Erratum: Observational constraints on supermassive dark stars

by Erik Zackrisson,* Pat Scott, Claes-Erik Rydberg, Fabio Iocco, Sofia Sivertsson, Göran Östlin, Garrelt Mellema, Ilian T. Iliev and Paul R. Shapiro

Key words: errata, addenda – stars: Population III – dark ages, reionization, first stars – dark matter.

The corrected halo formation rate is presented as a function of redshift. The raw simulation data are represented by the thin line, whereas the thick line traces a second-degree polynomial fitted to the data.

Figure 1. The corrected formation rate of $1-2 \times 10^8 M_\odot$ haloes per comoving Mpc3 and year, as a function of redshift. The raw simulation data are by Erik Zackrisson,* Pat Scott, Claes-Erik Rydberg, Fabio Iocco, Sofia Sivertsson, Göran Östlin, Garrelt Mellema, Ilian T. Iliev and Paul R. Shapiro

Key words: errata, addenda – stars: Population III – dark ages, reionization, first stars – dark matter.

The corrected halo formation rate is presented as a function of redshift. The raw simulation data are represented by the thin line, whereas the thick line traces a second-degree polynomial fitted to the data.

Figure 1. The corrected formation rate of $1-2 \times 10^8 M_\odot$ haloes per comoving Mpc3 and year, as a function of redshift. The raw simulation data are represented by the thin line, whereas the thick line traces a second-degree polynomial fitted to the data.

Figure 2. Corrected upper limits on the fraction f_{SMDS} of $1-2 \times 10^8 M_\odot$ dark matter haloes that form $T_{\text{eff}} = 27,000$ K (solid line) and $T_{\text{eff}} = 51,000$ K (dashed line) $10^{7} M_\odot$ dark stars at $z \approx 10$ (i.e. scenario A), as a function of their lifetimes τ.

epochs). For instance, $\log_{10} f_{\text{SMDS}} \lesssim -3.2 (-2.5)$ if $\tau \sim 10^7$ yr and $\log_{10} f_{\text{SMDS}} \lesssim -2.2 (-1.5)$ if $\tau \sim 10^6$ yr for the $T_{\text{eff}} = 27,000 (51,000)$ K SMDS from Freese et al. (2010). These upper limits are a factor of 10 weaker than those originally reported.

In scenario B, where f_{SMDS} is assumed to be effectively zero at $z = 10$, current observational data can be used to set upper limits on f_{SMDS} at $z = 15$ (the formation redshift assumed by Freese et al. 2010), provided that the SMDS forming at $z = 15$ have sufficiently long lifetimes to survive until $z = 10$. In the adopted cosmology, this requires $\tau > 2.1 \times 10^6$ yr. For SMDS that obey this age criterion, the constraints relax to $\log_{10} f_{\text{SMDS}} \lesssim -2.9 (-2.2)$ for the $T_{\text{eff}} = 27,000 (51,000)$ K, $10^7 M_\odot$ SMDS. These upper limits are a factor of 30 weaker than those originally reported.

Despite these revisions, our discussion concerning the prospects of detecting SMDS with the James Webb Space Telescope (JWST) remain unimpeded. Given the corrected halo formation rates, a single JWST detection of an $\sim 10^7 M_\odot$ SMDS at $z = 15$ would suggest $\log_{10} f_{\text{SMDS}} \approx -1.8$ if $\tau \sim 10^6$ yr. However, this combination of f_{SMDS} and τ is still ruled out at $z = 10$ (Fig. 2). Hence, if f_{SMDS} and τ are approximately the same at $z = 15$ and 10, our constraints predict that no $10^7 M_\odot$ SMDS will be detectable within a single JWST field at $z = 15$. Of course, JWST observations would still be

*E-mail: ez@astro.su.se

\© 2010 The Authors

Monthly Notices of the Royal Astronomical Society © 2010 RAS
highly relevant for dark stars at lower masses, and for scenarios in which f_{SMDX} evolves strongly with redshift.

A corrected version of the Letter has been posted on arXiv.

ACKNOWLEDGMENTS

We are indebted to Cosmin Ilie and Katherine Freese for bringing this error to our attention.

REFERENCES

This paper has been typeset from a \TeX\ file prepared by the author.