW	Flux	EW	Flux	EW			
Oka1	J163252.97+402056.1	0.8 ± 0.3	0.28	3.6 ± 0.3	1.7	1.0 ± 0.08	0.59	2.7 ± 0.5	1.8
Oka2	J104314.82+570941.2	1.1 ± 0.2	0.24	5.2 ± 0.8	1.5	1.0 ± 0.2	0.32	2.2 ± 0.6	0.89
Oka3	J104650.43+575923.9	1.1 ± 0.3	0.30	5.3 ± 0.9	2.1	0.9 ± 0.2	0.37	2.8 ± 0.5	1.2

Note:

10^{−21}\text{W cm}^{−2}
PAH ratio varies with time since starburst in the same way as the $S_{11.3}/S_{6.2}$ ratio.

However, this is further complicated by the observed evolution in the $S_{11.3}/S_{6.2}$ ratio, which is what would be expected from grain destruction, but should not be possible without an accompanying $S_{7.7}/S_{6.2}$ ratio change. Even more challenging is the odd behavior of the $S_{8.6}/S_{6.2}$ ratio, which shows no evolution despite the $S_{7.7}/S_{6.2}$ showing a clear change with time since starburst. We put these irregularities down to underestimates in the larger $S_{8.6}$ feature and is thus badly effected by the poor estimates of the continuum; a serious possibility given that we only have 5–12 μm spectroscopy for these objects.

However, AGNs are only one possible explanation for this behavior of the PAH band ratios. Detailed modeling of the PAH emission models by Galliano et al. (2008) has shown that increasing the hardness of the interstellar radiation field will result in a sharp decrease in both the $S_{11.3}/S_{7.7}$ ratio and the $S_{7.7}/S_{6.2}$ ratio while destroying the smallest grains ($<10^3$ \AA) will have the inverse affect. In addition, increasing the ionization level of the PAH-emitting grains will decrease the $S_{11.3}/S_{7.7}$ ratio while leaving the $S_{7.7}/S_{6.2}$ ratio unaffected.

Thus, the results found here can be explained via the following.

1. The ionization level is higher than normal in these objects, decreasing the $S_{11.3}/S_{7.7}$ ratio.
2. However, the ionization level is so high that the smallest grains are being destroyed, increasing both the $S_{11.3}/S_{7.7}$ and $S_{7.7}/S_{6.2}$ (and thus the $S_{11.3}/S_{6.2}$ well).

Thus, the $S_{11.3}/S_{7.7}$ ratio may be balanced out by the competing processes and appear to have “normal” values, while the $S_{11.3}/S_{6.2}$ and $S_{7.7}/S_{6.2}$ ratios show abnormal increases. While any source which can strongly ionize and destroy the PAH emitting grains could be invoked to explain this phenomena, given the evidence of low-level AGN activity in the optical spectra for these sources we conclude that this is the most likely cause for these unusual PAH line ratios. However, this is purely speculative and other ionization sources such as significant populations of evolved stars may be capable of the levels of grain destruction and ionization seen here. The behavior of the 8.6 μm line ratios does not fit into this model, as we should see similar behavior from the $S_{8.6}/S_{6.2}$ ratio as the $S_{7.7}/S_{6.2}$, which we do not.

5. CONCLUSION

We have performed Spitzer IRS spectroscopy of 10 poststarburst (k+a) galaxies at three distinct evolutionary stages. In each case, the mid-IR spectra shows the signs of star-forming galaxy with no obvious AGN activity. Interestingly, we find that relative strength of the 11.3–6.2 μm, 11.3–8.6 μm, and 7.7–6.2 μm PAH features show some correlation with the time since last starburst, while the 11.3–7.7 μm and $S_{8.6}/S_{6.2}$ PAH ratios do not. We conclude that this behavior is most likely a result of underlying low-level AGN activity in these objects.

This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and Ames Research Center.

SMART was developed by the IRS Team at Cornell University and is available through the Spitzer Science Center at Caltech.

We thank C. Maraston for useful conversations regarding the use of stellar population synthesis models which greatly aided the paper. We also thank the anonymous referee for comments which greatly improved this work.

This work was supported by the Science and Technology Facilities Research Council (grant number ST/F002858/1).

Facilities: Spitzer (IRS), SDSS

REFERENCES