University of Sussex
Browse

File(s) not publicly available

Self-stability in biological systems - Studies based on biomechanical models

presentation
posted on 2023-06-08, 09:35 authored by H Wagner, Peter GieslPeter Giesl
Mechanical properties of complex biological systems are non-linear, e.g. the force-velocity-length relation of muscles, activation dynamics, and the geometric arrangement of antagonistic pair of muscles. The control of such systems is a highly demanding task. Therefore, the question arises whether these mechanical properties of a muscle-skeletal system itself are able to support or guarantee for the stability of a desired movement, indicating self-stability. Self-stability of single joint biological systems were studied based on eigenvalues of the equation of motions and the basins of attraction were analysed using Lyapunov functions. In general, we found selfstability in single muscle contractions (e.g. frog, rat, cui), in human arm and leg movements, the human spine and even in the co-ordination of complex movements such as tennis or basketball. It seems that self-stability may be a general design criterion not only for the mechanical properties of biological systems but also for motor control.

History

Publication status

  • Published

ISSN

01708643

Volume

340

Page range

403-410

Presentation Type

  • paper

Event name

Lecture Notes in Control and Information Sciences

Event type

conference

Department affiliated with

  • Mathematics Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC