Effects of Free-stream Turbulence on a Transitional Separated-reattached Flow over a Flat Plate with a Sharp Leading Edge

Yang, Zhiyin and Abdalla, Ibrahim E (2009) Effects of Free-stream Turbulence on a Transitional Separated-reattached Flow over a Flat Plate with a Sharp Leading Edge. International Journal of Heat and Fluid Flow, 30 (5). pp. 1026-1035. ISSN 0142-727X

[img] PDF
Restricted to SRO admin only

Download (2MB)

Abstract

The transitional separatedreattached flow on a flat plate with a blunt leading edge under 2% free-stream turbulence (FST) is numerically simulated using the Large-eddy simulation (LES) approach. The Reynolds number based on the free-stream velocity and the plate thickness is 6500. A dynamic subgrid-scale model is employed and the LES results compare well with the available experimental data. It is well known that FST enhances shear-layer entrainment rates, reduces the mean reattachment distance, and causes early transition to turbulence leading to an early breakdown of the separated boundary layer. Many experimental studies have shown that different vortex shedding frequencies exist, specially the so called low-frequency flapping when there is a separation bubble but its mechanism is still not completely understood. The previous study by us without free-stream turbulence (NFST) did not show the existence of such a low-frequency flapping of the shear layer and it is not clear what the effects of FST will have on these shedding modes. Detailed analysis of the LES data has been presented in the present paper and the low-frequency flapping has not been detected in the current study.

Item Type: Article
Schools and Departments: School of Engineering and Informatics > Engineering and Design
Depositing User: Zhiyin Yang
Date Deposited: 06 Feb 2012 19:30
Last Modified: 08 Mar 2017 08:53
URI: http://sro.sussex.ac.uk/id/eprint/20912

View download statistics for this item

📧 Request an update