This book is published in print and online through the online OAPEN library (www.oapen.org)

OAPEN (Open Access Publishing in European Networks) is a collaborative initiative to develop and implement a sustainable Open Access publication model for academic books in the Humanities and Social Sciences. The OAPEN Library aims to improve the visibility and usability of high quality academic research by aggregating peer reviewed Open Access publications from across Europe.

BOERHAAVE

The publication of this book is made possible by a grant from Museum Boerhaave.

Cover illustration: Britannia between Newton and W.J. ’s Gravesande, Oil painting by G.M. de Boni, 1787 (courtesy Galleria Doria Pamphilj, Rome)

Cover design and lay-out: Sander Pinkse Boekproductie, Amsterdam

ISBN 978 90 8728 137 3
e-ISBN 978 94 0060 055 3 (pdf)
e-ISBN 978 94 0060 123 9 (ePub)
NUR 680 / 924

© E. Jorink, A. Maas / Leiden University Press, Amsterdam 2012

All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book.

Every effort has been made to obtain permission to use all copyrighted illustrations reproduced in this book. Nonetheless, whosoever believes to have rights to this material is advised to contact the publisher.
Rob Iliffe

And Isaac Newton

Palladio de' Dutilleu between Christian Huygens
Servant of Two Masters
learns and develops in early childhood. In the years that follow, the child begins to understand the world around them through observation and experience. This is the foundation for the development of critical thinking, problem-solving, and creativity. It is during this stage that the child forms the basis of their cognitive development and begins to develop a sense of self.

The earliest forms of learning are primarily through observation and imitation. Children are naturally curious and are constantly observing their environment. They learn by watching others, listening to their interactions, and imitating their actions. This process is crucial for the development of language, social skills, and understanding the rules and norms of society.

As children grow, they become more actively engaged in learning. They start to ask questions, make predictions, and engage in problem-solving. This is the stage of active learning, where children are encouraged to explore their environment, test hypotheses, and develop their own understanding. It is during this stage that the foundations of knowledge and understanding are laid, which will support their future learning.

In conclusion, learning is a lifelong process that begins in early childhood and continues throughout life. It is not just a passive reception of information but a dynamic and active process that involves observation, imitation, experimentation, and reflection. The key to effective learning is providing children with opportunities to explore, question, and discover the world around them. By creating a supportive and stimulating environment, we can help children develop the skills and knowledge they need to thrive in the modern world.
Newton and a half had developed a much more extensive theory of the Principia than the manuscript showed. However, the interpolation of extensive additional content into the Principia was done after its initial printing, and the resulting work was later published as the definitive text of Isaac Newton's magnum opus. This process involved the addition of new material and the deletion of some sections that were deemed less significant. The Principia is a foundational work in the field of classical mechanics and has had a profound impact on the development of physics and astronomy. It contains Newton's laws of motion and universal gravitation, which are still fundamental to our understanding of the physical world today. The work was first published in 1687 and has since been celebrated as a masterpiece of scientific thought.
The Inmoderation

decided that Christiania was unsuitable for such a position. The letter, which was sent on 20th August, made clear the decision to move to Copenhagen the following day. In Copenhagen, Newton entered a new phase of his life, as he began to develop his ideas and theories that would later form the basis of his later work.

The decision was made after careful consideration. Despite the efforts of the Copenhagen School of Mathematics and Physics to attract Newton, he felt that the climate and the lifestyle in Copenhagen were not suitable for his work. Instead, he moved to London, where he would have the opportunity to work closely with the Royal Society and other leading scientists of the time.

The move to London was a significant turning point in Newton's career. It allowed him to take a more active role in the scientific community and to contribute to the development of new ideas and theories. His work on the laws of motion and the theory of gravity was among the most significant achievements of his time, and his influence on the development of science in the following centuries cannot be overstated.
Although there is evidence that Falsal was suffering from depression when he wrote to his brother on 26 May, he was clear in his statement that he was considering his options. He wrote:

"The movement to leave a box of his papers and mathematical papers..."

In a letter written to the trustees of the Royal Society, where there is a discrepancy over the date of his death, it is clear that Newton was aware of the controversy over his work and claimed that he was "absolutely in agreement with the Academy."

The controversy over the priority of Newton's work was so intense that it caused a rift between him and the Royal Society. Newton and Leibniz both claimed to have discovered the principles of calculus independently, with Newton giving priority to his work, which he had begun in the late 1660s.

The Newton and the Netherlands Newtident of two masters: Newton and Leibniz, were at odds over who had priority. Newton claimed in his letter to the Royal Society that he had discovered the principles of calculus in the late 1660s, while Leibniz claimed to have discovered them in the early 1670s.

The controversy was so intense that it led to a rift between Newton and the Royal Society. Newton and Leibniz both claimed to have discovered the principles of calculus independently, with Newton giving priority to his work, which he had begun in the late 1660s.

The controversy over the priority of Newton's work was so intense that it caused a rift between him and the Royal Society. Newton and Leibniz both claimed to have discovered the principles of calculus independently, with Newton giving priority to his work, which he had begun in the late 1660s.

The controversy was so intense that it led to a rift between Newton and the Royal Society. Newton and Leibniz both claimed to have discovered the principles of calculus independently, with Newton giving priority to his work, which he had begun in the late 1660s.
Mathematical machinations

that the transition could be effected.

The transition could be effec
Know every thing.

In early February 1692, Hypogynia replied the less information con-

-1692, by their motion and cheerfully mentioned. The three years after the year two hundred and five, the house of Parliament was taken and its premises burned by a mob. The house of Commons was also burned.

-explanation of the house of Commons took down a detailed description from the house of Commons. The description was given to the people and a printed version was prepared and distributed to the public. The printed version was then sent to the government. A month later, the government sent a printed version to the public.

-explanation of the house of Commons took down a detailed description from the house of Commons. The description was given to the people and a printed version was prepared and distributed to the public. The printed version was then sent to the government. A month later, the government sent a printed version to the public.

Newton. The problem of understanding better than any other. However, Newton was known to have deliberately avoided good measures that he knew the difficulty of. At the end of December, he was writing letters to several of his friends, stating that he believed Newton was going difficult. The first letter in this series was written to his friend, Mr. Jones, on 25th January 1692. In the letter, he expressed his doubt about the difficulty of understanding Newton's work. Mr. Jones was one of the few people who had read much of Newton's works. However, the letter was not published until 1692, so it was not until some time after this that the information about Newton's work was published.

-some of all the quadrate by different cases.40

-Newton and the Netherland. P. 79

-In the letter to Dr. C. (London, 1692, 473-479) of a letter to Dr. C. in the Netherland, Newton expressed his doubt about the difficulty of understanding Newton's work. He also mentioned that he had already seen some of all the quadrates by different cases.
Newton and the Netherlands

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton's primary fear was that the storm would force him to leave his desk and return to Cambridge. He was already worried about the state of his health, and he had no time to spare. He was preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

The situation was dire, and Newton was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts. He was preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.

Newton was caught unprepared for the storm that was approaching. He was in the middle of a project to improve the telescopes he had designed, and he had no time to spare. He was also preparing for his return to Cambridge, where he hoped to take up a position as a professor of mathematics. The prospect of being forced to leave his desk and return to the university was demoralizing, and he was already worried about the state of his health. His eyesight was failing, and he was struggling to read even the simplest texts.
In October a revolutionary recall took place on Newton's work. In his lecture on Sunday, October 4th, he demonstrated the force of gravity using a bowling ball and an apple. This was the first public demonstration of his theory of universal gravitation. Newton's lecture was well received and prompted further discussion about the nature of forces and their effects on the universe.

Newton's work on gravitation was further supported by his experiments with the apple and the bowling ball. These experiments not only demonstrated the force of gravity but also challenged the prevailing scientific views of the time. Newton's work on gravitation was not just a scientific achievement but also a major step forward in the understanding of the universe.

In November, Newton was elected as a member of the Royal Society, which was a significant honor for a young scientist. This recognition affirmed Newton's position as a leading figure in the scientific community.

Though Newton's work on gravitation was met with resistance, it eventually became accepted and was celebrated as a major scientific breakthrough.

Newton's work on gravitation laid the foundation for modern physics and has had a profound impact on our understanding of the universe.

In conclusion, Newton's work on gravitation was a significant achievement that has had a lasting impact on the scientific community. His experiments and theories continue to be studied and admired by scientists around the world.
Languans'...
The performance of the Newton-Pauling foundation is a chance to reform the nation and improve the economy. The new edition of the National Academy's report was not for the faint-hearted. The new report of the Ptolemaic order failed to bridge the gap between the masters.

Fragment of text showing the page dimensions: 595.2x841.7.
and leets adopted by France in this letter to the Hyugens.

The Royal Society's assisant began using the same

Onions. The assistant began using the same

former or Present of the Royal Society (note 4); vol. 9, pp. 356-394.

In the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.

And in the Assistance of the Royal Society (note 4); vol. 9, pp. 356-394.