The impact of heterochromatin on DSB repair

Goodarzi, Aaron A, Noon, Angela T and Jeggo, Penny A (2009) The impact of heterochromatin on DSB repair. Biochemical Society Transactions, 37 (3). pp. 569-576. ISSN 0300-5127

[img]
Preview
PDF
Download (608kB) | Preview

Abstract

DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, ∼15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3–9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson–Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, γ-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient chromatin relaxation, but precludes significant dismantling of the heterochromatic superstructure.

Item Type: Article
Keywords: Ataxia telangiectasia; Chromatin structure; Damage-response signalling; Double-strand break repair; Heterochromatin; Radiosensitivity
Schools and Departments: School of Life Sciences > Sussex Centre for Genome Damage and Stability
Subjects: Q Science > QH Natural history > QH0301 Biology > QH0426 Genetics
Depositing User: Gee Wheatley
Date Deposited: 21 Dec 2009
Last Modified: 07 Mar 2017 04:02
URI: http://sro.sussex.ac.uk/id/eprint/2265

View download statistics for this item

📧 Request an update