Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex

Haas, Julie S, Nowotny, Thomas and Abarbanel, H D I (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. Journal of Neurophysiology, 96 (6). 3305 - 3313. ISSN 0022-3077

Full text not available from this repository.

Abstract

Actions of inhibitory interneurons organize and modulate many neuronal processes, yet the mechanisms and consequences of plasticity of inhibitory synapses remain poorly understood. We report on spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. After pairing presynaptic stimulations at time tpre with evoked postsynaptic spikes at time tpost under pharmacological blockade of excitation we found, via whole cell recordings, an asymmetrical timing rule for plasticity of the remaining inhibitory responses. Strength of response varied as a function of the time interval {Delta}t = tpost tpre: for {Delta}t > 0 inhibitory responses potentiated, peaking at a delay of 10 ms. For {Delta}t < 0, the synaptic coupling depressed, again with a maximal effect near 10 ms of delay. We also show that changes in synaptic strength depend on changes in intracellular calcium concentrations and demonstrate that the calcium enters the postsynaptic cell through voltage-gated channels. Using network models, we demonstrate how this novel form of plasticity can sculpt network behavior efficiently and with remarkable flexibility.

Item Type: Article
Schools and Departments: School of Engineering and Informatics > Informatics
Depositing User: Thomas Nowotny
Date Deposited: 06 Feb 2012 20:48
Last Modified: 30 Apr 2012 14:08
URI: http://sro.sussex.ac.uk/id/eprint/28270
📧 Request an update