A Novel DNA Repair Disorder With Thrombocytopenia, Nephrosis, and Features Overlapping Cockayne Syndrome

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/23101/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
A NEW SYNDROME

A Novel DNA Repair Disorder With Thrombocytopenia, Nephrosis, and Features Overlapping Cockayne Syndrome

Elizabeth Forsythe,1 Ruth Wild,2 Gabrielle Sellick,2 Richard S. Houlston,2 Alan R. Lehmann,3 and Emma Wakeling1*

1Kennedy Galton Centre, North West Thames Regional Genetics Service, The North West London Hospitals NHS Trust, Middlesex, United Kingdom
2Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
3Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom

Received 22 September 2008; Accepted 20 May 2009

We report on four siblings with Cockayne-like syndrome with thrombocytopenia and nephrotic syndrome. The parents were healthy and consanguineous, consistent with an autosomal recessive mode of disease inheritance. UV irradiation of fibroblasts revealed an intermediate sensitivity between normal and standard Cockayne syndrome (CS) control cells. A genome-wide linkage scan conducted using Affymetrix 10K arrays provided exclusion of the known CS genes in the family, and evidence that the disease gene maps to 1p33-p31.1. Thrombocytopenia has not previously been linked with CS, but two patients with CS in association with nephrotic syndrome have previously been documented and the phenotypes are compared with the patients described here. We suggest that this Cockayne-like phenotype with thrombocytopenia and nephrotic syndrome may be a novel DNA repair disorder, and propose that further investigation of other affected families may help identify the causative genetic defect. © 2009 Wiley-Liss, Inc.

Key words: autosomal recessive inheritance; Cockayne syndrome; DNA repair disorders; linkage analysis; nephrotic syndrome; thrombocytopenia; UV irradiation

INTRODUCTION

Cockayne syndrome (CS) is a rare autosomal recessive disorder with variable expression. The phenotype classically becomes evident in early childhood, and patients present with hyperpigmentation, sunken eyes secondary to subcutaneous lipoatrophy, failure to thrive, short stature and microcephaly. Neurological sequelae include progressive ataxia, global developmental delay, sensorineural deafness and tremors [Cockayne, 1936; Nance and Berry, 1992; Lehmann et al., 1993; Tan et al., 2005]. While approximately 10% of patients with CS develop renal pathology, this rarely leads to serious complications [Hirooka et al., 1988; Sato et al., 1988; Reiss et al., 1996]. Renal changes may vary significantly between affected individuals but typically include tubulointerstitial inflammation, interstitial fibrosis and tubular atrophy [Hirooka et al., 1988; Funaki et al., 1996]—all consistent with nonspecific end-stage renal disease. A small simplified glomerular structure with wrinkling of the basement membrane appears to be specific to Cockayne Syndrome [Funaki et al., 1996]. Thrombocytopenia has not, to our knowledge, been reported previously in association with CS.

A diagnosis of CS is made on clinical features and can be confirmed by UV irradiation of fibroblasts from the patient. CS cells fail to restore normal levels of RNA synthesis following UV irradiation when compared to control fibroblasts [Mayne and Lehmann, 1982]. Mutations in genes CSA and CSB, coding for proteins involved in transcription-coupled repair, are thought to be responsible for the Cockayne phenotype in the majority of cases [Lehmann, 2003]. There is poor genotype/phenotype correlation [Mallery et al., 1998], and identical mutations in CSB may be associated with either CS or xeroderma pigmentosum (XP) - another DNA repair disorder [Lehmann, 2003]. Mutations in genes XBP, XPD, and XPG can result in a mixed clinical phenotype with neurological features of CS and skin abnormalities associated with XP [Lehmann, 2003].

*Correspondence to: Emma Wakeling, Kennedy Galton Centre, North West Thames Regional Genetics Service, The North West London Hospitals NHS Trust, Middlesex, United Kingdom. E-mail: e.wakeling@imperial.ac.uk

Published online 00 Month 2009 in Wiley InterScience (www.interscience.wiley.com)
DOI 10.1002/ajmg.a.32995

© 2009 Wiley-Liss, Inc.
Here we report on four siblings affected by a Cockayne-like disorder associated with nephrotic syndrome and thrombocytopenia, and an intermediate fibroblast response to UV irradiation.

CLINICAL REPORT

The parents of the four affected children are healthy, Pakistani first cousins (Fig. 1). The two older siblings (III.1 and III.2) were first referred for genetic evaluation aged 6 and 5, respectively. They were noted to have a distinctive phenotype with severe global developmental delay, short stature and similar dysmorphic features: progeroid facies with microcephaly, frontal bossing, sunken eyes, high nasal bridge and large, prominent, low-set ears. There was no history of photosensitivity, poor vision or deafness.

Patient 1

The eldest sibling (III.1, Fig. 1) weighed 2.8 kg (9th centile) at birth. At 6 years, OFC was 47.5 cm, height 93 cm, and weight 13.2 kg; all well below the 0.4th centile. In addition to the dysmorphic features he shared with his sister, he also had keratinized, purple, nodular lesions on his forehead, the exact nature of which could not be identified. Development was slowly progressive with no loss of skills. At presentation, aged 6, he was able to walk up stairs with two feet per step, draw a circle, had good pincer grip and had a few single recognizable words. Previous diagnostic investigations had been inconclusive. He was noted to have a normal karyotype. Computerized tomography (CT) of his brain at the age of 2 revealed “moderately prominent ventricles and sulci” but was otherwise normal with no evidence of basal ganglia calcification. Urine amino acids were normal and congenital infection screen was negative. He had further investigations at the age of 7, during admission to hospital for steroid-unresponsive nephrotic syndrome. A renal biopsy identified glomerular sclerosis, tubular atrophy, interstitial fibrosis, and hyaline thickening of the arteriolar wall, consistent with the non-specific end-stage renal pathology typically observed in CS. The patient was thrombocytopenic on admission (platelet count: $50 \times 10^9/L$) and had a history of easy bruising. A bone marrow biopsy showed hypopcellular particulate bone marrow with representation of all three hematopoietic precursor cell lines including erythrocytes, leukocytes, and thrombocytes. A blood smear was normal except for a few spherocytes, consistent with mild hemolysis. The hematological findings were reviewed and felt to be consistent with a hereditary thrombocytopenia. Normal sensitivity to diepoxybutane excluded Fanconi anemia. Generalized osteoporosis and delayed bone age was apparent on skeletal survey. Recovery of RNA synthesis following UV irradiation of skin fibroblasts gave an intermediate result between normal and known CS controls (Fig. 2). At the age of 8 he died secondary to complications of nephrotic syndrome.

Patient 2

The second child (III.2, Fig. 1) was born at 41 weeks by normal vaginal delivery, weighing 3.1 kg (50th centile). The neonatal period was complicated by hypotonia, and she required 2 days admission to the Special Care Baby Unit. At presentation aged 5, OFC was 44.5 cm and length 87 cm. At age 7 all growth parameters were below the 0.4th centile. Like her brother, this patient had slowly progressive global developmental delay with no loss of skills. She walked at 21 months, and by age 7 she had severe developmental delay particularly affecting speech with only a few single words. A skeletal survey revealed delayed bone age with non-specific changes. Borderline growth hormone response was noted, and the patient was started on replacement therapy at the age of 9. She subsequently developed nodular lesions on her skin similar to those of her elder brother and persistent thrombocytopenia. Normal sister chromatid exchanges for Bloom syndrome, diepoxybutane sensitivity and chromosomal ionizing radiation excluded Bloom syndrome, ataxia telangiectasia and Fanconi anemia, respectively. Attempts to establish a fibroblasts culture for UV sensitivity testing were unsuccessful, and parents declined a second attempt. She developed...
steroid-responsive nephrotic syndrome aged 10, and died second-
ary to complications at the age of 16.

Patient 3

The third child (III.3, Fig. 1; Fig. 3a) was born at 42 weeks by spontaneous vaginal delivery with no perinatal complications. Her birth weight was 2.57 kg (0.4th centile) with a head circumference also at the 0.4th centile. The patient was globally delayed from the outset; she was able to sit alone by 1 year, crawled at 18 months, walked at 21 months and had a vocabulary of five or six words by 29 months. Development was assessed at 29 months and although the child was progressing, she had global developmental delay corresponding to a corrected developmental age of 18 months. There was no history of loss of skills. A karyotype was normal. CT brain performed at the age of 2 was normal with no evidence of intracranial calcification. By 14 months she had developed the Cockayne-like facial features of her two older siblings including sunken eyes, frontal bossing, large prominent low set ears, a high nasal bridge and microcephaly, although she had not yet developed any skin papules. Vision and hearing were normal and there was no evidence of photosensitivity. She exhibited gross motor delay, but otherwise appeared less severely affected than her siblings. UV irradiation of fibroblasts again gave a response intermediate between that of normal and CS cells, similar to her brother. Testing for carbohydrate deficient glycoprotein syndrome revealed normal transferrins. At the age of 6 she has developed persistent moderate thrombocytopenia and proteinuria.

Patient 4

The youngest sibling (III.4, Fig. 1) had an uncomplicated delivery. At birth his weight was 3.2 kg (25th centile) and head circumference below the 9th centile. He sat at 10 months, walked at 18 months and had a vocabulary of one word at 21 months. By the age of 25 months he had mild global developmental delay corresponding to a developmental age of 18 months. There was no history of loss of skills. The patient has similar dysmorphic features to his siblings (Fig. 3b,c) and like his siblings, he has no evidence of photosensitivity, visual problems or deafness. Although he appears to be affected by the same condition as his three siblings he has not yet developed nephrotic syndrome or thrombocytopenia.

LINKAGE ANALYSIS

The parents of these four affected siblings are consanguineous indicating a likely autosomal recessive mode of inheritance. To search for a disease locus a genome wide linkage scan of the parents...
A 27 Mb interval of shared homozygosity was identified encompassing 104 informative SNPs (defined by dsSNPs rs2354462 to rs718883) at chromosome 1p33-p31.1. Multipoint linkage analysis assuming a fully penetrant autosomal recessive mode of inheritance was undertaken using the GENEHUNTER program [Kruglyak et al., 1995]. Allele frequencies for each marker were assumed to be equal and a population disease gene frequency of 0.001 was used to estimate the maximum LOD score. Statistical support for linkage was evaluated over a range of marker allele frequencies. The map order and distances between markers were based on the UCSC Human Genome Browser (http://genome.ucsc.edu/). The multipoint LOD score across the 27 Mb region of linkage was 2.4.

A contiguous gene syndrome cannot be excluded; but any such deletion would have to be <170 kb in size, as genotype signatures were obtained from 104 markers mapping to the region of linkage.

One hundred thirty-one transcripts map to the 27 Mb region of linkage (UCSC Human Genome Browser, March 2006). Excluding the predicted or hypothetical genes mapping to the region that have little or no associated information regarding their biological function, there are no obvious candidate genes at present.

DISCUSSION

The four siblings described in this report have many of the classic features associated with CS. However, some characteristic findings are missing: they all have normal hearing and vision, no evidence of sun-sensitivity or intracranial calcification on brain CT imaging. A literature search did not reveal any other reports of CS in association with thrombocytopenia. Two other children with a diagnosis of CS, who have died as a result of nephrotic syndrome, have previously been described [Reiss et al., 1996; Funaki et al., 2006]. In the report by Reiss et al. [1996], there was a marginal hypersensitivity to sister chromatid exchanges induced by UVC but not to those induced by UVB. The report by Funaki et al. [2006] states that “she underwent a skin biopsy that demonstrated ultraviolet-induced damage,” without any data being presented. It is therefore difficult to assess the UV sensitivity status of these patients’ cells.

It is striking that, in addition to having nephrotic syndrome, the child reported by Reiss et al. [1996] was phenotypically very similar to the children described in this report: he had many classic CS features but did not have the typical photosensitive rash or deafness. Nephrotic syndrome in this child was unresponsive to steroids [Reiss et al., 1996], whereas the patient described by Funaki et al. [2006] was treated with oral prednisolone with good effect. Table I compares the phenotype of the siblings described in this report and the other reported children with CS and nephrotic syndrome.

In this case report Patient 1 had steroid resistant nephrotic syndrome, whilst Patient 2 was responsive to steroid treatment and Patient 3 had persistent proteinuria. This may represent the natural progression of renal pathology in this disorder with initial proteinuria deteriorating into nephrotic syndrome. It may be that the renal pathology seen in this family develops from steroid responsive to steroid unresponsive nephropathy. Alternatively, Patient 2 may have had a partial response to corticosteroid therapy in the early stages of developing resistant nephrosis.

The authors are aware of about 10 other patients where irradiation of fibroblasts has produced an intermediate response of RNA.
synthesis recovery following UV irradiation (A.R. Lehmann, unpublished work). Limited information exists regarding phenotype and results of molecular diagnostic testing in these patients. At least three of the patients appear to have a clear Cockayne-like phenotype. However, none are known to have developed nephrotic syndrome.

Collectively these data suggest that the CS-like phenotype we have identified in four affected individuals from a single family represents a distinctive syndrome, possibly a consequence of a novel DNA repair disorder. As the parents of the patients we report were consanguineous, autosomal recessive inheritance is most likely, though other modes of transmission, including mitochondrial inheritance, remain a possibility. On the basis of linkage data it appears that the disease gene maps to 1p. Investigation of additional affected families should, as well as further elucidate this emerging phenotype, facilitate identification of the causal gene.

ACKNOWLEDGMENTS

We are grateful to the family for their participation and support of this article.

REFERENCES

Q1: Please add in the reference list.
Your article will be published online via Wiley’s EarlyView® service (www.interscience.wiley.com) shortly after receipt of corrections. EarlyView® is Wiley’s online publication of individual articles in full text HTML and/or pdf format before release of the compiled print issue of the journal. Articles posted online in EarlyView® are peer-reviewed, copyedited, author corrected, and fully citable. EarlyView® means you benefit from the best of two worlds--fast online availability as well as traditional, issue-based archiving.

☐ READ PROOFS CAREFULLY
 • This will be your only chance to review these proofs.
 • Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
 • Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
 • Check size, numbering, and orientation of figures.
 • All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
 • Review figure legends to ensure that they are complete.
 • Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM
 • Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

RETURN
☐ PROOFS
☐ REPRINT ORDER FORM
☐ CTA (If you have not already signed one)

RETURN IMMEDIATELY AS YOUR ARTICLE WILL BE POSTED IN ORDER OF RECEIPT.

QUESTIONS?
Christopher Sannella, Production Editor
Phone: 201-748-5949
E-mail: csannell@wiley.com
Refer to journal acronym and article production number (i.e., AJMA 00-0001 for American Journal of Medical Genetics ms 00-0001).
COPYRIGHT TRANSFER AGREEMENT

Date: ___________________ Contributor name: ___________________

Contributor address: __

Manuscript number (Editorial office only): _________________________

Re: Manuscript entitled ___

for publication in __ (the “Contribution”)

published by ___ (“Wiley-Blackwell”).

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal's instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/I SSUE, Copyright © [year], copyright owner as specified in the Journal). Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back to the Contributor in the version of the Contribution as originally submitted for publication:
 a. After publication of the final article, the right to self-archive on the Contributor's personal website or in the Contributor's institution's repository or archive. This right extends to both intranets and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].
 b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use, are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:
 a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserv, website or automated delivery.
 b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifi cations should be accurately noted.
 c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.
 d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).
 a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.
 b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:
 (i) Full and accurate credit must be given to the Contribution.
 (ii) Modifications to the figures, tables and data must be noted.
 (iii) The re-use may not be made for direct commercial purposes, or for financial consideration to the Contributor.
 (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a “work-made-for-hire” in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company’s internal network. Copies so used may not be resold or distributed externally. However, the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell’s written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR’S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor’s original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell’s permissions form or in the Journal’s Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- Contributor-owned work
- Company/Institution-owned work
- U.S. Government work
- U.K. Government work (Crown Copyright)
- Other Government work
- NIH Grantees

ATTACH ADDITIONAL SIGNATURE PAGES AS NECESSARY

Contributor’s signature
Date

Type or print name and title

Co-contributor’s signature
Date

Type or print name and title

Company or Institution (Employer-for-Hire)
Date

Authorized signature of Employer
Date

Note to U.S. Government Employees
A contribution prepared by a U.S. federal government employee as part of the employee’s official duties, or which is an official U.S. Government publication, is called “U.S. Government work,” and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor’s signature line) and return this Agreement. If the Contribution was not prepared as part of the employee’s duties or is not an official U.S. Government publication, it is not a U.S. Government work.

Note to U.K. Government Employees
The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

Note to Non-U.S., Non-U.K. Government Employees
If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

Note to NIH Grantees
Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.
These proofs have been typeset using figure files transmitted to production when this article was accepted for publication. Please review all figures and note your approval with your submitted proof corrections. You may contact the journal production editor via e-mail at csannell@wiley.com if you wish to discuss specific concerns.

Because of the high cost of color printing, we can only print figures in color if authors cover the expense. If you have submitted color figures, please indicate your consent to cover the cost on the table listed below by marking the box corresponding to the approved cost on the table.

Please note, all color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs may delay the publication of your article.

<table>
<thead>
<tr>
<th>JOURNAL</th>
<th>MS. NO.</th>
<th>NO. COLOR PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAN JOURNAL OF MEDICAL GENETICS PART A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MANUSCRIPT TITLE

AUTHOR(S)

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$950</td>
<td>5</td>
<td>$3400</td>
<td>9</td>
<td>$5850</td>
</tr>
<tr>
<td>2</td>
<td>$1450</td>
<td>6</td>
<td>$3900</td>
<td>10</td>
<td>$6350</td>
</tr>
<tr>
<td>3</td>
<td>$1950</td>
<td>7</td>
<td>$4400</td>
<td>11</td>
<td>$6850</td>
</tr>
<tr>
<td>4</td>
<td>$2450</td>
<td>8</td>
<td>$4900</td>
<td>12</td>
<td>$7350</td>
</tr>
</tbody>
</table>

Contact csannell@wiley.com for a quote if you have more than 12 pages of color

☐ Please print my figures color ☐ Please print my figures in black and white

☐ Please print the following figures in color and convert these figures to black and white

Approved by

Billing Address

E-mail

Telephone

Fax
PREPUBLICATION REPRINT ORDER FORM

Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive.

JOURNAL ___________________________ **VOLUME** _______________ **ISSUE** _______________

TITLE OF MANUSCRIPT __

MS. NO. _______________ **NO. OF PAGES** __________________ **AUTHOR(S)** ____________________

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>336</td>
<td>501</td>
<td>694</td>
<td>890</td>
<td>1052</td>
</tr>
<tr>
<td>5-8</td>
<td>469</td>
<td>703</td>
<td>987</td>
<td>1251</td>
<td>1477</td>
</tr>
<tr>
<td>9-12</td>
<td>594</td>
<td>923</td>
<td>1234</td>
<td>1565</td>
<td>1850</td>
</tr>
<tr>
<td>13-16</td>
<td>714</td>
<td>1156</td>
<td>1527</td>
<td>1901</td>
<td>2273</td>
</tr>
<tr>
<td>17-20</td>
<td>794</td>
<td>1340</td>
<td>1775</td>
<td>2212</td>
<td>2648</td>
</tr>
<tr>
<td>21-24</td>
<td>911</td>
<td>1529</td>
<td>2031</td>
<td>2536</td>
<td>3037</td>
</tr>
<tr>
<td>25-28</td>
<td>1004</td>
<td>1707</td>
<td>2267</td>
<td>2828</td>
<td>3388</td>
</tr>
<tr>
<td>29-32</td>
<td>1108</td>
<td>1894</td>
<td>2515</td>
<td>3135</td>
<td>3755</td>
</tr>
<tr>
<td>33-36</td>
<td>1219</td>
<td>2092</td>
<td>2773</td>
<td>3456</td>
<td>4143</td>
</tr>
<tr>
<td>37-40</td>
<td>1329</td>
<td>2290</td>
<td>3033</td>
<td>3776</td>
<td>4528</td>
</tr>
</tbody>
</table>

REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201) 748-8891 FOR A PRICE QUOTE.

☐ Please send me _______________ reprints of the above article at $ _______________.

Please add appropriate State and Local Tax for United States orders only.

(Tax Exempt No.____________________) $ _______________.

Please add 5% Postage and Handling $ _______________.

TOTAL AMOUNT OF ORDER $ _______________.

International orders must be paid in currency and drawn on a U.S. bank

Please check one: ☐ Check enclosed ☐ American Express ☐ Bill me ☐ Credit Card

If credit card order, charge to: ☐ American Express ☐ Visa ☐ MasterCard

Credit Card No __________________________ Signature __________________________ Exp. Date __________________________

BILL TO: __________________________ **SHIP TO:** __________________________

Name __________________________ Name __________________________

Institution __________________________ Institution __________________________

Address __________________________ Address __________________________

__

Purchase Order No. __________________________ Phone __________________________

(please, no P.O. Box numbers) Fax __________________________

E-mail __________________________
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0 and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.