Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam

Article (Unspecified)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/28519/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam

(The MINOS Collaboration)

1Argonne National Laboratory, Argonne, IL 60439
2Department of Physics, University of Athens, GR-15771 Athens, Greece
3Physics Dept., Benedictine University, Lisle, IL 60532
4Brookhaven National Laboratory, Upton, NY 11973
5Lauritsen Lab, California Institute of Technology, Pasadena, CA 91125
6Cavendish Laboratory, Univ. of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
7Univ. Estadual de Campinas, IF-UINCCAMP, CP 6165, 13083-970, Campinas, SP, Brazil
8Inst. of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
9APC – Collège de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
10Physics Department, Columbia University, New York, NY 10027
11Fermi National Accelerator Laboratory, Batavia, IL 60510
The global positioning system (GPS) defines the beam is produced using 120 GeV protons from the Main Injector. The average livetime of the FD was 99.0% during this period. About one third of the total ND events provided a sufficiently large dataset for this analysis of the oscillation analysis. The charged current (CC) neutrino event yields at the ND are predicted to be 92.9%, 5.8%, 1.2%, and 0.1% ν_e, ν_{μ}, ν_τ, and $\bar{\nu}_e$, respectively. The data described here were recorded between May 2005 and February 2006. The average livetime of the FD was 99.0% during this period. About one third of the total ND events provided a sufficiently large dataset for this analysis of the oscillation analysis. The charged current (CC) neutrino event yields at the ND are predicted to be 92.9%, ν_μ, 5.8% ν_e, 1.2% ν_{τ}, and 0.1% $\bar{\nu}_e$. The data described here were recorded between May 2005 and February 2006. The average livetime of the FD was 99.0% during this period. About one third of the total ND events provided a sufficiently large dataset for this analysis of $\sim 10^6$ events which were sampled throughout the run period.
scintillator planes are comprised of 4.1 cm wide and 1 cm thick plastic strips. Each plane is oriented at 45° from vertical and at 90° with respect to its neighbors. The light from the scintillator strips is transported to the multi-anode photomultiplier tubes (PMT) by embedded 1.2 mm diameter wavelength shifting (WLS) fibers. In order to cancel the majority of the uncertainties in the modeling of neutrino interactions and detector response, the two MINOS detectors are as similar as possible. For example, both detectors yield 6 – 7 photoelectrons (PEs) per plane for normally incident minimum ionizing particles. However, the data rate in the ND is ∼ 10^5 times larger than in the FD which has dictated certain design differences between them.

The 5.4 kton FD, 705 m underground, has 484 octagonal, 8 m wide instrumented planes read out at both ends via Hamamatsu M16 PMTs [10]. Eight WLS fibers from strips in the same plane, separated from each other by about 1 m, are coupled to each pixel. The coupling pattern is different at the two ends to allow resolution of ambiguities.

The 0.98 kton ND, 103 m underground, has 282 irregular 4×6 m² octagonal planes. Its geometry optimizes the containment of hadronic showers and provides sufficient flux return to achieve a magnetic field similar to the FD. Each strip is coupled via a WLS fiber to one pixel of a Hamamatsu M64 PMT [21]. The ND readout continuously integrates the PMT charges with a sampling rate of 53.1 MHz to allow discrimination between successive Main Injector RF buckets.

The data acquisition accepts data above a threshold of 0.25 PEs. In the FD, the online trigger conditions require a hit within 100 μs centered on the time of the expected beam spill, at least 20 PEs inside a plane window, or 4 hits in 5 consecutive planes. In the ND, the data taken during the beam spill is retained. The trigger efficiency for both detectors exceeds 99.5% for neutrino events with visible energy above 0.5 GeV.

The detectors are calibrated using an in-situ light injection system and cosmic ray muons. LED generated light signals are distributed to all the WLS fibers to track gain changes in the PMTs and electronics. The energy deposited by through-going muons is used to equalize the response of all the scintillator strips. After calibration, remaining time and position dependent variations in the responses of the detectors result in an uncertainty in the relative energy scale between the two detectors of 2%. The overall energy scale for single hadrons and electrons was determined from the results of a test-beam experiment using a small, unmagnetized copy of the MINOS calorimeters (CalDet) [23]. Stopping muons are then used to relate the results from CalDet to the response of the ND and FD. From these studies, the uncertainty on the absolute hadronic energy scale is estimated to be 6%.

The simulation of the production and detection of neutrinos commences with a model of hadron production in the target using FLUKA05 [26], which has uncertainties at the 20-30% level stemming from a lack of relevant thick target hadron production data. The shower products are transported through the horn focusing system and decayed in a GEANT3 simulation that includes the horns, beamline material and the decay pipe. The neutrino event generator, NEUGEN3 [28], is tuned to existing CC cross-section data where present uncertainties below 10 GeV are at the 20% level. The products of the neutrino interaction are propagated out of the iron nucleus using the INTRANUK code from within NEUGEN3. Some of the energy of absorbed pions is transferred to clusters of nucleons as motivated by Ref. [30]. The response of the detector is simulated using GEANT3 with the GCALOR [31] model of hadronic interactions. The final step in the simulation chain involves photon generation, propagation and transmission through the WLS fiber and conversion to photoelectrons in the PMTs.

In CalDet, GEANT3 with GCALOR is found to reproduce the hadronic and electromagnetic (EM) responses of the detector to single particles to 4% and 2%, respectively. Below 10 GeV, the hadronic energy resolution was measured to be 56%/√(E [GeV]) ± 2% [32], and the EM resolution was measured to be 21.4%/√(E [GeV]) ± 4.1%/E [GeV] [33]. The muon energy resolution ∆E/µ/µ varies smoothly from 6% for Eµ above 1 GeV where most tracks are contained and measured by range, to 13% at high energies, where the curvature measurement is primarily used.

The initial step in the reconstruction of the FD data is the removal of the eightfold hit-to-strip ambiguity using information from both strip ends. In the ND, timing and spatial information is first used to separate individual neutrino interactions from the same spill. Subsequently, tracks are found and fitted, and showers are reconstructed, in the same way in both detectors. For νµ CC events, the total reconstructed event energy is obtained by summing the muon energy and the visible energy of the hadronic system.

The FD data set was left blind until the selection procedure had been defined and the prediction of the unoscillated spectrum was understood. The blinding procedure hid a substantial fraction of the FD events with the precise fraction and energy spectrum of the hidden sample unknown. Events are pre-selected in both detectors, by requiring total reconstructed energy below 30 GeV and an energy of the hadronic system.

The event time must fall within a 50 μs window around the spill time. Cosmic ray background is suppressed further in the FD by requiring the track to point within 53° of the neutrino beam direc-
tion. The pre-selected ν_μ event sample is predominantly CC with a 8.6% NC background estimated from Monte Carlo (MC) simulations. The fiducial mass of the FD (ND) is 72.9% (4.5%) of the total detector mass.

A particle identification parameter (PID) incorporating probability density functions for the event length, the fraction of energy contained in the track and the average track pulse height per plane provides separation of ν_μ CC and NC events. The PID is shown in Fig. 1 for ND and FD data overlaid with simulations of NC and CC events after the beam reweighting procedure described below. Events with PID above -0.2 (FD) and -0.1 (ND) are selected as being predominantly CC in origin. These values were optimized for both detectors such that the resulting purity of each sample is about 98%. The efficiencies for selecting ν_μ CC events in the fiducial volume with energy below 30 GeV are 74% (FD) and 67% (ND). From the absence of any events less than 20 μs before and less than 30 μs after the spill time, the remaining non-beam related background in the FD is estimated to be less than 0.5 events (68% C.L.). Background from ν_μ interactions in the rock surrounding the FD is estimated from MC to be below 0.4 (68% C.L.) events. The corresponding backgrounds in the ND are negligible.

To constrain hadron production, a series of six runs of similar exposure was taken where the position of the target and the magnitude of the horn magnetic field were varied. Comparisons of the ND energy spectra with MC simulations, shown in Fig. 2, showed an energy dependent discrepancy that changed with the beam settings. This implied beam modeling, rather than detector or cross-section effects, was the primary cause. To bring the MC into better agreement with the data, a tuning of the beam MC was performed in which pion production off the target was smoothly varied in transverse and longitudinal momentum with respect to the FLUKA05 input, as was the overall kaon yield. In addition, the potential systematic effects of the beam focusing, NC background, ν_μ energy scale and offset were allowed to vary. All of these parameters were found to lie within two standard deviations of their nominal values. Fig. 2 shows the effect of the full beam parameter tuning for the spectra corresponding to three different target positions. The resulting agreement is improved in all beams across the 1-30 GeV neutrino energy region.

The measurement of the energy spectrum at the ND is used to predict the unoscillated spectrum at the FD. The oscillation hypotheses are then tested relative to this prediction. The prediction must take into account the energy spectrum is translated into a flux by first correcting for the calculated cross-sections for each energy bin. This flux is multiplied by the matrix to yield the predicted,
oscillation hypothesis. The best fit parameters are those from selected ν_τ events produced in the oscillation process.

The effects of different systematic uncertainties were evaluated by modifying the MC and performing a fit on this in place of the data. The differences between the fitted values obtained with the modified and unmodified MC are listed in Table III. The largest effects are:

(a) The uncertainty in the fiducial mass in both detectors, uncertainty in the event selection efficiency and the POT counting accuracy gives a 4% uncertainty on the predicted FD event rate. (b) The absolute hadronic energy scale from a combination of test beam measurements and calibration accuracy is known to 6% as discussed above. This is added in quadrature to the uncertainty in the effect of intra-nuclear re-scattering estimated at ±10% of the hadronic energy. The total hadronic energy scale uncertainty is therefore ±11%. (c) The NC component was varied in a fit to the PID data distribution in six energy bins in the ND. A 50% uncertainty was estimated to encompass the differences between the fit and NC MC. At the current level of statistics, uncertainties from CC cross-sections, muon momentum, relative ND/FD energy calibration, remaining beam uncertainties and reconstruction were found to be negligible. As an example, in the absence of any beam tuning, the best fit value only shifts by 0.2 × 10^{-5} \text{eV}^2/c^4.

In fitting the data to Eqn. 11 $\sin^2(2\theta_{23})$ was constrained to lie in the physical region and the main systematic uncertainties ((a), (b) and (c) in Table III) were included as the nuisance parameters. The resulting 68% and 90% confidence intervals are shown in Fig. 3 as determined from $\Delta \chi^2=2.3$ and 4.6, respectively 39. The best fit value for $|\Delta m^2_{32}|$ is $|\Delta m^2_{32}|=2.74^{+0.44}_{-0.26} \times 10^{-3} \text{eV}^2/c^4$ and $\sin^2(2\theta_{23})>0.87$ at 68% C.L. IV with a fit probability of 8.9%. At 90% C.L. (2.31<|\Delta m^2_{32}|<3.43) × 10^{-3} \text{eV}^2/c^4, and $\sin^2(2\theta_{23})>0.78$. The data and best fit MC are shown in Fig. 4. At the best fit value, the MC predicts 0.76 ν_τ events in the final sample. If the fit is not constrained to be within the physical region, $|\Delta m^2_{32}|=2.72 \times 10^{-3} \text{eV}^2/c^4$ and $\sin^2(2\theta_{23})=1.01$, with a 0.2 decrease in χ^2. With additional data, it is expected that the systematic uncertainties will be reduced.

This work was supported by the US DOE; the UK PPARC; the US NSF; the State and University of Minnesota; the University of Athens, Greece and Brazil’s FAPESP and CNPq. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contribution to this effort.

* Deceased.

FIG. 4: Confidence intervals for the fit using the Beam Matrix method including systematic errors. Also shown are the contours from the previous highest precision experiments [3, 4, 5].

| Uncertainty | $|\Delta m^2_{32}|$ | $\sin^2(2\theta_{23})$ |
|-------------|-----------------|-------------------|
| (a) Normalization (± 4%) | 0.05 | 0.005 |
| (b) Abs. hadronic E scale (± 11%) | 0.06 | 0.048 |
| (c) NC contamination (± 50%) | 0.09 | 0.050 |
| All other systematics | 0.04 | 0.011 |

TABLE I: Sources of systematic uncertainties in the measurement of $|\Delta m^2_{32}|$ and $\sin^2(2\theta_{23})$. The values of $|\Delta m^2_{32}|$ and $\sin^2(2\theta_{23})$ used in the systematic MC study were the best fit values from the data. The values are the average shifts for varying the parameters in both directions without imposing constraints on the fit. Correlations between the systematic effects are not taken into account.