Ctp1CtIP and the Rad32Mre11 nuclease activity are required for Rec12Spo11 removal but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions

Hartsuiker, Edgar, Mizuno, Ken'ichi, Molnar, Monika, Kohli, Juerg, Ohta, Kunihiro and Carr, Antony M (2009) Ctp1CtIP and the Rad32Mre11 nuclease activity are required for Rec12Spo11 removal but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Molecular and Cellular Biology, 29 (7). pp. 1671-1681. ISSN 0270-7306

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/2281/

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Ctp1CtIP and the Rad32Mre11 nuclease activity are required for Rec12Spo11 removal but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions

Edgar Hartsuiker*, Kenichi Mizuno, Monika Molnár§, Juerg Kohli§, Kunihiro Ohta‡ and Antony M. Carr

Genome Damage and Stability Centre, Sussex University, Brighton BN15 8HG, UK

§Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland

‡Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan

Running title: Roles of MRN in fission yeast meiosis

*Corresponding Author: Edgar Hartsuiker, Tel.: +44 (0)1273 873118, Fax: +44 (0)1273 678121, e-mail: E.Hartsuiker@sussex.ac.uk

Word count Materials and Methods: 425

Word count Introduction, Results and Discussion: 3958
Abstract

The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in *Saccharomyces cerevisiae*, this has not been experimentally confirmed. This study demonstrates for the first time that Mre11 (*Schizosaccharomyces pombe* Rad32/Mre11) nuclease activity is required for the removal of Rec12_{Spo11}. Furthermore, we show that the CtIP homologue Ctp1 is required for Rec12_{Spo11} removal, confirming functional conservation between Ctp1_{CtIP} and the more distantly related Sae2 protein from *S. cerevisiae*. Finally, we show that the MRN complex is required for meiotic recombination, chromatin remodelling at the *ade6-M26* recombination hot spot, and formation of linear elements (which are the equivalent of the synaptonemal complex found in other eukaryotes), but that all these functions are proficient in a *rad50S* mutant, which is deficient for Rec12_{Spo11} removal. These observations suggest that the conserved role of the MRN complex in these meiotic functions is independent of Rec12_{Spo11} removal.
Introduction

In meiosis, one round of DNA replication is followed by two nuclear divisions that divide the genetic material equally over four haploid daughter cells. Meiotic recombination contributes to genetic diversity and is essential for correct disjunction of the homologous chromosomes in the first meiotic division. In meiotic prophase, after meiosis-specific DNA replication, the homologous chromosomes pair and recombine. In the following two nuclear divisions the homologous chromosomes (meiosis I) and the sister chromatids (meiosis II) are segregated. The study of meiosis in the yeasts *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe* has greatly contributed to our understanding of various meiotic processes. As these model organisms are as distantly related to each other as to animals (35), detailed studies of similarities and differences between meiotic mechanisms in these yeasts are informative as to which mechanisms are conserved in higher eukaryotes.

The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) protein complex is involved in a wide range of early responses to DNA damage. Mutations in Nbs1 and Mre11 are responsible for the cancer prone human disorders Nijmegen Breakage Syndrome and Ataxia Telangiectasia-Like Disorder. Central in this complex is the Mre11 nuclease, which is thought to be involved in DSB end resection and DSB signalling (reviewed in 40).

The MRN complex is also involved in multiple aspects of meiosis. In *S. cerevisiae*, meiotic recombination is initiated by the topoisomerase-like protein Spo11 (17), which creates a double strand break (DSB) in the DNA. Spo11 remains covalently
bound to the 5' end of the break ends (17) and is removed by endonucleolytic cleavage (28) to initiate subsequent DSB end resection and meiotic recombination. Meiotic DSB formation is abolished in *S. cerevisiae* MRN null mutants (6, 16). In an *S. cerevisiae* rad50S point mutant (a separation of function mutant with severe defects in meiosis, but only mild defects in mitotic DNA repair; 2) meiotic DSBs are formed, but this mutant is unable to remove Spo11 from meiotic DSB ends (17). This observation has implicated the MRN complex in Spo11 removal. As a nuclease dead *mre11-D56N* mutant is defective in resecting meiotic DSBs (27), it has been proposed that the Mre11 nuclease activity is responsible for Spo11 removal, but this has not been experimentally confirmed. Also in *S. pombe*, meiotic DSBs are formed by the Spo11 homologue, called Rec12 (7). An *S. pombe* rad50S mutant is defective in DSB repair and this feature has been instrumental in the study of DSB formation in this organism (42). Although this phenotype is compatible with an involvement of the MRN complex in Rec12^{Spo11} removal, this has not been demonstrated experimentally.

Meiotic DSB formation in *S. cerevisiae* (30) is accompanied by an increase of micrococcal nuclease (MNase) sensitivity, suggesting that a more open chromatin structure could facilitate DSB repair. *S. cerevisiae* Mre11 is required for meiosis specific chromatin remodelling, whereas Rad50 and Xrs2 (the *S. cerevisiae* Nbs1 homologue) are dispensable (29). Also in *S. pombe*, meiotic recombination hot spot activity at ade6-M26 has been associated with increased MNase sensitivity (23), but a role of MRN in this process has not been reported.

In the great majority of sexually reproducing eukaryotes a meiosis-specific
tripartite structure is formed during meiotic prophase: the synaptonemal complex (SC),
which is thought to be involved in various processes associated with chromosome pairing
and recombination. Early in meiotic prophase, axial elements are formed along the sister
chromatids of the individual chromosomes. Pairing and connection of the axial elements
by transverse filaments leads to formation of the tripartite SC (in which the axial
elements are now called lateral elements; 31). In *S. cerevisiae* rad50Δ and rad50S
mutants SC precursors are formed, but formation of a complete SC is blocked (2). In *S.
pombe* WT cells, no fully formed SC is found, but instead linear elements (LEs) appear
during meiotic prophase that show similarity to SC precursors in other organisms (4). It
remains unknown if the MRN complex is involved in LE formation in *S. pombe*.

Mutants of *sae2* in *S. cerevisiae* have a rad50S-like phenotype, in meiosis as well
as in mitotic cells (32), and it has been shown that Sae2 is required for Spo11 removal in
meiosis (28). Recently, a novel gene, called *ctp1*, was identified in *S. pombe* (21,
1) which shows homology to the mammalian tumour suppressor CtIP (33) and the more
distantly related Sae2 in *S. cerevisiae*. CtIP/Ctp1 has been shown to interact with the
MRN complex (33) and is involved in DSB end resection (21, 33), but a role for Ctp1 in
Rec12Spo11 removal in *S. pombe* has not been confirmed.

Whereas meiotic phenotypes of MRN and *sae2* mutants have been extensively
studied in *S. cerevisiae*, much remains unknown about the role of the MRN complex and
Ctp1CtIP in *S. pombe* meiosis. In this study, we characterise meiotic phenotypes of *S.
pombe* rad50 and rad32mre11 null and separation of function mutants. First we
demonstrate, for the first time in any organism, that the nuclease activity of Rad32Mre11 is
required for Rec12Spo11 removal. Second, we demonstrate that Ctp1CtIP is required for Rec12Spo11 removal, confirming functional conservation between the distantly related S. pombe Ctp1CtIP and S. cerevisiae Sae2 proteins. Finally, we show that S. pombe rad50S has a defect in removing Rec12Spo11, but is proficient for meiotic recombination (measured in surviving spores), chromatin remodelling at the ade6-M26 recombination hot spot, and LE formation, whereas all of these functions are defective in rad50A.
Materials and methods

Yeast strains and techniques

For strain construction and propagation standard genetic methods and media were used (11). Strains used and constructed in this study are listed in Table 1.

Previously published procedures

Measurement of meiotic spore viability and recombination (11), synchronisation of meiotic cultures (4, 7), pulsed field gel analysis (7), preparation of chromosome spreads and electron microscopy (4) and analysis of meiotic nucleosome remodelling at ade6-M26 (23) were described previously.

DNA-linked protein detection assay

We developed this assay based on previously published procedures (17, 34). Pre-meiotic or meiotic cells (25 ml) were washed in 1 ml lysis buffer (8 M Guanidine HCl; 30 mM Tris, 10 mM EDTA, 1 % Sarcosyl, pH 7.5), resuspended in 750 µl lysis buffer and lysed using glass beads (± 0.8 g). The cell extract was incubated at 70 °C for 15 minutes: these strongly denaturing conditions remove non-covalently bound proteins from the DNA. After clarification (15' 13.000 RPM in an eppendorf centrifuge), one aliquot of extract was set aside for DNA quantification (see below) while the rest was loaded on a CsCl gradient, consisting of 1 ml layers with densities of 1.82, 1.72, 1.50 and 1.45 g/ml respectively. The gradients where centrifuged for 24 hours at 30.000 RPM in a Sorvall AH650 rotor to separate the free proteins from the DNA.
To ensure equal DNA loading, the DNA concentration in the extract was measured and this value was used to adjust the volume of the fractions loaded on the slot blot. For this purpose, the aliquots of extract which were set aside for DNA quantification were treated overnight with RNase (0.5 µg/ml) and the DNA concentration was determined fluorimetrically using PicoGreen (Molecular Probes/Invitrogen detection technologies). After centrifugation, the gradients were fractionated into 0.5 ml fractions and adjusted amounts were loaded onto a slot blot.

To detect the presence of covalently bound HA-tagged Rec12Spo11 in the DNA fractions the membrane was probed with a monoclonal antibody (Santa Cruz sc-7392). The membrane was processed using standard Western blot procedures and visualised using chemiluminescence. Using this procedure, control cultures of untagged strains only showed slight cross hybridisation with the top 2 fractions (9 and 10) from the CsCl gradient, which contain the free proteins. These fractions do not contain any DNA, are difficult to load on a slot blot as they tend to clog the membrane, and are therefore not loaded for most experiments. Slot blots of pre-meiotic cells showed no Rec12Spo11 signal in any of the DNA containing fractions (data not shown).
Results

S. pombe rad50S is temperature sensitive for meiotic spore viability and DSB repair and deficient for Rec12^{Spo11} removal

We have previously created a rad50S mutant (*rad50-K81I*) which has been instrumental in the study of meiotic DSB formation in *S. pombe* (42). As previously reported (10), we find that *rad50S* is temperature sensitive for meiotic spore viability (Fig. 1a). At 34 °C the spore viability is 0.6 % (similar to that of *rad50Δ*). At 25 °C it is 14.6 %. As has been previously shown for *rad50Δ* (41), the low spore viability of *rad50S* at 34 °C is rescued by deletion of *rec12^{Spo11}*, suggesting that the reduced viability is due to a DSB repair defect in this mutant. To test if the temperature sensitive spore viability phenotype of *rad50S* indeed reflects a defect in DSB repair, we looked at meiotic DSB formation and repair in a meiotic time course of *rad50S* at permissive and restrictive temperature using Pulsed Field Gel Electrophoresis (PFGE; Fig 1b). We found that at 34 °C the intact chromosomes are transformed into broken DNA fragments that remain unrepaired. At 25 °C most DNA gets transformed into broken fragments, but a significant fraction of chromosomal DNA is intact near the end of the timecourse. After approximately 8 hours the intensity of the intact chromosomal DNA bands starts to diminish. At this time, the majority of the cells have sporulated (see Fig. 1c); spore wall formation makes the spores resistant to lysis preventing the DNA to enter the gel. We conclude that the *rad50S* mutant is deficient for meiotic DSB repair at 34 °C, but partially proficient at 25 °C.

We next asked if the low spore viability and inability to repair meiotic DSBs in *rad50Δ* and *rad50s* was due to a defect in removing covalently bound Rec12^{Spo11} from the
DSB ends. Based on previously published procedures (17, 34), we developed an assay (the DNA-linked protein detection or DLPD assay) to detect the presence of covalently bound Rec12\(^{\text{Spo11}}\) on the DNA (see Materials and Methods). As shown in Fig. 1d, both rad50\(^{\Delta}\) and rad50\(^{S}\) show a strong presence of covalently bound Rec12\(^{\text{Spo11}}\) 6 hours after the initiation of meiosis, whereas in WT cells Rec12\(^{\text{Spo11}}\) has been removed from the DNA. We consistently find higher covalently bound Rec12 levels in rad50\(^{S}\) compared to rad50\(^{\Delta}\), please see discussion for possible explanations. We conclude from these experiments that rad50\(^{S}\) is a temperature sensitive mutation which, like rad50\(^{\Delta}\), is defective in Rec12\(^{\text{Spo11}}\) removal, leading to the inability to repair meiotic DSBs and a strong reduction in spore viability at restrictive temperature.

rad50\(^{S}\) is a separation of function mutant which is proficient for meiotic recombination functions independent of Rec12\(^{\text{Spo11}}\) removal.

To find out if rad50\(^{S}\) is only deficient for Rec12\(^{\text{Spo11}}\) removal, or also for other recombination-related functions which are defective in rad50\(^{\Delta}\), we compared different meiotic phenotypes between rad50\(^{\Delta}\) and rad50\(^{S}\).

The repair of meiotic DSBs results in genetically detectable recombination when the homologous chromosome is used as a repair template, while recombination with the sister chromatid is usually silent. We determined meiotic recombinaton levels (in surviving spores) in 3 genetic intervals in rad50\(^{\Delta}\) and rad50\(^{S}\) mutants at both 25 °C and 34 °C. As shown in Fig. 2A, meiotic intergenic recombination levels in rad50\(^{\Delta}\) are strongly reduced in all intervals tested at both 25 °C and 34 °C (a 28 fold reduction on
average). Surprisingly, recombination levels in rad50S are similar to those of WT cells at both temperatures (1.0 fold on average).

The *S. pombe* ade6-M26 mutation creates a hotspot for meiotic recombination. This hotspot activity has been associated with the creation of a meiosis-specific micrococcal nuclease (MNase) hypersensitive site through chromatin remodelling (23). To see if this meiosis-specific MNase sensitivity is affected in MRN mutants, we performed an MNase assay on a synchronised meiotic time course. As shown in Fig. 2B, meiosis-specific chromatin remodelling at ade6-M26 (see black arrow in WT at 3 hrs) is defective both in *rad50Δ* and *rad32mre11Δ*, whereas remodelling is proficient in *rad50S*.

S. pombe LEs are similar to the axial elements of the synaptonemal complex in other eukaryotes, and are believed to play a role in meiotic chromosome organisation and recombination (4). To assess the role of the MRN complex in LE formation, we looked at LEs in meiotic spread preparations of *rad50Δ* and *rad50S* mutants (Fig 3). We found that LEs in *pat1-114* meiosis (used for its high degree of synchrony and relative stability of *rad50Δ* diploids, see discussion; Fig 1a) are shorter and lack the networks, bundles and long elements normally found in *pat1*+ meiosis (4). We therefore classified *pat1-114* LEs as 1a (short LEs) and 1b (longer LEs). LEs in *rad50S* are slightly longer and more abundant than in WT (as signified by the increase of class 1b in this mutant compared to WT; Fig 3b), but are totally absent in *rad50Δ*. We quantified the position of the spindle pole body (SPB) relative to the nucleolus (which is associated with the rDNA near both ends of chromosome 3) in *rad50Δ* cells to confirm that these cells went into meiosis. In mitotic cells the SPB is found next to the centromeres, but upon induction of meiosis the
centromeres and telomeres switch position, and the telomeres associate with the SPB (9).

As shown in the bottom left panel of Fig. 3b, the majority of the rad50Δ cells showed a meiotic SPB configuration, confirming that these cells underwent meiosis.

We conclude from this set of experiments that rad50S is a separation of function mutant which is only deficient for Rec12Spo11 removal, but proficient for other Rad50-dependent functions related to meiotic DSB repair.

The Rad32Mre11 nuclease activity is required for Rec12Spo11 removal

Although various observations suggest that the nuclease activity of Mre11 is responsible for Spo11 removal in S. cerevisiae, these experiments could not distinguish between a role for Mre11 in Spo11 removal, or the subsequent exonucleolytic resection, and an involvement of the Mre11 nuclease activity in Spo11 removal has not been confirmed experimentally (19). The possibility that a nuclease other than Mre11 could be responsible for Spo11 removal is illustrated by the observation in S. pombe that the nuclease activity that degrades the C-rich strand at the telomeres (to create a 3' G-rich strand overhang) is dependent on, but not provided by the MRN complex, and that a second ssDNA specific endonuclease, Dna2 (3), is recruited by MRN and provides the nuclease activity (38, 37).

To distinguish between the possibilities that Rec12Spo11 is removed by Rad32Mre11, or by another nuclease recruited and/or controlled by MRN, we created a rad32mre11-D65N nuclease dead mutant. This mutant is the equivalent of the well characterised S. cerevisiae mre11-D56N mutant, which has been shown to be deficient for nuclease
activity and proficient for MRN complex formation (18). Also in \textit{S. pombe}, the \textit{rad32}^{mre11-D65N} mutant is proficient for MRN complex formation (Nick Rhind, personal communication).

We first studied meiotic spore viability of \textit{rad32}^{mre11-D65N} in combination with \textit{rad50}\textDelta{} and \textit{rad50S} mutants (Fig. 4a). The spore viability of \textit{rad32}^{mre11-D65N} and \textit{rad32}^{mre11-D65N} \textit{rad50S} is strongly reduced compared to \textit{rad50}\textDelta{}, whereas in \textit{rad32}^{mre11-D65N} \textit{rad50}\textDelta{} spore viability is rescued approximately to \textit{rad50}\textDelta{} levels. We believe that these observations might reflect MRN complex stability in \textit{rad50S} and \textit{rad32}^{mre11-D65N} mutants, versus instability in \textit{rad50}\textDelta{}. An intact but nuclease deficient complex might block access of DSB ends to (as yet unknown) alternative removal activities, further decreasing spore viability. The double mutants with \textit{rad50S} (and \textit{rad50}\textDelta{}) do not show a lower spore viability than the single \textit{rad32}^{mre11-D65N} mutant, suggesting that they are all defective in the same Rec12Spo11 removal pathway.

The extremely low spore viability of \textit{rad32-D65N} precluded a reliable measurement of meiotic recombination. Among 280 survivors, not a single recombinant was detected. However, prolonged snail enzyme digestion (which is used to kill vegetative cells) further reduced the number of survivors (unpublished observation), and it is therefore likely that these survivors do not result from meiotic spores but represent a small fraction of vegetative cells that resist snail enzyme treatment.

Using the DLPD assay to detect covalently bound Rec12Spo11 (Fig. 4b), we found that \textit{rad32}^{mre11-D65N} is indeed defective in Rec12Spo11 removal, to a degree similar to that of \textit{rad50S}. As in the spore viability assay, the defect is less pronounced in \textit{rad50}\textDelta{} and
rad32mre11-D65N rad50\Delta, whereas the defect in rad32mre11-D65N rad50S is comparable to that of rad32mre11-D65N and rad50S. Taken together, these data show that the Rad32Mre11 endonuclease activity is required for Rec12Spo11 removal in meiosis.

Ctp1 is required for Rec12Spo11 removal

Sae2 shows only weak homology to Ctp1CtIP (21). S. cerevisiae sae2 mutants exhibit a rad50S-like phenotype and are deficient for Spo11 removal (32, 28). Like rad50S, sae2\Delta is only mildly MMS sensitive (21). In contrast, the sensitivity of S. pombe ctp1\Delta to ionising radiation (21) and MMS (13) is identical to that of MRN null mutants, and much higher than rad50S (13). Using PFGE, it has previously been shown that ctp1\Delta is deficient for meiotic DSB repair (1). To test functional conservation between Sae2 and Ctp1CtIP, we analysed ctp1\Delta for its ability to remove covalently bound Rec12Spo11 from the DNA. As shown in Fig 5a, ctp1\Delta is as defective in Rec12Spo11 removal as rad32mre11-D65N, suggesting a functionally conserved role for Ctp1/Sae2 homologues in Spo11 removal. Whereas covalently bound Rec12 levels are similar in ctp1\Delta and a ctp1\Delta rad32-D65N double mutant, these levels are comparatively lower in rad50\Delta and a ctp1\Delta rad50\Delta double mutant.

As shown in Fig. 5b, meiotic spore viability in ctp1\Delta is reduced below rad50\Delta levels, similar to that of rad32-D65N. The spore viability is rescued to rad50\Delta levels in a ctp1\Delta rad50\Delta double mutant, but not in a ctp1\Delta rad32-D65N double mutant, possibly reflecting that the MRN complex remains intact in ctp1\Delta. As explained above for rad32-D65N, the extremely low spore viability in ctp1\Delta precludes a reliable measurement of
meiotic recombination.

We also studied meiosis specific chromatin remodelling, and found that in *ctp1Δ* the *ade6-M26* MNase hypersensitive site is present in meiosis (Fig. 5c) and thus that Ctp1 is not required for this chromatin remodelling event.
Discussion

The Rad32Mre11 nuclease activity and Ctp1 are required for Rec12Spo11 removal

Several studies have suggested that the Mre11 nuclease activity might be responsible for Spo11 removal. Moreau et al. (27) found that a \textit{S. cerevisiae} \textit{mre11} nuclease dead mutant was deficient in meiotic DSB end resection and proposed that Mre11 is responsible for removing Spo11. However, this study could not distinguish between a role of Mre11 in (endo)nuclease Spo11 removal versus a role in (exo)nucleolytic resection downstream of Spo11 removal. Similarly, the presence of the Spo11 removal product (Spo11 with a covalently attached nucleotide) has not been studied in a \textit{mre11} nuclease dead mutant (28). In this study, we thus provide the first direct demonstration that the Rad32Mre11 nuclease activity is indeed required for Rec12Spo11 removal in meiosis.

We have shown that \textit{rad50Δ}, \textit{rad50S}, \textit{rad32}mre11-D65N and \textit{ctp1Δ} are defective in removing Rec12Spo11 from the DNA. We consistently see higher levels of covalently bound Rec12Spo11 in \textit{rad50S}, \textit{rad32}mre11-D65N and \textit{ctp1Δ} compared to \textit{rad50Δ} (e.g. see Fig. 1d, 4b and 5a). This might be (partially) due to a reduced viability of \textit{rad50Δ} (approximately 25 % of \textit{rad50Δ} cells are dead; 12). However, this reduced viability is unlikely to account fully for the 3 fold reduction in meiotic DSB formation in \textit{rad50Δ} (41). Also, levels of covalently bound Rec12Spo11 in \textit{ctp1Δ} are higher than in \textit{rad50Δ} and only very slightly reduced compared to \textit{rad50S} and \textit{rad32}mre11-D65N, while the growth defect in \textit{ctp1Δ} is comparable to that of MRN null mutants (21, 1). These observations suggest that Rad50 is required for WT levels of meiotic DSBs. In \textit{S. cerevisiae}, \textit{RAD50} is absolutely required for meiotic DSB formation (6, 16).
The almost identical Rec12Spo11 removal defects of \textit{rad50S} and \textit{rad32Mre11-D65N} suggests that Rad50 somehow controls the Rad32Mre11 nuclease activity. Based on structural studies, it has previously been proposed that ATP driven directional switching of Rad50 controls the Mre11 nuclease activity (14). Interestingly, the \textit{rad50S} mutation is found in a putative protein interaction site, and, based on structural studies, it has previously been proposed that this site might interact with Sae2 (15). A recent study (33) showed that CtIP interacts directly with the MRN complex. As the Rec12Spo11 removal defect in \textit{ctp1Δ} is also similar to that of \textit{rad32Mre11-D65N}, this opens up the possibility that CtIP/Sae2 controls the Mre11 nuclease activity through its interaction with Rad50.

The most straightforward interpretation of our data is that the Rad32Mre11 nuclease is directly responsible for Rec12Spo11 removal. However, a recent study (20) showed that purified \textit{S. cerevisiae} Sae2 possesses a nuclease activity which cleaves hairpin DNA structures \textit{in vitro}, cooperatively with the MRN complex (called MRX in \textit{S. cerevisiae}). Purified MRX promotes cleavage by enlarging a single strand gap in the DNA opposite of the Sae2 cleavage site. This raises the possibility that coordinated action of Mre11 and Sae2 nuclease activities might be required, and that Sae2 is ultimately responsible for Spo11 removal.

\textbf{MRN null mutants are defective for meiosis-specific chromatin remodelling, LE formation and recombination}

We find that meiotic recombination in \textit{rad50Δ} is reduced approximately 28 fold, in line
with the previously reported reduction in meiotic recombination in \(\text{rad32}^{\text{mre11A}} \) (36). This reduction might be partially due to reduced DSB formation in this mutant (see previous section). We showed that in \(\text{rad50A} \) and \(\text{rad32A} \) mutants \(\text{ade6-M26} \) chromatin remodelling is almost completely abolished. In contrast, in \(\text{S. cerevisiae} \) only Mre11 is required for meiosis-specific chromatin remodelling at meiotic recombination hotspots, whereas Rad50 is dispensable for this process (29). The role of meiosis-specific chromatin remodelling, and the role of MRN therein, is not well understood, but it is probably involved in meiotic DSB formation and/or subsequent recombinational repair. \(\text{S. cerevisiae} \) Mre11 has also been implicated in chromatin remodelling during mitotic DSB repair (39).

We found that LE formation is totally abolished in \(\text{rad50A} \). A potential caveat is that these experiments were performed in a \(\text{pat1-114} \) mutant, which shows shortened LEs, while networks, bundles and longer LEs (as found in \(\text{pat1}^+; \) 4) are absent. Because of the extreme instability of \(h^+/h^- \text{rad50A/rad50A} \) diploids (12) we were not able to perform these experiments in \(\text{pat1}^+ \) meiosis. In a \(\text{S. cerevisiae rad50A} \) mutant, shortened axial cores are formed, but they never form a tripartite SC structure (2). Most recombination defective mutants studied so far do form (often aberrant) LEs (24, 25, 26). Another mutant in which LE formation is abolished is \(\text{rec10A} \) (26), and it was later shown that Rec10 is an LE component (22). Our observations raise the possibility that Rad50 fulfils a structural role or might regulate an early step in LE formation.
Rec12^{Spo11} removal is not required for meiosis-specific chromatin remodelling, LE formation and recombination

Whereas rad50S is defective in Rec12^{Spo11} removal, we found that it is proficient for meiotic recombination, meiosis-specific chromatin remodelling and LE formation, functions which are all defective in rad50Δ.

Meiotic recombination levels and levels of MNase sensitivity at ade6-M26 are very similar in rad50S compared to WT. However, we found that LEs in rad50S are elongated compared to WT. We speculate that this might be related to the prolonged presence of meiotic DSBs in rad50S, maybe allowing more time for the LEs to mature. In S. cerevisiae rad50S, like in rad50Δ, no fully formed synaptonemal complex is found. However, axial cores in rad50S are longer than in rad50Δ, and sometimes short stretches of tripartite structure are formed (2).

Fig. 6 shows a diagram which explains our interpretation of the relation between Rec12^{Spo11} removal, meiotic spore viability and meiotic recombination in rad50Δ and rad50S. Both rad50Δ and rad50S (at restrictive temperature) are deficient for the removal of covalently bound Rec12^{Spo11} after meiotic DSB formation, leading to low spore viability. However, the presence of viable spores in these mutants suggests that a small fraction of cells is able to remove Rec12^{Spo11} (through an as yet unknown alternative mechanism), allowing repair of the DSB and viable spore formation. In rad50Δ these survivors show a strong reduction in recombination rates, suggesting that they survive through a non-recombinogenic survival mechanism (possibly non homologous end joining or recombinational repair using the sister chromatid as a template). The rad50S
cells are proficient for meiotic recombination (once \(\text{Rec12}^{\text{Spo11}}\) has been removed) and the surviving spores therefore show normal meiotic recombination levels.

Conclusions and outlook

Although it has been predicted that the *S. cerevisiae* Mre11 nuclease activity is responsible for Spo11 removal, this has not been confirmed experimentally. This study demonstrates for the first time that the Rad32\(^{\text{Mre11}}\) nuclease activity is required for \(\text{Rec12}^{\text{Spo11}}\) removal. The \(\text{Rec12}^{\text{Spo11}}\) removal defect in \(\text{ctp1}^{\Delta}\) suggests functional conservation between the distantly related Sae2 and Ctp1\(^{\text{CtIP}}\) proteins. We also confirmed that *S. pombe rad50S* is defective in \(\text{Rec12}^{\text{Spo11}}\) removal. Our finding that the temperature sensitive \(\text{rad50S}\) mutant is proficient for meiotic recombination, meiosis-specific chromatin remodelling and LE formation, functions which are all defective in \(\text{rad50}^{\Delta}\), suggests that involvement of MRN in these functions is independent of \(\text{Rec12}^{\text{Spo11}}\) removal.

Conservation of the involvement of the MRN complex and Ctp1\(^{\text{CtIP}}\) in \(\text{Rec12}^{\text{Spo11}}\) removal, SC/LE formation and meiosis-specific chromatin remodelling in the distantly related yeasts *S. cerevisiae* and *S. pombe* suggests that these MRN functions might be conserved throughout the eukaryotic kingdom. The analysis of MRN and CtIP functions in meiosis of higher eukaryotes has been hampered by inviability of its mutants. Whereas a mouse Rad50\(^{R83I}\) mutant (equivalent to the \(\text{rad50-K81I}\) allele used in this study) is inviable, Rad50\(^{K22M}\) (equivalent to the less well characterised *S. cerevisiae* R20M \(\text{rad50S}\) mutant; 2) is viable but shows only mild meiotic phenotypes (5). These observations...
might reflect either that the similar, but not identical, amino acid change (K22M in mouse versus R20M in *S. cerevisiae*) might not confer a Spo11 removal defect, or that the MRN complex is not involved in Spo11 removal in mice. Another study (8) suggests that the mouse MRN complex is involved in meiotic prophase progression, chromosome synapsis and recombination.

The findings presented in this study have important implications for our understanding of the role of the MRN complex and Ctp1CtIP in meiotic recombination, defects of which lead to chromosome non-disjunction, infertility and chromosomal abnormalities.
Acknowledgements

We would like to thank Gerry Smith for discussions and sharing reagents, and Eva Hoffmann and Alan Lehmann for comments on the manuscript. This work was funded by the MRC (AMC) and a CRUK grant to EH (CRUK C20600/A6620).

Table 1. *S. pombe* strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>h- snt0 leu1-32 ura4-D18</td>
</tr>
<tr>
<td>251</td>
<td>h+ ura4-D18 leu1-32</td>
</tr>
<tr>
<td>260</td>
<td>h- snt0 rad50::kanMX6 leu1-32 ura4-D18</td>
</tr>
<tr>
<td>284</td>
<td>h+ rad50::kanMX6 leu1-32 ura4-D18</td>
</tr>
<tr>
<td>258</td>
<td>h+ rad50-K81I leu1-32 ura4-D18</td>
</tr>
<tr>
<td>259</td>
<td>h- snt0 rad50-K81I leu1-32 ura4-D18</td>
</tr>
<tr>
<td>263</td>
<td>h+ rec12-152::LEU2 leu1-32 ura4-D18</td>
</tr>
<tr>
<td>264</td>
<td>h- snt0 rec12-152::LEU2 leu1-32 ura4-D18</td>
</tr>
<tr>
<td>261</td>
<td>h+ rad50::kanMX6 leu1-32 ura4-D18 rec12-152::LEU2</td>
</tr>
<tr>
<td>262</td>
<td>h- snt0 rad50::kanMX6 leu1-32 ura4-D18 rec12-152::LEU2</td>
</tr>
<tr>
<td>266</td>
<td>h+ leu1-32 ura4-D18 rec12-152::LEU2 rad50-K81I</td>
</tr>
<tr>
<td>267</td>
<td>h- snt0 leu1-32 ura4-D18 rec12-152::LEU2 rad50-K81I</td>
</tr>
<tr>
<td>805</td>
<td>h- snt0 ura4-D18 rad32-D65N</td>
</tr>
<tr>
<td>814</td>
<td>h+ rad32-D65N ura4-D18</td>
</tr>
<tr>
<td>810</td>
<td>h- snt0 ura4-D18 rad32-D65N rad50::kan</td>
</tr>
<tr>
<td>811</td>
<td>h+ ura4-D18 rad32-D65N rad50::kan</td>
</tr>
<tr>
<td>812</td>
<td>h- snt0 ura4-D18 rad32-D65N rad50S</td>
</tr>
<tr>
<td>813</td>
<td>h+ ura4-D18 rad32-D65N rad50S</td>
</tr>
<tr>
<td>352/354</td>
<td>h/h+ ade6-M216/ade6-M210 ura4-aim/ura4-aim ura4-D18/ura4-D18 rad50-K81I/rad50-K81I</td>
</tr>
<tr>
<td>611</td>
<td>h- snt0 ade6-M26 pat1-114 rec12-6HA:kanMX6</td>
</tr>
<tr>
<td>617</td>
<td>h- snt0 pat1-114 ade6-M26 rec12-6HA:kanMX6 rad50-K81I</td>
</tr>
<tr>
<td>649</td>
<td>h- snt0 ade6-M26 rec12-6HA:kanMX6 rad50::kanMX6 pat1-114</td>
</tr>
<tr>
<td>418</td>
<td>h+ mat1PD17::LEU2 leu1-32 arg6-1</td>
</tr>
<tr>
<td>417</td>
<td>h- snt0 ade6-7-152</td>
</tr>
<tr>
<td>411</td>
<td>h+ mat1PD17::LEU2 leu1-32 rad50-K81I arg6-1</td>
</tr>
<tr>
<td>412</td>
<td>h- snt0 ade6-7-152 rad50-K81I</td>
</tr>
<tr>
<td>407</td>
<td>h+ mat1P::LEU2 leu1-32 rad50::kanMX6 arg6-1</td>
</tr>
<tr>
<td>408</td>
<td>h- snt0 rad50::kanMX6 ade7-152</td>
</tr>
<tr>
<td>421</td>
<td>h- snt0 lys7-1 leu1-32</td>
</tr>
<tr>
<td>422</td>
<td>h+ mat1PD17::LEU2 leu1-32 ade2-17 ura2-10</td>
</tr>
<tr>
<td>405</td>
<td>h- snt0 lys7-1 leu1-32 rad50::kanMX6</td>
</tr>
<tr>
<td>406</td>
<td>h+ mat1PD17::LEU2 ade2-17 ura2-10 leu1-32 rad50::kanMX6</td>
</tr>
<tr>
<td>415</td>
<td>h- snt0 rad50-K81I lys7-1 leu1-32</td>
</tr>
<tr>
<td>416</td>
<td>h+ mat1PD17::LEU2 rad50-K81I leu1-32 ade2-17 ura2-10</td>
</tr>
<tr>
<td>157</td>
<td>h- snt0 ade6-M26 pat1-114</td>
</tr>
<tr>
<td>157</td>
<td>h+ ade6-M26 pat1-114 leu1-32</td>
</tr>
<tr>
<td>157</td>
<td>h- ade6-M26 rad50::kanMX6 pat1-114 leu1-32</td>
</tr>
<tr>
<td>157</td>
<td>h+ ade6-M26 rad50::kanMX6 pat1-114 leu1-32</td>
</tr>
<tr>
<td>157</td>
<td>h+ ade6-M26 rad50::kanMX6 pat1-114 leu1-32</td>
</tr>
<tr>
<td>207/209</td>
<td>h- snt0 snt0 pat1-114/pat1-114 ade6-M210/ad6-M216 ura4-aim/ura4-aim ura4-D18/ura4-D18</td>
</tr>
<tr>
<td>203/205</td>
<td>h- snt0 snt0 pat1-114/pat1-114 ade6-M210/ad6-M216 ura4-aim/ura4-aim ura4-D18/ura4-D18</td>
</tr>
</tbody>
</table>

*Numbers are from the strain collection of EH. † *rec12-6HA-kanMX* was created in the lab of Dr. Ohta. Other unpublished strains/constructs for this study were created by EH.
Figure Legends

Figure 1
The *rad50S* mutation is temperature sensitive for meiotic spore viability and defective for meiotic DSB repair and Rec12Spo11 removal. a) Meiotic spore viability relative to WT in different strains at 25 ºC and 34 ºC. Error bars show standard deviation, values are the average of 3 independent experiments. b) Pulsed Field Gel Electrophoresis of a synchronised meiotic *pat1+ rad50S* culture at 25 ºC and 34 ºC. The bands labelled “I/II/III” correspond to the intact chromosomes, the smears labelled “DSB” correspond to broken DNA fragments. c) Meiotic progression of the timecourse presented in Fig. 1b is expressed as the number of cells that have completed meiosis I at different time points. d) Slot blot showing the presence of covalently bound Rec12Spo11 on the DNA 6 hours after meiotic induction at 34 ºC. At time point 0 no Rec12Spo11 signals are visible (data not shown). The arrow indicates where the top and bottom fractions of the CsCl gradient have been loaded. The bulk of the DNA is found in fractions 5, 6 and 7, which show the strongest Rec12Spo11 signal in *rad50* mutants.

Figure 2
The *rad50S* mutant is proficient for meiotic recombination and meiosis-specific nucleosome remodelling, both functions are defective in *rad50Δ*. a) Meiotic intergenic recombination levels (in surviving spores) in *rad50Δ* are strongly reduced in different genetic intervals at both 25 ºC and 34 ºC. However, *rad50S* is proficient for
recombination at both temperatures. b) Meiosis-specific nucleosome remodeling at ade6-M26 (see black arrow in WT at 3 hrs) is defective at 34 °C in rad50Δ (and rad32Δα, rad32Δβmre11Δ), whereas rad50S is proficient.

Figure 3

The rad50S mutation is proficient for linear element formation, whereas linear elements are absent in rad50Δ. a) Electron micrographs of lysed and spread meiotic nuclei. Linear elements in pat1-114 meiosis (used for its high degree of synchrony) are shorter than in WT (pat1+; 4) whereas networks and bundles are not detected. Linear elements in pat1-114 meiosis were classified as 1a (short linear elements) and 1b (longer linear elements). Linear elements in rad50S are slightly longer and more abundant than in WT. Linear elements are absent in rad50Δ. Bottom two panels (rad50Δ) illustrate typical spindle pole body (SPB) orientation in mitotic (opposite of nucleolus; NLL) and meiotic cells (next to nucleolus). This allows the distinction between mitotic and meiotic cells and confirms that rad50Δ is undergoing meiosis in the absence of linear elements. b) Left top and middle panels: Quantification of the linear element classes 1a and 1b at different time points. Class 1b is more abundant in rad50S compared to WT. Bottom panel, left: Quantification of rad50Δ cells (without linear elements) containing a spindle pole body configuration indicative of meiosis. At later time points cells start to form ascus and spore walls, making the cells resistant to lysis which leads to an artifactual under-representation of meiotic cells. Right panels: Quantification of DAPI visualised elongated (horse tail) nuclei indicative of meiotic prophase. The percentage of cells with more than
one nucleus indicates progression through the first and second meiotic divisions. All quantifications are based on at least 100 cells per timepoint.

Figure 4

The rad32^{mre11}-D65N mutation is defective for Rec12^{Spo11} removal. a) Analysis of spore viability epistasis between rad50Δ/rad50S and rad32^{mre11}-D65N. Note that the graph only shows the lower range (lower than 0.15%) of the spore viability. Error bars show standard deviation, values are the average of three independent experiments. b) Analysis of Rec12^{Spo11} removal in rad50Δ/rad50S and rad32^{mre11}-D65N at 34 °C. Levels of covalently bound Rec12^{Spo11} are increased in rad32^{mre11}-D65N mutant strains. The arrow indicates where the top and bottom fractions of the CsCl gradient have been loaded. The bulk of the DNA is found in fractions 5, 6 and 7, which show the strongest Rec12^{Spo11} signal in rad50 mutants.

Figure 5

a) A ctp1 deletion is deficient in removing Rec12^{Spo11} from the DNA in meiotic cells. The defect is comparable to that of rad50S and rad32^{mre11}-D65N strains. b) Meiotic spore viability is strongly reduced in ctp1Δ, similar to that of rad32-D65N. c) ctp1Δ is proficient for ade6-M26 chromatin remodelling (see black arrow).

Figure 6

Interpretation of the observed meiotic phenotypes in rad50Δ and rad50S. Both rad50Δ
and rad50S (at restrictive temperature) are deficient for the removal of covalently bound Rec12\(^{\text{Spo11}}\) after meiotic DSB formation, leading to low spore viability. However, a small fraction of cells is able to remove Rec12\(^{\text{Spo11}}\) (through an unknown mechanism), allowing repair of the DSB and viable spore formation. In the rad50Δ mutant these survivors show a strong reduction in recombination rates, suggesting that they survive through a non-recombinogenic survival mechanism. The rad50S cells are proficient for meiotic recombination (once Rec12\(^{\text{Spo11}}\) has been removed) and the surviving spores therefore show normal meiotic recombination levels.
Figure 1: Hartsuiker et al.

(a) Relative meiotic spore viability (%) at 25 °C and 34 °C. The graph shows the meiotic spore viability for different genotypes: WT, rad50Δ, rec12Δ, rad50SΔ, and rad50SΔrec12Δ. The error bars indicate the standard deviation.

(b) Gel electrophoresis showing DSB (double-strand breaks) at 25 °C and 34 °C. The gel is divided into three panels: I, II, and III, with DSB bands indicated.

(c) Meiotic progression graph showing the percentage of cells with ≥2 nuclei over time for rad50SΔ at 25 °C and 34 °C.

(d) Meiosis, 6 hrs gel showing WT, rad50Δ, and rad50SΔ at the top and bottom of the gel. The gel bands indicate the progression of meiosis in different genotypes.
Figure 2 Hartsuiker et al.

(a)

Recombination frequency (%)

<table>
<thead>
<tr>
<th>Gene Pair</th>
<th>25 °C</th>
<th>34 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ade7-arg6</td>
<td>WT rad50Δ rad50S</td>
<td>WT rad50Δ rad50S</td>
</tr>
<tr>
<td></td>
<td>WT rad50S</td>
<td>WT rad50S</td>
</tr>
<tr>
<td>ura2-lys7</td>
<td>WT rad50Δ rad50S</td>
<td>WT rad50Δ rad50S</td>
</tr>
<tr>
<td></td>
<td>WT rad50S</td>
<td>WT rad50S</td>
</tr>
<tr>
<td>lys7-ade2</td>
<td>WT rad50Δ rad50S</td>
<td>WT rad50Δ rad50S</td>
</tr>
<tr>
<td></td>
<td>WT rad50S</td>
<td>WT rad50S</td>
</tr>
</tbody>
</table>

(b)

hrs after meiotic induction 0 3

WT rad50Δ rad50S rad32Δ

M26 ade6 ORF
Figure 3 Hartsuiker et al.

(a) WT

Class Ia

Class Ib

rad50S

Class Ia

Class Ib

rad50Δ

Mitotic

Meiotic

(b) Linear element formation pat1-114

Meiotic progression pat1-114

Class Ia

Class Ib

>1 nucleus

>1 nucleus and elongated

Linear element formation pat1-114 rad50S

Meiotic progression pat1-114 rad50S

Class Ia

Class Ib

>1 nucleus

>1 nucleus and elongated

Meiotic SPB configuration pat1-114 rad50Δ

Meiotic progression pat1-114 rad50Δ

Class Ia

Class Ib

>1 nucleus

>1 nucleus and elongated
<table>
<thead>
<tr>
<th></th>
<th>25 ºC</th>
<th>34 ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rad50Δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rad50S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rad32-D65N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rad32-D65N rad50Δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rad32-D65N rad50S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 Hartsuiker et al.

(a) Bar chart showing relative meiotic spore viability (%).

(b) Gel electrophoresis result indicating meiosis, 6 hrs.
Figure 5 Hartsuiker et al.

(a) electrophoresis bands for meiosis, 6 hrs

(b) graph showing relative meiotic spore viability (%)

(c) gel image with markers for Mitotic control, WT, ctp1Δ

Markers and bands for ade6 ORF

M26
Small fraction of survivors
Non recombinant

rad50Δ, rad50S

Small fraction of Rec12 removed by alternative mechanism

Rec12

recombination deficient
rad50Δ

rad50S
recombination proficient

Small fraction of survivors
Recombinant

Figure 6, Hartsuiker et al.