A possible contribution to CMB anisotropies at high ℓ from primordial voids

Louise M. Griffiths, Martin Kunz and Joseph Silk

1Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH
2Astrophysics, UNSW, Sydney, NSW 2052, Australia

Accepted 2002 October 23. Received 2002 October 1; in original form 2002 May 22

ABSTRACT
We present preliminary results of an analysis into the effects of primordial voids on the cosmic microwave background (CMB). We show that an inflationary bubble model of void formation predicts excess power in the CMB angular power spectrum that peaks between $2000 < \ell < 3000$. Therefore, voids that exist on or close to the last scattering surface at the epoch of decoupling can contribute significantly to the apparent rise in power on these scales recently detected by the Cosmic Background Imager (CBI).

Key words: cosmic microwave background – cosmology: theory.

1 INTRODUCTION
One of the primary goals of modern cosmology is to gain an understanding of the formation and evolution of structure in the universe. Analyses of redshift surveys such as the 2-Degree Field Galaxy Redshift Survey (2dFGRS, Peacock et al. 2001) suggest that there are large volumes of relatively empty space, or voids, in the distribution of galaxies. It seems that the Universe is made up of a network of voids with most galaxies tending to be found in two-dimensional sheets or filaments that surround these underdense regions.

In the hierarchical model of structure formation, gravitational clustering is responsible for emptying voids of mass and galaxies (Peebles 1989). Simulations of the standard cold dark matter (CDM) model predict significant clumps of matter within voids that are capable of developing into observable bound objects (Dekel & Silk 1986; Hoffman et al. 1992). Peebles gives an in-depth discussion of the contradictions of this prediction with observation (Peebles 2001). He argues that the inability of the CDM models to produce the observed voids constitutes a true crisis for these models. Additionally, recently announced deep field observations from the Cosmic Background Imager (CBI) (Mason et al. 2002) show excess power on small angular scales, $\ell > 2000$, in the cosmic microwave background (CMB).

It may be possible to explain the observations by postulating the presence of a void network originating from primordial bubbles of true vacuum that nucleated during inflation (La 1991; Liddle & Wands 1991; Turner et al. 1992; Occhionero & Amendola 1994; Amendola et al. 1996). In this scenario, the first bubbles to nucleate are stretched by the remaining inflation to cosmological scales. The largest voids may have had insufficient time to thermalize before decoupling and may persist to the present day. If voids exist at recombination they will leave an imprint on the cosmic microwave background. On the other hand, if they formed much later, their effect on the CMB will be negligible and will not be observed with the current generation of experiments.

The effects of primordial voids on the CMB have been investigated by a number of authors (Thompson & Vishniac 1987; Sato 1985; Martínez-González & Silk 1990; Martínez-González & Sanz 1990; Liddle & Wands 1992; Panek 1992; Arnau et al. 1993; Mészáros 1994; Fullana, Arnau & Saez 1996; Mészáros & Molnár 1996; Shi, Widrow & Dursi 1996; Baccigalupi, Amendola & Occhionero 1997; Amendola, Baccigalupi & Occhionero 1998; Baccigalupi 1998). The most complete investigation was carried out by Sakai, Sugiyama & Yokoyama (1999) who modelled the effect for a distribution of equally sized voids.

In this paper, we use a simple inflationary bubble model to show that if the voids that we see in galaxy surveys today existed at the epoch of decoupling, they would contribute significant additional power to the CMB angular power spectrum between $2000 < \ell < 3000$. Unlike previous analyses, we develop a general method that allows the creation of maps and enables us to consider an arbitrary distribution of void sizes. We model a power-law distribution of void sizes as predicted by inflation (La 1991) and also take into account the finite thickness of the last scattering surface (LSS) that suppresses part of the contribution from small voids.

2 VOID NETWORKS IN THEORY AND OBSERVATION

2.1 Predictions of the inflationary bubble model
In the extended inflationary model (La & Steinhardt 1989; see Kolb 1991 for a review) true vacuum bubbles nucleate during inflation in first-order phase transitions. This model predicts a distribution of bubble sizes greater than a given radius r of the form,
\[N_\alpha(r) \propto r^{-\alpha}. \] (1)

Typically, extended inflation is implemented within the framework of a Jordan–Brans–Dicke theory (Brans & Dicke 1961). In this case, the exponent \(\alpha \) is directly related to the gravitational coupling \(\omega \) of the scalar field that drives inflation,

\[\alpha = 3 + \frac{4}{\omega + \frac{r}{2}}. \] (2)

Values of \(\omega > 3500 \) are required by Solar system experiments (Will 2001), although models have been proposed that either suppress or hide the present value of \(\omega \) (La, Steinhardt & Bertschinger 1989; Holman, Kolb & Wang 1990). The main driving force behind these models is that a low \(\alpha \) can lead to large effects on the CMB if arbitrarily large voids are allowed (see Liddle & Wands 1991 for a review). The normalization of the bubble size distribution also depends on \(\omega \) and the energy scale of inflation.

Once formed, the bubbles will expand and form a shock wave on their boundary with the surrounding matter. After inflation ends, matter will start to flow relativistically back into the freshly created underdensities. However, cold dark matter only travels minimally into the void, since it becomes non-relativistic early on (Liddle & Wands 1992). Gravitational collapse of CDM will begin as normal at equality, further emptying any persisting voids. We expect baryonic matter to be pushed much further into the void as it is tightly coupled to relativistic photons until the epoch of decoupling when it will begin to gravitationally collapse back on to the CDM.

2.2 Void detections in redshift surveys

A number of different void-finder algorithms have been developed to detect voids in redshift surveys (Kauffmann & Fairall 1991; Kauffmann & Melott 1992; Ryden 1995; Ryden & Melott 1996; El-Ad & Piran 1997; Aikio & Mähönen 1998). So far, such algorithms have been used to search for voids in the first slice of the Centre for Astrophysics (CfA) redshift survey (Slezak, de Lapparent & Bijouzi 1993), the Southern Sky Redshift Survey (SSRS – Pellegrini, da Costa & de Carvalho 1989; El-Ad et al. 1996), the Infra-Red Astronomical Satellite (IRAS) 1.2-Jy survey (El-Ad, Piran & DaCosta 1997), the Las Campanas Redshift Survey (LCRS) (Müller et al. 2000), the Updated Zwicky Catalogue (UZC) (Hoyle & Vogeley 2002) and the Point Source Catalogue redshift (PSCz) survey (Plionis & Basilakos 2002; Hoyle & Vogeley 2002). These investigations indicate that 30–50 per cent of the fractional volume of the Universe is in the form of voids of underdensity \(\delta \rho/\rho < -0.9 \), in line with the inflationary model predictions. These voids range in radius from \(r_{\text{min}} = 10 h^{-1} \) Mpc to \(r_{\text{max}} = 20–30 h^{-1} \) Mpc.

3 THE PHENOMENOLOGICAL VOID NETWORK MODEL

We model the voids seen today as spherical underdensities of \(\delta \rho/\rho = -1 \). Each void is bounded by a thin wall containing the matter that is swept up during the void expansion. This forms a compensated void. We take the background universe to be an Einstein–de Sitter (EdS) cosmology, which is a good approximation since the majority of the effect on the CMB comes from voids on or close to the last scattering surface and the Universe tends towards an EdS cosmology at early times. Maeda & Sato (1983) and Bertschinger (1985) use conservation of momentum and energy, respectively, to show that these compensated voids will increase in radius \(r_v \) between the onset of the gravitational collapse of matter at equality and the present day such that

\[r_v(\eta) \propto \eta^\beta, \] (3)

with \(\beta \approx 0.39 \) and where \(\eta \) is conformal time.

In this paper, we consider a phenomenological primordial void model that is based on the predictions of extended inflation with parameters chosen to be in agreement with current redshift survey observations; a full analysis of a larger family of models will be presented in a subsequent paper. Motivated by the inflationary scenario, we assume a power-law distribution of void sizes in the Universe today, as given in equation (1). We further assume that the mechanism creating the voids imposes an upper cut-off on the size distribution. A possible mechanism for this cut-off could be that the tunnelling probability of inflationary bubbles is modulated through the coupling to another field. We can therefore go to the limit of large \(\alpha \), leading to a spectrum of void sizes with \(\alpha = 3 \). Apart from avoiding problems with well-established local measurements of gravity, this assumption allows us to match the observed upper limit on void sizes from the galaxy redshift surveys.

The minimal present void size is chosen to agree with redshift surveys, \(r_{\text{min}} = 10 h^{-1} \) Mpc. For the maximal radius, we choose the average value that is found, \(r_{\text{max}} = 25 h^{-1} \) Mpc. This scale can be strongly constrained by CMB data – if the maximal size were much larger, the voids would add too much additional power (given the observed value of \(F_\alpha \) at the wrong scales (\(\ell < 2000 \)). On the other hand, smaller voids would not be able to produce any significant contribution to the CMB power spectrum. The exponent of the size distribution \(\alpha \) is weakly constrained by both theory and observations. Varying \(\alpha \) changes the position of the peak and the overall power. This can partially adjust the influence of the other parameters (see Fig. 3 below).

We normalize the distribution by choosing the total number of voids so as to fill the required fraction of the universe today, \(F_\alpha \). Redshift surveys point to \(F_\alpha \approx 0.4 \), i.e. 40 per cent of the volume of the Universe is in underdense regions. The positions of the voids are then assigned randomly, making sure that they do not overlap. In order to speed up this process, we consider only a \(10^\circ \) cone. This limits our analysis to \(\ell > 100 \), which is satisfactory for our purpose since the main contribution from voids is on much smaller scales.

4 STEPPING THROUGH THE VOID NETWORK

4.1 Voids between us and the LSS

We ray-trace photon paths from us to the LSS for the 100\(^\circ \) cone in steps of 1 arcm. Each void in the present-day distribution that is intersected by the photon path is evolved back in time according to (3) to determine whether the photon encounters the void. If a photon intersects a void between us and the LSS, we compute the Rees & Sciama (1968) effect owing to the deviation in the redshift of the photon as it passes through the expanding void and the lensing effect owing to the deviation in its path. Thompson & Vishniac (1987) applied double local Lorentz transformations at each void boundary to obtain the redshift deviation (the RS effect) and the scattering angle of a photon (the lensing effect),

\[\Delta_{\text{RS}} \equiv \frac{\delta T}{T} = (H_\alpha R_\alpha)^3 \cos \theta_2 \left(3\beta - \frac{2}{3} \cos^2 \theta_2 \right), \] (4)

\[\delta \alpha \equiv -\theta_1 + \theta'_1 + \theta'_2 - \theta_2 = (H_\alpha R_\alpha)^3 \sin(2\theta_2), \] (5)

where \(H \) is the Hubble parameter, \(R = ar_v \) is the proper length of the void radius, \(\beta \) is given by (3) and the angles \(\theta_1, \theta'_1, \theta'_2 \) and \(\theta_2 \) are defined by reference to Fig. 1.
effect is given by Sakai et al. (1999),

\[\psi_{\text{SW}} \equiv \left. \frac{\delta T}{T} \right|_{\text{SW}} = \frac{1}{12} H^2 a^2 \left(\frac{r^2}{\ell^2} - 1 \right) \left(\frac{r^2}{\ell^2} - \frac{1}{3} \right) \left(\frac{r^2}{\ell^2} - \frac{1}{9} \right) \]

where \(X \) is defined as the distance between the centre of the void and the LSS. Equation (11) takes a maximal value at \(r = 0 \) corresponding to the case where a photon originates at the void centre.

We take into account the finite thickness of the LSS, which suppresses the SW effect for small voids, by averaging the contribution from a number of photons originating from a LSS of mean redshift 1100 and standard deviation in redshift of 80. We also calculate the partial RS effect (PRS) that arises owing to the expansion of the void on the LSS as the photon leaves it. Using the potential approximation and integrating (10) we obtain

\[\Delta_{\text{PRS}} \equiv \left. \frac{\delta T}{T} \right|_{\text{PRS}} = 2 \left[3 + \frac{(r_2^2 - r_{\text{LSS}}^2) + \eta_2 (\eta_2 - 4 \eta_{\text{LSS}})}{\eta_{\text{LSS}}^2} \right] + 2 \log \left(\frac{\eta_2}{\eta_{\text{LSS}}} \right) - 2 \frac{r_2}{\eta_{\text{LSS}}} \frac{\eta_{\text{LSS}}^2 \cos \theta_2}{\eta_{\text{LSS}}^2} \right], \]

where \(r_{\text{LSS}} \) and \(r_2 \) are the size of the void at \(\eta_{\text{LSS}} \) and at the time the photon leaves the void (\(\eta_2 \)), respectively, and the angle \(\theta_2 \) is defined by reference to Fig. 1.

Once the photon has reached the last scattering surface, we know the variation of its temperature and its position on the LSS and can create a temperature map (Fig. 2). We then use a flat-sky approximation to obtain the \(C_\ell \) spectrum of the anisotropies (White et al. 1999; da Silva 2002) (see Fig. 3). This figure is the main result of this paper and shows that a void model motivated by theory and observations can provide substantial power on scales beyond \(\ell \approx 2000 \).

We point out that primordial void parameters are still poorly constrained by both observation and theory. The bottom panel of Fig. 3 shows a few further example models. For a power-law size distribution (as motivated by the inflationary scenario), large voids become rarer as \(\alpha \) is increased. Therefore, since void analyses of redshift surveys only sample a fraction of the volume of the Universe, there

\[\Delta_{\text{RS}} = -2 \int_{L_{\text{LSS}}}^{\infty} \right. \frac{dx}{dx} \cdot \nabla \psi. \]

The integration of (10) for a void between us at the LSS results in equation (4), which is the Thompson–Vishniac result.

4.2 Voids on the LSS

If a photon intersects a void on the LSS, we use the potential approximation to calculate the Sachs & Wolfe (1967) effect owing to the photon originating from within the underdensity. For an empty void (\(\delta = -1 \)) that satisfies the potential approximation (8), the SW effect is given by Sakai et al. (1999),

\[\Delta_{\text{SW}} \equiv \left. \frac{\delta T}{T} \right|_{\text{SW}} = \frac{1}{12} H^2 a^2 \left(\frac{r^2}{\ell^2} - 1 \right) \left(\frac{r^2}{\ell^2} - \frac{1}{3} \right) \left(\frac{r^2}{\ell^2} - \frac{1}{9} \right) \]

Figure 1. Cross-section of a void (Thompson–Vishniac model). The trajectory of a photon is depicted from the LSS to an observer. The subscripts 1 and 2 denote quantities at the time the photon enters the void and at the time it leaves, respectively. \(\alpha \) is defined as the angle formed between the line-of-sight direction and the direction of the centre of the void. \(\delta \) is defined as the scattering angle of a photon. \(d \) is defined as the comoving distance of the centre of the void. \(d_{\text{LSS}} \) is defined as the comoving distance of the LSS.

Figure 2. The map of the temperature fluctuations on the surface of last scattering from the fiducial void model considered. The parameters of this model are given by \(\alpha = 3, r_{\text{max}} = 25 h^{-1} \text{Mpc} \) and \(F_\alpha = 0.4. \) This figure can be seen in colour in the online version of the journal on Synergy.
may exist voids of larger r_{max} than currently observed. Models with high r_{max} tend to predict too much power on scales $\ell \approx 1000$. However, if we take inflationary models with $\alpha > 6$, as motivated by, for example, Occhionero & Amendola (1994), then the peak moves to larger ℓ and the total power drops. The filling fraction mainly adjusts the overall power.

5 CONCLUSIONS

The cosmic microwave background is an excellent tool for probing the distribution of matter from last scattering until today. In the case of voids, the strongest signal stems from objects at very high redshifts, especially from those already present at decoupling. In this paper we discuss the imprint of a power-law distribution of primordial, spherical and compensated voids, which could for example be generated by a phase transition during inflation.

We show that the signature of such a distribution of voids, which is compatible with redshift survey observations, contributes additional power on small angular scales. At the same time, this scenario solves the void crisis of the CDM model. Experiments such as the CBI are able to directly probe small angular scales and constrain void parameters. We will present a constraints analysis of a wide range of void models in a future paper. In this in-depth analysis, we will also investigate the non-Gaussian signal of void models that are compatible with CMB observations and any effect of acoustic waves that primordial voids may propagate to the sound horizon (Baccigalupi & Perrotta 2000; Corasaniti & Amendola & Occhionero 2001).

Other sources are also expected to contribute at high ℓ. Probably the strongest of these is the thermal Sunyaev–Zel’dovich (SZ) effect. Since the thermal SZ effect is strongly frequency-dependent, experiments that work at approximately 30 GHz (such as CBI) will see a stronger signal than those working at higher frequencies (Aghanim et al. 2002). Hence a multifrequency approach should be able to easily disentangle the contribution of voids from the SZ effect. Unfortunately, it seems to be difficult at present to predict the precise level of the SZ contribution, since different groups are reporting different results (see, e.g., Springel et al. 2000a,b, for a compilation). Future multifrequency, high-resolution and high signal-to-noise ratio maps should be able to significantly constrain the contribution of primordial voids to the high-ℓ CMB power spectrum. Additionally, deep galaxy redshift surveys and measurements of the distribution of matter in the Lyα forest will able to directly explore the presence of voids in the baryonic matter distribution at low redshifts.

ACKNOWLEDGMENTS

It is a pleasure to thank Andrew Liddle for many interesting and crucial discussions. We also thank Antonio da Silva for helpful conversations and acknowledge the use of his angular power spectrum extraction algorithm. LMG is also grateful to Charles Lineweaver and the University of New South Wales, where some of this work was carried out, for their hospitality. LMG acknowledges support from PPARC. MK acknowledges support from the Swiss National Science Foundation.

REFERENCES

Figure 3. Top: the CMB anisotropies produced by the fiducial void model (solid line) compared with the primary CMB anisotropies (dashed-triple-dotted). Also plotted are the sum of primary and void contributions (dotted) and the fluctuations induced purely by voids on the last scattering surface (dashed) and by those between last scattering and today (dashed-dotted). We show the ‘standard’ cosmological concordance model: of course a combined analysis of primary and void-induced fluctuations would select a different cosmology for the primary contribution. Bottom: example models depicting a range of void contributions to the CMB fluctuations. The models plotted are $\alpha = 3$, $r_{\text{max}} = 25 h^{-1} \text{Mpc}$ and $F_{\nu} = 0.4$ (solid line), $\alpha = 3$, $r_{\text{max}} = 40 h^{-1} \text{Mpc}$ and $F_{\nu} = 0.4$ (dotted), $\alpha = 3$, $r_{\text{max}} = 40 h^{-1} \text{Mpc}$ and $F_{\nu} = 0.2$ (dashed) and $\alpha = 6$, $r_{\text{max}} = 40 h^{-1} \text{Mpc}$ and $F_{\nu} = 0.4$ (dashed-dotted).
L. M. Griffiths, M. Kunz and J. Silk

Peacock J.A. et al., 2001, Nat, 410, 169
Rees M.J., Sciami D., 1968, Nat, 217, 511
Sato H., 1985, Prog. Theor. Phys., 73, 649

Will C.M., 2001, Living Rev. Rel., 4, 4

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.