Observational constraints on supermassive dark stars

Article (Supplemental Material)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/19749/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Erratum: Observational constraints on supermassive dark stars

by Erik Zackrisson,* Pat Scott, Claes-Erik Rydberg, Fabio Iocco, Sofia Sivertsson, Göran Östlin, Garrelt Mellema, Ilian T. Iliev and Paul R. Shapiro

Key words: errata, addenda – stars: Population III – dark ages, reionization, first stars – dark matter.

The corrected formation rate of $1\text{–}2 \times 10^8 \, M_{\odot}$ haloes per comoving Mpc3 and year, as a function of redshift. The raw simulation data are represented by the thin line, whereas the thick line traces a second-degree polynomial fitted to the data.

An error has been uncovered in the Letter. Owing to a numerical mistake, the formation rate of $1\text{–}2 \times 10^8 \, M_{\odot}$ cold dark matter haloes used was too high by factors of $\approx 10\text{–}30$. As a result, the observational constraints on f_{SMDS}, the fraction of $1\text{–}2 \times 10^8 \, M_{\odot}$ haloes that form $10^7 \, M_{\odot}$ supermassive dark stars (SMDS), should be relaxed accordingly.

The corrected halo formation rate is presented as a function of redshift in Fig. 1. Because of the smaller number of haloes involved, the scatter between adjacent redshift bins is now considerably larger than in the original plot. By fitting a second-order polynomial (thick solid line) to the simulation data, we estimate that the formation rate of $1\text{–}2 \times 10^8 \, M_{\odot}$ haloes is $dn/dt \approx 5 \times 10^{-9}$ haloes per comoving Mpc3 and year at $z = 10$, and $dn/dt \approx 1 \times 10^{-9}$ haloes per comoving Mpc3 and year at $z = 15$. This converts into $N \approx 580$ haloes forming per unit redshift and arcmin2 at $z = 10$, and $N \approx 30$ haloes forming per unit redshift and arcmin2 at $z = 15$.

The resulting constraints on f_{SMDS}, as a function of the SMDS lifetime τ, are plotted in Fig. 2 for our scenario A (where SMDS continue to form at $z \approx 10$ rather than merely survive from previous epochs). For instance, $\log_{10} f_{\text{SMDS}} \lesssim -3.2 \, (\approx -2.5)$ if $\tau \approx 10^7 \, \text{yr}$ and $\log_{10} f_{\text{SMDS}} \lesssim -2.2 \, (\approx -1.5)$ if $\tau \approx 10^8 \, \text{yr}$ for the $T_{\text{eff}} = 27\,000 \, (51\,000) \, \text{K}$ SMDS from Freese et al. (2010). These upper limits are a factor of 10 weaker than those originally reported.

In scenario B, where f_{SMDS} is assumed to be effectively zero at $z = 10$, current observational data can be used to set upper limits on f_{SMDS} at $z = 15$ (the formation redshift assumed by Freese et al. 2010), provided that the SMDS forming at $z = 15$ have sufficiently long lifetimes to survive until $z = 10$. In the adopted cosmology, this requires $\tau \gtrsim 2.1 \times 10^8 \, \text{yr}$. For SMDS that obey this age criterion, the constraints relax to $\log_{10} f_{\text{SMDS}} \lesssim -2.9 \, (\approx -2.2)$ for the $T_{\text{eff}} = 27\,000 \, (51\,000) \, \text{K}, \, 10^7 \, M_{\odot}$ SMDS. These upper limits are a factor of 30 weaker than those originally reported.

Despite these revisions, our discussion concerning the prospects of detecting SMDS with the *James Webb Space Telescope (JWST)* remain unimpeded. Given the corrected halo formation rates, a single *JWST* detection of an $\approx 10^7 \, M_{\odot}$ SMDS at $z = 15$ would suggest $\log_{10} f_{\text{SMDS}} \approx -1.8$ if $\tau = 10^7 \, \text{yr}$. However, this combination of f_{SMDS} and τ is still ruled out at $z = 10$ (Fig. 2). Hence, if f_{SMDS} and τ are approximately the same at $z = 15$ and 10, our constraints predict that no $10^7 \, M_{\odot}$ SMDS will be detectable within a single *JWST* field at $z = 15$. Of course, *JWST* observations would still be
highly relevant for dark stars at lower masses, and for scenarios in which f_{SMDX} evolves strongly with redshift.

A corrected version of the Letter has been posted on arXiv.

ACKNOWLEDGMENTS

We are indebted to Cosmin Ilie and Katherine Freese for bringing this error to our attention.

REFERENCES

This paper has been typeset from a \LaTeX\ file prepared by the author.