T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/24097/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation

W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, and C. Monroe

FOCUS Center and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

J. Rabchuk

Department of Physics, Western Illinois University, Macomb, Illinois 61455

(Received 15 August 2005; accepted 22 November 2005; published online 17 January 2006)

We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf-ion trap sections that are joined at a 90° angle to form a T-shaped structure. We shuttle a single ion around the corners of the T-junction and swap the positions of two crystallized ions using voltage sequences designed to accommodate the nontrivial electrical potential near the junction. Full two-dimensional control of multiple ions demonstrated in this system may be crucial for the realization of scalable ion trap quantum computation and the implementation of quantum networks. © 2006 American Institute of Physics. [DOI: 10.1063/1.2164910]

The ion trap stands out as a compelling quantum computing architecture, with significant recent progress in the implementation of quantum protocols using small numbers of trapped ion quantum bits (qubits). To scale the ion trap quantum computer beyond a few qubits, it may be necessary to operate arrays of ion traps where individual ions are shuttled between memory (storage) and interaction (entanglement) regions. Shuttling of trapped ions along a line between adjacent trapping zones and separation of two or more ions has been demonstrated in a series of seminal experiments. The next fundamental building block in this vision for an ion trap quantum computer is the reliable transport of ions through a multidimensional junction. In this letter, we report the successful operation of a T-junction ion trap and demonstrate full two-dimensional control of ion transport.

The main ion trap geometry used for quantum information processing is the linear radio-frequency (rf)-quadrupole trap, where ions are transversely confined to the nodal axis of an rf-quadrupole potential supplied from nearby linear electrodes. Axial confinement can be accomplished by segmenting the linear electrodes and applying differential static potentials along the axis. In order to fabricate complex ion trap arrays, the electrodes can be fashioned from multi-layer planar substrates. Asymmetric planar ion traps have also been proposed, where the electrodes do not surround the ions but lie in a plane nearby. In order to design a trapping geometry capable of supporting a two-dimensional junction, the electric-field topology near the junction must be considered carefully. While two-layer geometries provide strong confinement in both transverse dimensions inside a linear chain of trapping regions, it is difficult to have sufficient transverse confinement in the junction region. We use a symmetric three-layer geometry (Fig. 1) that allows confinement throughout the junction region. The middle layer carries the rf potential, and identical segmented outerlayers carry control (quasi-static) voltages that are used to confine the ion along the axial dimensions of the trap sections.

![Image](https://via.placeholder.com/150)

FIG. 1. Top view and cross-section of two-dimensional trapping array. Dots depict the location of trapping zones a–k. The outer control electrodes are labeled, with bottom layer electrodes in parentheses. Electrodes labeled by “G” are internally grounded.
timized to view an area of approximately $550 \times 550 \mu m$ which allows for the simultaneous observation of trapping zones d and i, or d and f (Fig. 1), permitting real-time observation of a corner-turning shuttling protocol (Fig. 5). At this magnification, a diffraction-limited image of the point-like laser-cooled ion is a few pixels.

For the shuttling protocols reported here, an rf amplitude of $V_0 \approx 360 \text{ V}$ at $\Omega_0/2\pi \approx 48 \text{ MHz}$ is applied to the central layer electrode, resulting in a transverse ponderomotive secular frequency $\omega_{rf}/2\pi \approx 5.0 \text{ MHz}$ for the trapping zones a, b, c, j, k, g, and h. The more complicated ponderomotive potential near the junction is discussed below. The control voltages applied to the 28 control electrodes are computer controlled.\cite{28} Control voltages of order 100 V result in axial secular frequencies of order 2.5 MHz for traps whose central segment is 400 μm wide. Various composite trapped-ion shuttling protocols are implemented consisting of one or more key protocols: Linear shuttling, corner turning, and separation/combination of two ions. Using these building blocks, high level shuttling procedures can be implemented.

The shuttling of ions through the T-junction merits special attention. Figure 3 shows the calculated rf ponderomotive potential near the junction, providing transverse confinement throughout the shuttling path including the junction region. There are linear rf nodes leading toward the junction from all three directions that give way to small humps in the ponderomotive potential as the junction is approached, leading to a point node in the rf potential near the center of the T-junction (trapping zone e in Fig. 1). These rf humps are small compared to the overall transverse ponderomotive potential walls, so time-varying voltages on the control electrodes can be used to push the ion over the rf humps. Shuttling a single atom around a corner requires a tradeoff: the...
time-varying pushing potentials must be strong enough to overcome the rf humps, but not so strong as to destabilize the trap in the transverse directions. The control voltage sequence must be carefully synchronized with the motion of the ion. Fast nonadiabatic voltage changes inside the trapping region may be required to minimize the kinetic energy acquired by the ion and to overcome the second hump upon emerging from the junction. Appropriate voltage sequences have been obtained by numerically solving Hamilton’s equation. Figure 4 shows voltages applied to the electrodes carrying control voltages in order to shuttle the ion around the corner from trapping zone d to i. The pictorial sequence in Fig. 5 illustrates the resulting shuttling process. The success rate of the corner-turning protocol was measured to be essentially 100% (881 out of 882 attempts). Simulations predict that the ion acquires about 1.0 eV of kinetic energy during the corner-turning protocol. This energy is dissipated via Doppler cooling, but sympathetic cooling can also remove this energy in order to preserve the internal state of the ion. It should be noted that, in principle, the gain in kinetic energy can be reversed with fast phase-sensitive switching of the trapping potentials without using any dissipative force.

In order to shuttle the ion back from the top of the T into the stem, a voltage sequence is used that corresponds approximately to the above corner-turning protocol but spatially reflected about the axis connecting electrodes 8 and 16. The success rate for this protocol was measured to be in excess of 98% (118 attempts). This sequence is conducted at slower speeds (20 ms for the whole sequence) but refining the control voltage protocol may allow shuttling times on the order of microseconds. Two other key protocols required for the implementation of universal shuttling operations are linear shuttling and separation. We performed linear shuttling operations with near-perfect efficiency over a wide range of speeds. A separation protocol is implemented inside the stem of the T-array starting from zone b. Trapping zone b is weakened to $\omega_e/2 \pi \sim 20 \text{ kHz}$ and a potential wedge separating the two ions is slowly brought up using electrodes 4 and 5, with electrodes 0, 1, 8, and 17 being used to confine the ion along the y axis. Separation typically takes ~ 10 ms and is carried out with a success rate of about 58% (64 attempts), possibly limited by the very weak trap during separation and the large (400 μm) axial extent of the control electrodes. Using these key protocols, a composite protocol was successfully implemented for switching the position of two ions. The ions are separated in zone b, the first ion transferred to j, the second to b. The first ion is shuttled back to b. The second ion is shuttled back to b, having switched places with the first ion, with the two-ion chain effectively executing a “three-point turn.”

In conclusion, full two-dimensional control of the position of trapped atomic ions is demonstrated in a T-junction trap, including corner turning and a protocol for swapping the positions of two ions. The two-dimensional control of multiple ions in this system could allow an efficient method for entangling arbitrarily positioned (including nonadjacent) ions, with applications to large-scale trapped ion quantum computing. Future work will focus on characterizing the kinetic energy acquired during different shuttling operations and optimizing voltage sequences to minimize this kinetic energy and increase the reliability of the shuttling sequences. While the internal state of the ion is not expected to be significantly disturbed during the shuttling operation, future experiments will investigate qubit coherence in these protocols.

The authors thank Rudolph N. Kohn Jr. and Jacob Burress for their valuable assistance. This work was supported by the U.S. National Security Agency and the Advanced Research and Development Activity under an Army Research Office contract, and the National Science Foundation Information Technology Research Division.

12. The voltages are produced using analog output cards (National Instruments 6733), amplified using high-voltage operational-amplifier circuits (ApeX, P885A) and can be slowed over 10 V in about 1 μs.
13. It is not necessary to simulate the ion dynamics using quantum evolution as the typical action of motion is much larger than Planck’s constant, see, e.g., W. K. Hensinger, N. R. Heckenberg, G. J. Milburn, and H. Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclassical Opt. 5, R83 (2003).
14. Background heating rates during shuttling operations are neglected here, as they are expected to act on a much slower timescale; however, spectral noise densities for shallow traps (that may occur during shuttling) are expected to be larger, with concomitant heating rates. Future studies will address these issues.
15. Asymmetries between left- and right-turn voltage sequences are observed as they are expected to act on a much slower timescale; however, spectral noise densities for shallow traps (that may occur during shuttling) are expected to be larger, with concomitant heating rates. Future studies will address these issues.